Citation: | Jingjing Wang, Qi Su, Kun Chen, Qing Wu, Jiayan Ren, Wenjuan Tang, Yu Hu, Zeren Zhu, Cheng Cheng, Kaihui Tu, Huaizhen He, Yanmin Zhang. Pyrimethamine upregulates BNIP3 to interfere SNARE-mediated autophagosome-lysosomal fusion in hepatocellular carcinoma[J]. Journal of Pharmaceutical Analysis, 2024, 14(2): 211-224. doi: 10.1016/j.jpha.2023.05.014 |
[1] |
H. Sung, J. Ferlay, R.L. Siegel, et al., Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA. Cancer J. Clin. 71 (2021) 209-249.
|
[2] |
Z. Liu, Y. Lin, J. Zhang, et al., Molecular targeted and immune checkpoint therapy for advanced hepatocellular carcinoma, J. Exp. Clin. Cancer Res. 38 (2019), 447.
|
[3] |
A. Jindal, A. Thadi, K. Shailubhai, Hepatocellular carcinoma: Etiology and current and future drugs, J. Clin. Exp. Hepatol. 9 (2019) 221-232.
|
[4] |
B. Allard, S. Aspeslagh, S. Garaud, et al., Immuno-oncology-101: Overview of major concepts and translational perspectives, Semin. Cancer Biol. 52 (2018) 1-11.
|
[5] |
R. Amaravadi, A.C. Kimmelman, E. White, Recent insights into the function of autophagy in cancer, Genes Dev. 30 (2016) 1913-1930.
|
[6] |
J.M.M. Levy, C.G. Towers, A. Thorburn, Targeting autophagy in cancer, Nat. Rev. Cancer 17 (2017) 528-542.
|
[7] |
F. Janku, D.J. McConkey, D.S. Hong, et al., Autophagy as a target for anticancer therapy, Nat. Rev. Clin. Oncol. 8 (2011) 528-539.
|
[8] |
D.J. Klionsky, F.C. Abdalla, H. Abeliovich, et al., Guidelines for the use and interpretation of assays for monitoring autophagy, Autophagy 8 (2012) 445-544.
|
[9] |
J. Wang, J. Zhang, Y.M. Lee, et al., Quantitative chemical proteomics profiling of de novo protein synthesis during starvation-mediated autophagy, Autophagy 12 (2016) 1931-1944.
|
[10] |
J. Zhang, J. Wang, S. Ng, et al., Development of a novel method for quantification of autophagic protein degradation by AHA labeling, Autophagy 10 (2014) 901-912.
|
[11] |
N. Mizushima, Autophagy: Process and function, Genes Dev. 21 (2007) 2861-2873.
|
[12] |
Y. Wang, L. Li, C. Hou, et al., SNARE-mediated membrane fusion in autophagy, Semin. Cell Dev. Biol. 60 (2016) 97-104.
|
[13] |
X. Tian, J. Teng, J. Chen, New insights regarding SNARE proteins in autophagosome-lysosome fusion, Autophagy 17 (2021) 2680-2688.
|
[14] |
E. Itakura, C. Kishi-Itakura, N. Mizushima, The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes, Cell 151 (2012) 1256-1269.
|
[15] |
M. Onishi, K. Yamano, M. Sato, et al., Molecular mechanisms and physiological functions of mitophagy, EMBO J. 40 (2021), e104705.
|
[16] |
L. Gu, J. Zhang, D. Liu, et al., Development of artesunate intelligent prodrug liposomes based on mitochondrial targeting strategy, J. Nanobiotechnology 20 (2022), 376.
|
[17] |
J. Zhang, P.A. Ney, Role of BNIP3 and NIX in cell death, autophagy, and mitophagy, Cell Death Differ. 16 (2009) 939-946.
|
[18] |
N. Vasagiri, V.K. Kutala, Structure, function, and epigenetic regulation of BNIP3: A pathophysiological relevance, Mol. Biol. Rep. 41 (2014) 7705-7714.
|
[19] |
X. Ma, R.J. Godar, H. Liu, et al., Enhancing lysosome biogenesis attenuates BNIP3-induced cardiomyocyte death, Autophagy 8 (2012) 297-309.
|
[20] |
R. Fu, Q. Deng, H. Zhang, et al., A novel autophagy inhibitor berbamine blocks SNARE-mediated autophagosome-lysosome fusion through upregulation of BNIP3, Cell Death Dis. 9 (2018), 243.
|
[21] |
K. Liu, J. Lee, J.J. Ou, Autophagy and mitophagy in hepatocarcinogenesis, Mol. Cell. Oncol. 5 (2018), e1405142.
|
[22] |
X.H. Lin, B.Q. Qiu, M. Ma, et al., Suppressing DRP1-mediated mitochondrial fission and mitophagy increases mitochondrial apoptosis of hepatocellular carcinoma cells in the setting of hypoxia, Oncogenesis 9 (2020), 67.
|
[23] |
Y. Zheng, C. Huang, L. Lu, et al., STOML2 potentiates metastasis of hepatocellular carcinoma by promoting PINK1-mediated mitophagy and regulates sensitivity to lenvatinib, J. Hematol. Oncol. 14 (2021), 16.
|
[24] |
1999 USPHS/IDSA guidelines for the prevention of opportunistic infections in persons infected with human immunodeficiency virus. U.S. Public Health Service (USPHS) and Infectious Diseases Society of America (IDSA), Infect. Dis. Obstet. Gynecol. 8 (2000) 5-74.
|
[25] |
F.P. Mockenhaupt, T.A. Eggelte, T. Bohme, et al., Plasmodium falciparum dihydrofolate reductase alleles and pyrimethamine use in pregnant Ghanaian women, Am. J. Trop. Med. Hyg. 65 (2001) 21-26.
|
[26] |
M.X. Lin, S.H. Lin, C.C. Lin, et al., In vitro and in vivo antitumor effects of pyrimethamine on non-small cell lung cancers, Anticancer Res. 38 (2018) 3435-3445.
|
[27] |
A.M. Giammarioli, A. Maselli, A. Casagrande, et al., Pyrimethamine induces apoptosis of melanoma cells via a caspase and cathepsin double-edged mechanism, Cancer Res. 68 (2008) 5291-5300.
|
[28] |
C. Tommasino, L. Gambardella, M. Buoncervello, et al., New derivatives of the antimalarial drug Pyrimethamine in the control of melanoma tumor growth: An in vitro and in vivo study, J. Exp. Clin. Cancer Res. 35 (2016), 137.
|
[29] |
M.W. Khan, A. Saadalla, A.H. Ewida, et al., The STAT3 inhibitor pyrimethamine displays anti-cancer and immune stimulatory effects in murine models of breast cancer, Cancer Immunol. Immunother. 67 (2018) 13-23.
|
[30] |
A. Sharma, N. Jyotsana, C.K. Lai, et al., Pyrimethamine as a potent and selective inhibitor of acute myeloid leukemia identified by high-throughput drug screening, Curr. Cancer Drug Targets 16 (2016) 818-828.
|
[31] |
X. Zhou, J. Zhang, X. Hu, et al., Pyrimethamine elicits antitumor effects on prostate cancer by inhibiting the p38-NF-κB pathway, Front. Pharmacol. 11 (2020), 758.
|
[32] |
Y. Shi, Mechanisms of caspase activation and inhibition during apoptosis, Mol. Cell 9 (2002) 459-470.
|
[33] |
Z. Li, L. Mao, B. Yu, et al., GB7 acetate, a galbulimima alkaloid from Galbulimima belgraveana, possesses anticancer effects in colorectal cancer cells, J. Pharm. Anal. 12 (2022) 339-349.
|
[34] |
Q. Zhang, P. Luo, L. Zheng, et al., 18beta-glycyrrhetinic acid induces ROS-mediated apoptosis to ameliorate hepatic fibrosis by targeting PRDX1/2 in activated HSCs, J. Pharm. Anal. 12 (2022) 570-582.
|
[35] |
Y. Qiao, J.E. Choi, J.C. Tien, et al., Autophagy inhibition by targeting PIKfyve potentiates response to immune checkpoint blockade in prostate cancer, Nat. Cancer 2 (2021) 978-993.
|
[36] |
D. Narendra, A. Tanaka, D.F. Suen, et al., Parkin is recruited selectively to impaired mitochondria and promotes their autophagy, J. Cell Biol. 183 (2008) 795-803.
|
[37] |
L. Guntuku, J.K. Gangasani, D. Thummuri, et al., IITZ-01, a novel potent lysosomotropic autophagy inhibitor, has single-agent antitumor efficacy in triple-negative breast cancer in vitro and in vivo, Oncogene 38 (2019) 581-595.
|
[38] |
H. Iwama, S. Mehanna, M. Imasaka, et al., Cathepsin B and D deficiency in the mouse pancreas induces impaired autophagy and chronic pancreatitis, Sci. Rep. 11 (2021), 6596.
|
[39] |
S. Kimura, T. Noda, T. Yoshimori, Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3, Autophagy 3 (2007) 452-460.
|
[40] |
A.H. Chourasia, K.F. MacLeod, Tumor suppressor functions of BNIP3 and mitophagy, Autophagy 11 (2015) 1937-1938.
|
[41] |
H. Wu, T. Wang, Y. Liu, et al., Mitophagy promotes sorafenib resistance through hypoxia-inducible ATAD3A dependent Axis, J. Exp. Clin. Cancer Res. 39 (2020), 274.
|
[42] |
S. Shimizu, T. Takehara, H. Hikita, et al., Inhibition of autophagy potentiates the antitumor effect of the multikinase inhibitor sorafenib in hepatocellular carcinoma, Int. J. Cancer 131 (2012) 548-557.
|
[43] |
B. Zhou, Q. Lu, J. Liu, et al., Melatonin increases the sensitivity of hepatocellular carcinoma to sorafenib through the PERK-ATF4-Beclin1 pathway, Int. J. Biol. Sci. 15 (2019) 1905-1920.
|
[44] |
T.C. Chou, Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies, Pharmacol. Rev. 58 (2006) 621-681.
|
[45] |
B. Pasquier, Autophagy inhibitors, Cell. Mol. Life Sci. 73 (2016) 985-1001.
|
[46] |
Y. Wu, X. Wang, H. Guo, et al., Synthesis and screening of 3-MA derivatives for autophagy inhibitors, Autophagy 9 (2013) 595-603.
|
[47] |
A. Yamamoto, Y. Tagawa, T. Yoshimori, et al., Bafilomycin A1 prevents maturation of autophagic vacuoles by inhibiting fusion between autophagosomes and lysosomes in rat hepatoma cell line, H-4-II-E cells, Cell Struct. Funct. 23 (1998) 33-42.
|
[48] |
C.A. Homewood, D.C. Warhurst, W. Peters, et al., Lysosomes, pH and the anti-malarial action of chloroquine, Nature 235 (1972) 50-52.
|
[49] |
K. Hegedus, S. Takats, A.L. Kovacs, et al., Evolutionarily conserved role and physiological relevance of a STX17/Syx17 (syntaxin 17)-containing SNARE complex in autophagosome fusion with endosomes and lysosomes, Autophagy 9 (2013) 1642-1646.
|
[50] |
E. Itakura, N. Mizushima, Syntaxin 17: The autophagosomal SNARE, Autophagy 9 (2013) 917-919.
|
[51] |
C.W. Park, S.M. Hong, E.S. Kim, et al., BNIP3 is degraded by ULK1-dependent autophagy via MTORC1 and AMPK, Autophagy 9 (2013) 345-360.
|