Citation: | Jie Han, Shilin Gong, Xiqing Bian, Yun Qian, Guilan Wang, Na Li, Jian-Lin Wu. Polarity-regulated derivatization-assisted LC-MS method for amino-containing metabolites profiling in gastric cancer[J]. Journal of Pharmaceutical Analysis, 2023, 13(11): 1353-1364. doi: 10.1016/j.jpha.2023.06.009 |
W.J. Lee, W.C. Lee, S.J. Houng et al., Survival after resection of gastric cancer and prognostic relevance of systematic lymph node dissection: Twenty years experience in Taiwan, World J. Surg. 19 (1995) 707-713.
|
Y.J. Mok, B.W. Koo, C.W. Whang, et al., Cancer of the stomach: A review of two hospitals in Korea and Japan, World J. Surg. 17 (1993) 777-782.
|
S.S. Joshi, B.D. Badgwell, Current treatment and recent progress in gastric cancer, CA Cancer J. Clin. 71 (2021) 264-279.
|
Y. Chen, J. Zhang, L. Guo, et al., A characteristic biosignature for discrimination of gastric cancer from healthy population by high throughput GC-MS analysis, Oncotarget 7 (2016) 87496-87510.
|
X. Song, X. Yang, R. Narayanan, et al., Oral squamous cell carcinoma diagnosed from saliva metabolic profiling, Proc. Natl. Acad. Sci. U. S. A. 117 (2020) 16167-16173.
|
E.C. Chan, K.K. Pasikanti, J.K. Nicholson, Global urinary metabolic profiling procedures using gas chromatography-mass spectrometry, Nat. Protoc. 6 (2011) 1483-1499.
|
R. Maejima, K. Tamai, T. Shiroki, et al., Enhanced expression of semaphorin 3E is involved in the gastric cancer development, Int. J. Oncol. 49 (2016) 887-894.
|
M. Jain, R. Nilsson, S. Sharma, et al., Metabolite profiling identifies a key role for Glycine in rapid cancer cell proliferation, Science 336 (2012) 1040-1044.
|
W. Zhang, N. Shyh-Chang, H. Yang, et al., Glycine decarboxylase activity drives non-small cell lung cancer tumor-initiating cells and tumorigenesis, Cell 148 (2012) 259-272.
|
K. Wang, X. Zhao, J. Liu, et al., Nervous system and gastric cancer, Biochim. Biophys. Acta Rev. Cancer 1873 (2020), 188313.
|
V. Sagi-Kiss, Y. Li, M.R. Carey, et al., Ion-pairing chromatography and amine derivatization provide complementary approaches for the targeted LC-MS analysis of the polar metabolome, J. Proteome Res. 21 (2022) 1428-1437.
|
E. Ozturk Er, S. Erarpat, S. Bodur, et al., Accurate determination of amino acids by quadruple isotope dilution-reverse phase liquid Chromatography-Tandem mass spectrometry after derivatization with 2-Naphthoyl chloride, J. Chromatogr. A 1667 (2022), 462870.
|
B.A. Boughton, D.L. Callahan, C. Silva, et al., Comprehensive profiling and quantitation of amine group containing metabolites, Anal. Chem. 83 (2011) 7523-7530.
|
X. Bian, Y. Zhang, N. Li, et al., Ultrasensitive quantification of trace amines based on N-phosphorylation labeling chip 2D LC-QQQ/MS, J. Pharm. Anal. 13 (2023) 315-322.
|
X. Bian, N. Li, B. Tan, et al., Polarity-tuning derivatization-LC-MS approach for probing global carboxyl-containing metabolites in colorectal cancer, Anal. Chem. 90 (2018) 11210-11215.
|
T. Santa, Derivatization reagents in liquid chromatography/electrospray ionization tandem mass spectrometry, Biomed. Chromatogr. 25 (2011) 1-10.
|
C. Papamicael, V. Gembus, A. Barre, et al., An overview of the synthesis of highly versatile N-hydroxysuccinimide esters, Synthesis 49 (2016) 472-483.
|
C. Salazar, J.M. Armenta, V. Shulaev, An UPLC-ESI-MS/MS assay using 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate derivatization for targeted amino acid analysis: Application to screening of Arabidopsis thaliana mutants, Metabolites 2 (2012) 398-428.
|
J. Wang, L. Zhou, H. Lei, et al., Simultaneous quantification of amino metabolites in multiple metabolic pathways using ultra-high performance liquid chromatography with tandem-mass spectrometry, Sci. Rep. 7 (2017), 1423.
|
R. Zhou, T. Huan, L. Li, Development of versatile isotopic labeling reagents for profiling the amine submetabolome by liquid chromatography-mass spectrometry, Anal. Chim. Acta 881 (2015) 107-116.
|
C. Evans, J. Noirel, S.Y. Ow, et al., An insight into iTRAQ: Where do we stand now? Anal. Bioanal. Chem. 404 (2012) 1011-1027.
|
J.P. Murphy, R.A. Everley, J.L. Coloff, et al., Combining amine metabolomics and quantitative proteomics of cancer cells using derivatization with isobaric tags, Anal. Chem. 86 (2014) 3585-3593.
|
K. Shen, L. Wang, Q. He, et al., Sensitive bromine-labeled probe D-BPBr for simultaneous identification and quantification of chiral amino acids and amino-containing metabolites profiling in human biofluid by HPLC/MS, Anal. Chem. 92 (2020) 1763-1769.
|
G.J. Ji, C.B. Xue, J.N. Zeng, et al., Synthesis of N-(Diisopropyloxyphosphoryl) amino acids and peptides, Synthesis-Stuttgart 6 (1988) 444-448.
|
D.W. Domaille, J.N. Cha, Aniline-terminated DNA catalyzes rapid DNA-hydrazone formation at physiological pH, Chem. Commun. 50 (2014) 3831-3833.
|
X. Hu, X. Bian, W. Gu, et al., Stand out from matrix: Ultra-sensitive LC-MS/MS method for determination of histamine in complex biological samples using derivatization and solid phase extraction, Talanta 225 (2021), 122056.
|
J. Leng, H. Wang, L. Zhang, et al., A highly sensitive isotope-coded derivatization method and its application for the mass spectrometric analysis of analytes containing the carboxyl group, Anal. Chim. Acta 758 (2013) 114-121.
|
S. Madler, C. Bich, D. Touboul, et al., Chemical cross-linking with NHS esters: A systematic study on amino acid reactivities, J. Mass Spectrom. 44 (2009) 694-706.
|
S. Zhao, L. Li, Chemical derivatization in LC-MS-based metabolomics study, Trac Trends Anal. Chem. 131 (2020), 115988.
|
X. Chen, D. Gao, F. Liu, et al., A novel quantification method for analysis of twenty natural amino acids in human serum based on N-phosphorylation labeling using reversed-phase liquid chromatography-tandem mass spectrometry, Anal. Chim. Acta 836 (2014) 61-71.
|
D.S. Wishart, T. Jewison, A. Guo, et al., HMDB 3.0: The human metabolome database in 2013, Nucleic Acids Res. 41 (2013) D801-D807.
|
Z. Zhu, A.W. Schultz, J. Wang, et al., Liquid chromatography quadrupole time-of-flight mass spectrometry characterization of metabolites guided by the METLIN database, Nat. Protoc. 8 (2013) 451-460.
|
F. De Chiara, K.L. Thomsen, A. Habtesion, et al., Ammonia scavenging prevents progression of fibrosis in experimental nonalcoholic fatty liver disease, Hepatology 71 (2020) 874-892.
|
D. Montes-Cortes, I. Olivares-Corichi, J. Rosas-Barrientos, et al., Characterization of oxidative stress and ammonia according to the different grades of hepatic encephalopathy, Dig. Dis. 38 (2020) 240-250.
|
C.N. Hsu, Y.L. Tain, Developmental programming and reprogramming of hypertension and kidney disease: Impact of tryptophan metabolism, Int. J. Mol. Sci. 21 (2020), 8705.
|
X. Su, Y. Gao, R. Yang, Gut microbiota-derived tryptophan metabolites maintain gut and systemic homeostasis, Cells 11 (2022), 2296.
|
C.A. Opitz, U.M. Litzenburger, F. Sahm, et al., An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor, Nature 478 (2011) 197-203.
|
G.C. Prendergast, Cancer: Why tumours eat tryptophan, Nature 478 (2011) 192-194.
|
A.B. Engin, B. Karahalil, A.E. Karakaya, et al., Exposure to helicobacter pylori and serum kynurenine to tryptophan ratio in patients with gastric cancer, Pteridines 21 (2010) 110-120.
|
A.A.B. Badawy, Kynurenine pathway of tryptophan metabolism: Regulatory and functional aspects, Int. J. Tryptophan Res. 10 (2017), 1178646917691938.
|
I. Sadok, K. Jedruchniewicz, K. Rawicz-Pruszynski, et al., UHPLC-ESI-MS/MS quantification of relevant substrates and metabolites of the kynurenine pathway present in serum and peritoneal fluid from gastric cancer patients-Method development and validation, Int. J. Mol. Sci. 22 (2021), 6972.
|
J. Kuligowski, D. Sanjuan-Herraez, M.A. Vazquez-Sanchez, et al., Metabolomic analysis of gastric cancer progression within the Correa’s cascade using ultraperformance liquid chromatography-mass spectrometry, J. Proteome Res. 15 (2016) 2729-2738.
|
B. Borowsky, N. Adham, K.A. Jones, et al., Trace amines: Identification of a family of mammalian G protein-coupled receptors, Proc. Natl. Acad. Sci. U. S. A. 98 (2001) 8966-8971.
|
K. Gao, C. Mu, A. Farzi, et al., Tryptophan metabolism: A link between the gut microbiota and brain, Adv. Nutr. 11 (2020) 709-723.
|
B.B. Williams, A.H. Van Benschoten, P. Cimermancic, et al., Discovery and characterization of gut microbiota decarboxylases that can produce the neurotransmitter tryptamine, Cell Host Microbe 16 (2014) 495-503.
|
W. Liang, Y. Yang, H. Wang, et al., Gut microbiota shifts in patients with gastric cancer in perioperative period, Medicine (Baltimore) 98 (2019) e16626.
|
Y.Y. Hsieh, S.Y. Tung, H.Y. Pan, et al., Increased abundance of Clostridium and Fusobacterium in gastric microbiota of patients with gastric cancer in Taiwan, Sci. Rep. 8 (2018) 158-168.
|
C.W. Wu, C.W. Chi, E.C. Lin, et al., Serum arginase level in patients with gastric cancer, J. Clin. Gastroenterol. 18 (1994) 84-85.
|
C.W. Wu, S.R. Wang, T.J. Chang, et al., Content of glucocorticoid receptor and arginase in gastric cancer and normal gastric mucosal tissues, Cancer 64 (1989) 2552-2556.
|
P.C. Rodriguez, D.G. Quiceno, J. Zabaleta, et al., Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses, Cancer Res. 64 (2004) 5839-5849.
|
F. Niu, Y. Yu, Z. Li, et al., Arginase: An emerging and promising therapeutic target for cancer treatment, Biomed. Pharmacother. 149 (2022), 112840.
|