Citation: | Yang Yi, Wenzhe Li, Kefang Liu, Heng Xue, Rong Yu, Meng Zhang, Yang-Oujie Bao, Xinyuan Lai, Jingjing Fan, Yuxi Huang, Jing Wang, Xiaomeng Shi, Junhua Li, Hongping Wei, Kuanhui Xiang, Linjie Li, Rong Zhang, Xin Zhao, Xue Qiao, Hang Yang, Min Ye. Licorice-saponin A3 is a broad-spectrum inhibitor for COVID-19 by targeting viral spike and anti-inflammation[J]. Journal of Pharmaceutical Analysis, 2024, 14(1): 115-127. doi: 10.1016/j.jpha.2023.05.011 |
[1] |
N. Zhu, D. Zhang, W. Wang, et al., A novel coronavirus from patients with pneumonia in China, N. Engl. J. Med. 382 (2020) 727-733.
|
[2] |
World Health Organization, WHO Coronavirus (COVID-19) Dashboard, World Health Organization, 2022. https://covid19.who.int.
|
[3] |
K. Xu, L. Dai, G.F. Gao, Humoral and cellular immunity and the safety of COVID-19 vaccines: A summary of data published by 21 May 2021, Int. Immunol. 33 (2021) 529-540.
|
[4] |
K. Xu, P. Gao, S. Liu, et al., Protective prototype-Beta and Delta-Omicron chimeric RBD-dimer vaccines against SARS-CoV-2, Cell 185 (2022) 2265-2278.
|
[5] |
J.A. Plante, B.M. Mitchell, K.S. Plante, et al., The variant gambit: COVID-19’s next move, Cell Host Microbe 29 (2021) 508-515.
|
[6] |
Y. Wu, F. Wang, C. Shen, et al., A noncompeting pair of human neutralizing antibodies block COVID-19 virus binding to its receptor ACE2, Science 12 (2020) 1274-1278.
|
[7] |
L. Dai, G.F. Gao, Viral targets for vaccines against COVID-19, Nat. Rev. Immunol. 21 (2021) 73-82.
|
[8] |
A.A.T. Naqvi, K. Fatima, T. Mohammad, et al., Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: Structural genomics approach, Biochim. Biophys. Acta. Mol. Basis Dis. 1866 (2020) 165878.
|
[9] |
P. Wang, M. Nair, L. Liu, et al., Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7, Nature 593 (2021)130-135.
|
[10] |
B. Korber, W.M. Fischer, S. Gnanakaran, et al., Tracking changes in SARS-CoV-2 spike: Evidence that D614G increases infectivity of the COVID-19 virus, Cell 182 (2020) 812-827.
|
[11] |
J.W. Tang, P.A. Tambyah, D.S. Hui, Emergence of a new SARS-CoV-2 variant in the UK, J. Infect. 81 (2021) 27-28.
|
[12] |
H. Tegally, E. Wilkinson, M. Giovanetti, et al., Emergence and rapid spread of a new severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) lineage with multiple spike mutations in South Africa, MedRxiv. 2020. https://doi.org/10.1101/2020.12.21.20248640.
|
[13] |
E.C. Sabino, L.F. Buss, M.P.S. Carvalho, et al., Resurgence of COVID-19 in Manaus, Brazil, despite high seroprevalence, Lancet 397 (2021) 452-455.
|
[14] |
J. Zhang, T. Xiao, Y. Cai, et al., Membrane fusion and immune evasion by the spike protein of SARS-CoV-2 Delta variant, Science 374 (2021)1353-1360.
|
[15] |
D. Mannar, J.W. Saville, X. Zhu, et al., SARS-CoV-2 Omicron variant: Antibody evasion and cryo-EM structure of spike protein-ACE2 complex, Science 375 (2022) 760-764.
|
[16] |
D.A. Collier, A. Marco, I.A.T.M. Ferreira, et al., Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies, Nature 608 (2022) 1514.
|
[17] |
W.F. Garcia-Beltran, E.C. Lam, K.S. Denis, et al., Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity, Cell 184 (2021) 2372-2383.
|
[18] |
M. Huang, L. Wu, A. Zheng, et al., Atlas of currently available human neutralizing antibodies against SARS-CoV-2 and escape by Omicron sub-variants BA.1/BA.1.1/BA.2/BA.3. 55, Immunity 55 (2022) 1501-1504.
|
[19] |
E. Andreano, G. Piccini, D. Licastro, et al., SARS-CoV-2 escape in vitro from a highly neutralizing COVID-19 convalescent plasma, BioRxiv. 2020. https://doi.org/10.1101/2020.12.28.424451.
|
[20] |
L. Espenhain, T. Funk, M. Overvad, et al., Epidemiological characterisation of the first 785 SARS-CoV-2 Omicron variant cases in Denmark, Euro Surveill. 26 (2021) 2101146.
|
[21] |
M. Hoffmann, H. Kleine-Weber, S. Schroeder, et al., SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor, Cell 181 (2020) 271-280.
|
[22] |
L. Xing, X. Xu, W. Xu, et al., A five-helix-based SARS-CoV-2 fusion inhibitor targeting heptad repeat 2 domain against SARS-CoV-2 and its variants of concern, Viruses 14 (2022) 597.
|
[23] |
H. Sun, Y. Li, P. Liu, et al., Structural basis of HCoV-19 fusion core and an effective inhibition peptide against virus entry, Emerg. Microbes Infect. 9 (2020) 1238-1241.
|
[24] |
O. Zenarruzabeitia, G. Astarloa-Pando, I. Terren, et al., T cell Activation, highly armed cytotoxic cells and a shift in, onocytes CD300 receptors expression is characteristic of patients with severe COVID-19, Front. Immunol. 12 (2021) 655934.
|
[25] |
P. Georg, R. Astaburuaga-Garcia, L. Bonaguro, et al., Complement activation induces excessive T cell cytotoxicity in severe COVID-19, Cell 185 (2021) 493-512.
|
[26] |
M. Cargnello, P.P. Roux, Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases, Microbiol. Mol. Biol. R. 75 (2011) 50-83.
|
[27] |
M. Liao, Y. Liu, J. Yuan, et al., Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19, Nat. Med. 26 (2020) 842-844.
|
[28] |
S. Ji, Z. Li, W. Song, et al. Bioactive constituents of Glycyrrhiza uralensis (Licorice): Discovery of the effective components of a traditional herbal medicine. J Nat. Prod. 79. (2016) 281-292.
|
[29] |
Y. Yi, J. Li, X. Lai, et al., Natural triterpenoids from licorice potently inhibit SARS-CoV-2 infection, J. Adv. Res. 36 (2022) 201-210.
|
[30] |
Y. Yi, M. Zhang, H. Xue, et al., Schaftoside inhibits 3CLpro and PLpro of SARSCoV-2 virus and regulates immune response and inflammation of host cells for the treatment of COVID-19, Acta Pharm. Sin. B 12 (2022) 4154-4164.
|
[31] |
C. Fenwick, P. Turelli, D. Ni, et al., Patient-derived monoclonal antibody neutralizes SARS-CoV-2 Omicron variants and confers full protection in monkeys, Nat. Microbiol. 7 (2022) 1376-1389.
|
[32] |
J. Lan, J. Ge, J. Yu, et al., Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor, Nature 581 (2020) 215-220.
|
[33] |
A.D. Becke, Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys. 98 (1993) 5648-5652.
|
[34] |
C. Lee, W. Yang, R.G. Parr, Development of the Colle-Salvetti correlation energy formula into a functional of the electron density, Phys. Rev. B 37 (1998) 785-789.
|
[35] |
B. Miehlich, A. Savin, H. Stoll, et al., Results obtained with the correlation-energy density functionals of Becke and Lee, Yang and Parr, Chem. Phys. Lett. 157 (1989) 200-206.
|
[36] |
A.D. McLean, G. S.Chandler, Contracted Gaussian-basis sets for molecular calculations. 1. 2nd row atoms, Z=11-18, J. Chem. Phys. 72 (1980) 5639-5648.
|
[37] |
M.J. Frisch, G.W. Trucks, H.B. Schlegel, et al., Gaussian, Inc., Wallingford CT, 2009. https://www.gaussian.com.
|
[38] |
G.M. Morris, R. Huey, W. Lindstrom, et al., AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility, J. Comput. Chem. 30 (2009) 2785-2791.
|
[39] |
A.K. Rappe, C.J. Casewit, K.S. Colwell, et al., UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations, J Am. Chem. Soc. 114 (1992) 10024-10035.
|
[40] |
J.F.W. Chan, K. Kok, Z. Zhu, et al., Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan, Emerg. Microbes. Infect. 9 (2020) 221-236.
|
[41] |
J.B. Xu, S. Zhao, T. Teng, et al., Systematic comparison of two animal-to-human transmitted human coronaviruses: SARS-CoV-2 and SARS-CoV, Viruses 12 (2020) 244.
|
[42] |
J. Cinatl, B. Morgenstern, G. Bauer, et al., Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus, Lancet 361 (2003) 2045-2046.
|
[43] |
F. Ardito, M. Giuliani, D. Perrone, et al., The crucial role of protein phosphorylation in cell signaling and its use as targeted therapy (Review), Int. J. Mol. Med. 40 (2017) 271-280.
|
[44] |
R. Giri, T. Bhardwaj, M. Shegane, et al., Understanding COVID-19 via comparative analysis of dark proteomes of SARS-CoV-2, human SARS and bat SARS-like coronaviruses, Cell. Mol. Life Sci. 78 (2021) 1655-1688.
|
[45] |
Z. Bai, P. Li, J. Wen, et al., Inhibitory effects and mechanisms of the anti-covid-19 traditional Chinese prescription, Keguan-1, on acute lung injury, J. Ethnopharmcol. 285 (2022) 114838.
|
[46] |
A. Cuadrado, A.R. Nebreda, Mechanisms and functions of p38 MAPK signaling, Biochem. J. 429 (2010) 403-417.
|
[47] |
G.H. Huang, L.Z.C. Shi, H.B. Chi, Regulation of JNK and p38 MAPK in the immune system: Signal integration, propagation and termination, Cytokine 48 (2009) 161-169.
|
[48] |
F.L. Veerdonk, E. Giamarellos-Bourboulis, P. Pickkers, et al., A guide to immunotherapy for COVID-19, Nat. Med. 28 (2022) 39-50.
|
[49] |
E.J. Giamarellos-Bourboulis, M.G. Netea, N. Rovina, et al., Complex immune dysregulation in COVID-19 patients with severe respiratory failure, Cell Host Microbe 27 (2020) 992-1000.
|
[50] |
D. Zhao, W. Xu, X. Zhang, et al., Understanding the phase separation characteristics of nucleocapsid protein provides a new therapeutic opportunity against SARS-CoV-2, Protein Cell 12 (2021) 734-740.
|