Citation: | Tingting Gou, Minghao Hu, Min Xu, Yuchen Chen, Rong Chen, Tao Zhou, Junjing Liu, Li Guo, Hui Ao, Qiang Ye. Novel wine in an old bottle: Preventive and therapeutic potentials of andrographolide in atherosclerotic cardiovascular diseases[J]. Journal of Pharmaceutical Analysis, 2023, 13(6): 563-589. doi: 10.1016/j.jpha.2023.05.010 |
S. Surma, M. Banach, Fibrinogen and atherosclerotic cardiovascular diseases-review of the literature and clinical studies, Int. J. Mol. Sci. 23 (2021), 193.
|
P. Libby, J.E. Buring, L. Badimon, et al., Atherosclerosis, Nat. Rev. Dis. Primers 5 (2019), 56.
|
M. Sanz, A.M. del Castillo, S. Jepsen, et al., Periodontitis and cardiovascular diseases. consensus report, Glob. Heart 15 (2020), 1.
|
G.A. Roth, G.A. Mensah, C.O. Johnson, et al., Global burden of cardiovascular diseases and risk factors, 1990-2019: Update from the GBD 2019 study, J. Am. Coll. Cardiol. 76 (2020) 2982-3021.
|
N.D. Wong, M.J. Budoff, K. Ferdinand, et al., Atherosclerotic cardiovascular disease risk assessment: An American Society for Preventive Cardiology clinical practice statement, Am. J. Prev. Cardiol. 10 (2022), 100335.
|
M. Cainzos-Achirica, K. Glassner, H.S. Zawahir, et al., Inflammatory bowel disease and atherosclerotic cardiovascular disease: JACC review topic of the week, J. Am. Coll. Cardiol. 76 (2020) 2895-2905.
|
A. Lazaro, G. Alvarez-Llamas, J. Gallego-Delgado, et al., Pharmacoproteomics in cardiac hypertrophy and atherosclerosis, Cardiovasc. Hematol. Disord. Drug Targets 9 (2009) 141-148.
|
B. Rauff, A. Malik, Y.A. Bhatti, et al., Association of viruses in the development of cardiovascular diseases, Curr. Pharm. Des. 27 (2021) 3913-3923.
|
Y. Geng, Molecular mechanisms for cardiovascular stem cell apoptosis and growth in the hearts with atherosclerotic coronary disease and ischemic heart failure, Ann. N. Y. Acad. Sci. 1010 (2003) 687-697.
|
G.D. Flora, M.K. Nayak, A brief review of cardiovascular diseases, associated risk factors and current treatment regimes, Curr. Pharm. Des. 25 (2019) 4063-4084.
|
A.N. Hasso, W.A. Stringer, K.D. Brown, Cerebral ischemia and infarction, Neuroimaging Clin. N. Am. 4 (1994) 733-752.
|
Y. Wan, J. Xia, J. Xu, et al., Nuciferine, an active ingredient derived from lotus leaf, lights up the way for the potential treatment of obesity and obesity-related diseases, Pharmacol. Res. 175 (2022), 106002.
|
X. Dong, Y. Zeng, Y. Liu, et al., Aloe-emodin: A review of its pharmacology, toxicity, and pharmacokinetics, Phytother. Res. 34 (2020) 270-281.
|
A. Zia, T. Farkhondeh, A.M. Pourbagher-Shahri, et al., The role of curcumin in aging and senescence: Molecular mechanisms, Biomed. Pharmacother. 134 (2021), 111119.
|
B. Kulczynski, A. Gramza-Michalowska, J. Suliburska, et al., Puerarin-an isoflavone with beneficial effects on bone health, Front. Biosci. Landmark Ed. 26 (2021) 1653-1667.
|
J. Wu, Y. Yang, Y. Wan, et al., New insights into the role and mechanisms of ginsenoside Rg1 in the management of Alzheimer’s disease, Biomed. Pharmacother. 152 (2022), 113207.
|
Y. Wan, J. Wang, J. Xu, et al., Panax ginseng and its ginsenosides: Potential candidates for the prevention and treatment of chemotherapy-induced side effects, J. Ginseng Res. 45 (2021) 617-630.
|
J. Xu, Y. Wan, F. Tang, et al., Emerging significance of ginsenosides as potentially reversal agents of chemoresistance in cancer therapy, Front. Pharmacol. 12 (2021), 720474.
|
Y. Wan, D. Liu, J. Xia, et al., Ginsenoside CK, rather than Rb1, possesses potential chemopreventive activities in human gastric cancer via regulating PI3K/AKT/NF-κB signal pathway, Front. Pharmacol. 13 (2022), 977539.
|
A.B. Smith, B.H. Toder, P.J. Carroll, et al., Andrographolide: An X-ray crystallographic analysis, J. Crystallogr. Spectrosc. Res. 12 (1982) 309-319.
|
D. Dalawai, C. Aware, J.P. Jadhav, et al., RP-HPLC analysis of diterpene lactones in leaves and stem of different species of Andrographis, Nat. Prod. Res. 35 (2021) 2239-2242.
|
J. Chang,, R. Zhang, Y. Zhang, et al., Andrographolide drop-pill in treatment of acute upper respiratory tract infection with external wind-heat syndrome: A multicenter and randomized controlled trial, J. Chin. Integr. Med. 6 (2008) 1238-1245.
|
E.S. Gabrielian, A.K. Shukarian, G.I. Goukasova, et al., A double blind, placebo-controlled study of Andrographis paniculata fixed combination Kan Jang in the treatment of acute upper respiratory tract infections including sinusitis, Phytomed. 9 (2002) 589-597.
|
Y. Zhao, P. Huang, Z. Chen, et al., Clinical application analysis of andrographolide total ester sulfonate injection, a traditional Chinese medicine licensed in China, Huazhong Keji Daxue Xuebao Yixue Yingdewen Ban 37 (2017) 293-299.
|
J. Melchior, S. Palm, G. Wikman, Controlled clinical study of standardized Andrographis paniculata extract in common cold - a pilot trial, Phytomed. 3 (1997) 315-318.
|
S.K. Wong, K.Y. Chin, S. Ima-Nirwana, A review on the molecular basis underlying the protective effects of Andrographis paniculata and andrographolide against myocardial injury, Drug Des. Devel. Ther. 15 (2021) 4615-4632.
|
V. Arya and V.K. Gupta, Chemistry and pharmacology of plant cardioprotectives: A review, International Journal of Pharmaceutical Sciences and Research 2 (2011) 1156-1167.
|
S.K. Ojha, M. Nandave, S. Kumari, et al., Antioxidant activity of Andrographis paniculata in ischemic myocardium of rats, Global Journal of pharmacology 3 (2009) 154-157.
|
Y. Dai, S. Chen, L. Chai, et al., Overview of pharmacological activities of Andrographis paniculata and its major compound andrographolide, Crit. Rev. Food Sci. Nutr. 59 (2019) S17-S29.
|
M.T. Islam, Andrographolide, a new hope in the prevention and treatment of metabolic syndrome, Front. Pharmacol. 8 (2017), 571.
|
K. Driscoll, A.D. Cruz, J.T. Butcher, Inflammatory and biomechanical drivers of endothelial-interstitial interactions in calcific aortic valve disease, Circ. Res. 128 (2021) 1344-1370.
|
Y. Li, K.C. Ueng, J.S. Jeng, et al., Taiwan lipid guidelines for high risk patients, J. Formos. Med. Assoc. 116 (2017) 217-248.
|
A.M. Shafter, K. Shaikh, A. Johanis, et al., De-risking primary prevention: Role of imaging, Ther. Adv. Cardiovasc. Dis. 15 (2021), 17539447211051248.
|
J.T. Wilkins, S.S. Gidding, J.G. Robinson, Can atherosclerosis be cured? Curr. Opin. Lipidol. 30 (2019) 477-484.
|
T. Quillard, G. Franck, T. Mawson, et al., Mechanisms of erosion of atherosclerotic plaques, Curr. Opin. Lipidol. 28 (2017) 434-441.
|
A.E. Neele, L. Willemsen, H.J. Chen, et al., Targeting epigenetics as atherosclerosis treatment: An updated view, Curr. Opin. Lipidol. 31 (2020) 324-330.
|
R. Ross, Atherosclerosis: An inflammatory disease, N. Engl. J. Med. 340 (1999) 115-126.
|
S.N. Bhupathiraju, F.B. Hu, Epidemiology of obesity and diabetes and their cardiovascular complications, Circ. Res. 118 (2016) 1723-1735.
|
S. Mitra, T. Goyal, J.L. Mehta, Oxidized LDL, LOX-1 and atherosclerosis, Cardiovasc. Drugs Ther. 25 (2011) 419-429.
|
F. Lovren, H. Teoh, S. Verma, Obesity and atherosclerosis: Mechanistic insights, Can. J. Cardiol. 31 (2015) 177-183.
|
J. Tian, Y. Liu, Y. Liu, et al., Cellular and molecular mechanisms of diabetic atherosclerosis: Herbal medicines as a potential therapeutic approach, Oxid. Med. Cell. Longev. 2017 (2017) 1-16.
|
R.P. Mason, Optimal therapeutic strategy for treating patients with hypertension and atherosclerosis: Focus on olmesartan medoxomil, Vasc. Health Risk Manag. 7 (2011) 405-416.
|
K. Iglay, H. Hannachi, P.J. Howie, et al., Prevalence and co-prevalence of comorbidities among patients with type 2 diabetes mellitus, Curr. Med. Res. Opin. 32 (2016) 1243-1252.
|
S. Tabaei, S.S. Tabaee, DNA methylation abnormalities in atherosclerosis, Artif. Cells Nanomed. Biotechnol. 47 (2019) 2031-2041.
|
D. Mauricio, E. Castelblanco, N. Alonso, Cholesterol and inflammation in atherosclerosis: An immune-metabolic hypothesis, Nutrients 12 (2020), 2444.
|
L.M. Buja, Nikolai N. anitschkow and the lipid hypothesis of atherosclerosis, Cardiovasc. Pathol. 23 (2014) 183-184.
|
M. Naito, Amide-adducts in atherosclerosis, Sub Cell. Biochem. 77 (2014) 95-102.
|
P. Sun, K.M. Dwyer, C.N. Merz, et al., Blood pressure, LDL cholesterol, and intima-media thickness: A test of the “response to injury” hypothesis of atherosclerosis, Arterioscler. Thromb. Vasc. Biol. 20 (2000) 2005-2010.
|
Z. Liu, R.A. Khalil, Evolving mechanisms of vascular smooth muscle contraction highlight key targets in vascular disease, Biochem. Pharmacol. 153 (2018) 91-122.
|
R. Wang, M. Wang, J. Ye, et al., Mechanism overview and target mining of atherosclerosis: Endothelial cell injury in atherosclerosis is regulated by glycolysis (Review), Int. J. Mol. Med. 47 (2021) 65-76.
|
R. Kaur, M. Kaur, J. Singh, Endothelial dysfunction and platelet hyperactivity in type 2 diabetes mellitus: Molecular insights and therapeutic strategies, Cardiovasc. Diabetol. 17 (2018), 121.
|
S. Paone, A.A. Baxter, M.D. Hulett, et al., Endothelial cell apoptosis and the role of endothelial cell-derived extracellular vesicles in the progression of atherosclerosis, Cell. Mol. Life Sci. 76 (2019) 1093-1106.
|
A. Gaiz, S. Mosawy, N. Colson, et al., Thrombotic and cardiovascular risks in type two diabetes; Role of platelet hyperactivity, Biomed. Pharmacother. 94 (2017) 679-686.
|
J. Hurtubise, K. McLellan, K. Durr, et al., The different facets of dyslipidemia and hypertension in atherosclerosis, Curr. Atheroscler. Rep. 18 (2016), 82.
|
A.J. van Boven, J.W. Jukema, R. Paoletti, Endothelial dysfunction and dyslipidemia: Possible effects of lipid lowering and lipid modifying therapy, Pharmacol. Res. 29 (1994) 261-272.
|
J.M. van Gils, J.J. Zwaginga, P.L. Hordijk, Molecular and functional interactions among monocytes, platelets, and endothelial cells and their relevance for cardiovascular diseases, J. Leukoc. Biol. 85 (2009) 195-204.
|
P. Libby, P.M. Ridker, G.K. Hansson, et al., Inflammation in atherosclerosis: From pathophysiology to practice, J. Am. Coll. Cardiol. 54 (2009) 2129-2138.
|
A. Tedgui, Z. Mallat, Cytokines in atherosclerosis: Pathogenic and regulatory pathways, Physiol. Rev. 86 (2006) 515-581.
|
L. Groh, S.T. Keating, L.A.B. Joosten, et al., Monocyte and macrophage immunometabolism in atherosclerosis, Semin. Immunopathol. 40 (2018) 203-214.
|
G.L. Basatemur, H.F. Jørgensen, M.C.H. Clarke, et al., Vascular smooth muscle cells inatherosclerosis, Nat. Rev. Cardiol. 16 (2019) 727–744
|
S. Taleb, Inflammation in atherosclerosis, Arch. Cardiovasc. Dis. 109 (2016) 708-715.
|
A.C. Newby, Metalloproteinases and vulnerable atherosclerotic plaques, Trends Cardiovasc. Med. 17 (2007) 253-258.
|
Z.A. Massy, W.F. Keane, Pathogenesis of atherosclerosis, Semin. Nephrol. 16 (1996) 12-20.
|
M. Sponder, M. Fritzer-Szekeres, R. Marculescu, et al., A new coronary artery disease grading system correlates with numerous routine parameters that were associated with atherosclerosis: A grading system for coronary artery disease severity, Vasc. Heath. Risk Manag. 10 (2014) 641-647.
|
M. Sekulic, M. Zacharias, B. Medalion, Ischemic cardiomyopathy and heart failure, Circ. Heart Fail. 12 (2019), e006006.
|
N. Narula, J.W. Olin, N. Narula, Pathologic disparities between peripheral artery disease and coronary artery disease, Arterioscler. Thromb. Vasc. Biol. 40 (2020) 1982-1989.
|
F. Malakootikhah, H. Naghavi, N. Firouzabadi, et al., Association of human platelet alloantigens encoding gene polymorphisms with the risk of Coronary artery disease in Iranian patients, BMC Cardiovasc. Disord. 21 (2021), 68.
|
R. Arasu, A. Arasu, J. Muller, Carotid artery stenosis: An approach to its diagnosis and management, Aust. J. Gen. Pract. 50 (2021) 821-825.
|
J. Pappachan, F.J. Kirkham, Cerebrovascular disease and stroke, Arch. Dis. Child. 93 (2008) 890-898.
|
Y. Wang, R. Meng, G. Liu, et al., Intracranial atherosclerotic disease, Neurobiol. Dis. 124 (2019) 118-132.
|
N. Nirala, R. Periyasamy, A. Kumar, Noninvasive diagnostic methods for better screening of peripheral arterial disease, Ann. Vasc. Surg. 52 (2018) 263-272.
|
M. Luczak, D. Formanowicz, L. Marczak, et al., Deeper insight into chronic kidney disease-related atherosclerosis: Comparative proteomic studies of blood plasma using 2DE and mass spectrometry, J. Transl. Med. 13 (2015), 20.
|
C. Heiss, Chronic mesenteric ischemia, Dtsch. Med. Wochenschr. 1946 143 (2018) 1426-1429.
|
Y. Zhu, X. Xian, Z. Wang, et al., Research progress on the relationship between atherosclerosis and inflammation, Biomolecules 8 (2018), 80.
|
Q. Zhang, J. Liu, H. Duan, et al., Activation of Nrf2/HO-1 signaling: An important molecular mechanism of herbal medicine in the treatment of atherosclerosis via the protection of vascular endothelial cells from oxidative stress, J. Adv. Res. 34 (2021) 43-63.
|
W. Droge, Free radicals in the physiological control of cell function, Physiol. Rev. 82 (2002) 47-95.
|
X. Yu, X. Zheng, C. Tang, Nuclear factor-κB activation as a pathological mechanism of lipid metabolism and atherosclerosis, Adv. Clin. Chem. 70 (2015) 1-30.
|
X. Yang, T. He, S. Han, et al., The role of traditional Chinese medicine in the regulation of oxidative stress in treating coronary heart disease, Oxid. Med. Cell. Longev. 2019 (2019), 3231424.
|
T.V. Arumugam, S.H. Baik, P. Balaganapathy, et al., Notch signaling and neuronal death in stroke, Prog. Neurobiol. 165-167 (2018) 103-116.
|
J. Zeng, Y. Chen, R. Ding, et al., Isoliquiritigenin alleviates early brain injury after experimental intracerebral hemorrhage via suppressing ROS- and/or NF-κB-mediated NLRP3 inflammasome activation by promoting Nrf2 antioxidant pathway, J. Neuroinflammation 14 (2017), 119.
|
A. Gistera, G.K. Hansson, The immunology of atherosclerosis, Nat. Rev. Nephrol. 13 (2017) 368-380.
|
J. Pedro-Botet, E. Climent, D. Benaiges, Atherosclerosis and inflammation. New therapeutic approaches, Med. Clin. 155 (2020) 256-262.
|
G. Kyriakos, L.V. Quiles-SAnchez, E. Diamantis, et al., Lipid-lowering drugs and neurocognitive function: A systematic review, Vivo Athens Greece 34 (2020) 3109-3114.
|
G.A. Fitzgerald, E.A. Meagher, Antiplatelet drugs, Eur. J. Clin. Investig. 24 (1994) 46-49.
|
M.N. McComb, J.Y. Chao, T.M.H. Ng, Direct vasodilators and sympatholytic agents, J. Cardiovasc. Pharmacol. Ther. 21 (2016) 3-19.
|
J. Yee, C.G. Kaide, Emergency reversal of anticoagulation, West. J. Emerg. Med. 20 (2019) 770-783.
|
A. Tiwari, V. Bansal, A. Chugh, et al., Statins and myotoxicity: A therapeutic limitation, Expert Opin. Drug Saf. 5 (2006) 651-666.
|
D.N. Kiortsis, T.D. Filippatos, D.P. Mikhailidis, et al., Statin-associated adverse effects beyond muscle and liver toxicity, Atherosclerosis 195 (2007) 7-16.
|
H.L. Figge, J. Figge, P.F. Souney, et al., Nicotinic acid: A review of its clinical use in the treatment of lipid disorders, Pharmacotherapy 8 (1988) 287-294.
|
T. Yang, H. Shi, Z. Wang, et al., Hypolipidemic effects of andrographolide and neoandrographolide in mice and rats, Phytother. Res. 27 (2013) 618-623.
|
R. Al Batran, F. Al-Bayaty, M.M. Al-Obaidi, et al., Acute toxicity and the effect of andrographolide on Porphyromonas gingivalis-induced hyperlipidemia in rats, BioMed Res. Int. 2013 (2013), 594012.
|
L. Ding, J. Li, B. Song, et al., Andrographolide prevents high-fat diet-induced obesity in C57BL/6 mice by suppressing the sterol regulatory element-binding protein pathway, J. Pharmacol. Exp. Ther. 351 (2014) 474-483.
|
L.J. Engelking, M.J. Cantoria, Y. Xu, et al., Developmental and extrahepatic physiological functions of SREBP pathway genes in mice, Semin. Cell Dev. Biol. 81 (2018) 98-109.
|
S. Muraoka, Y. Nitta, T. Yamada, et al., Increase of anti-oxidative capacity during differentiation of 3T3-L1 preadipocytes into adipocytes, YAKUGAKU ZASSHI 137 (2017) 1137-1145.
|
W. Chen, H. Su, L. Feng, et al., Andrographolide suppresses preadipocytes proliferation through glutathione antioxidant systems abrogation, Life Sci. 156 (2016) 21-29.
|
N. Umek, S. Horvat, E. Cvetko, Skeletal muscle and fiber type-specific intramyocellular lipid accumulation in obese mice, Bosn. J. Basic Med. Sci. 21 (2021) 730-738.
|
A. Engin, Fat cell and fatty acid turnover in obesity, Adv. Exp. Med. Biol. 960 (2017) 135-160.
|
C.C. Chen, W. Chuang, A.H. Lin, et al., Andrographolide inhibits adipogenesis of 3T3-L1 cells by suppressing C/EBPβ expression and activation, Toxicol. Appl. Pharmacol. 307 (2016) 115-122.
|
L. Jin, W. Fang, B. Li, et al., Inhibitory effect of andrographolide in 3T3-L1 adipocytes differentiation through the PPARγ pathway, Mol. Cell. Endocrinol. 358 (2012) 81-87.
|
M. Kaewkittikhun, N. Boonmuen, P. Kheolamai, et al., Andrographolide reduces lipid droplet accumulation in adipocytes derived from human bone marrow mesenchymal stem cells by suppressing regulators of adipogenesis, J. Agric. Food Chem. 69 (2021) 9259-9269.
|
M.A. Kalwat, M.H. Cobb, Mechanisms of the amplifying pathway of insulin secretion in the β cell, Pharmacol. Ther. 179 (2017) 17-30.
|
S.L. Shumak, M. Gulan, B. Zinman, et al., Determination and kinetic analysis of non-insulin mediated glucose uptake in type 1 (insulin-dependent) diabetes mellitus, Diabetologia 32 (1989) 28-33.
|
K. Cheng, A. Asakawa, Y. Li, et al., Opioid μ-receptors as new target for insulin resistance, Pharmacol. Ther. 139 (2013) 334-340.
|
S.A. Wohaieb, D.V. Godin, Alterations in free radical tissue-defense mechanisms in streptozocin-induced diabetes in rat. Effects of insulin treatment, Diabetes 36 (1987) 1014-1018.
|
A.E. Nugroho, I.R. Rais, I. Setiawan, et al., Pancreatic effect of andrographolide isolated from Andrographis paniculata (Burm. f.) Nees, Pak. J. Biol. Sci. 17 (2014) 22-31.
|
B. Ahmed, R. Sultana, M.W. Greene, Adipose tissue and insulin resistance in obese, Biomed. Pharmacother. 137 (2021), 111315.
|
L. Jin, G. Shi, G. Ning, et al., Andrographolide attenuates tumor necrosis factor-alpha-induced insulin resistance in 3T3-L1 adipocytes, Mol. Cell. Endocrinol. 332 (2011) 134-139.
|
R. Ballotti, Y. Le Marchand-Brustel, S. Gammeltoft, et al., Insulin receptor: Tyrosine kinase activity and insulin action, Reprod. Nutr. Dev. 29 (1989) 653-661.
|
S. Khan, A.A.L. Evans, S. Hughes, et al., Beta-endorphin decreases fatigue and increases glucose uptake independently in normal and dystrophic mice, Muscle Nerve 31 (2005) 481-486.
|
A.A.L. Evans, M.E. Smith, Opioid receptors in fast and slow skeletal muscles of normal and dystrophic mice, Neurosci. Lett. 366 (2004) 339-341.
|
A.A. Evans, S. Khan, M.E. Smith, Evidence for a hormonal action of beta-endorphin to increase glucose uptake in resting and contracting skeletal muscle, J. Endocrinol. 155 (1997) 387-392.
|
B.C. Yu, C.K. Chang, C.F. Su, et al., Mediation of beta-endorphin in andrographolide-induced plasma glucose-lowering action in type I diabetes-like animals, Naunyn. Schmiedebergs. Arch. Pharmacol. 377 (2008) 529-540.
|
J. Berger, C. Biswas, P.P. Vicario, et al., Decreased expression of the insulin-responsive glucose transporter in diabetes and fasting, Nature 340 (1989) 70-72.
|
A. Consoli, N. Nurjhan, F. Capani, et al., Predominant role of gluconeogenesis in increased hepatic glucose production in NIDDM, Diabetes 38 (1989) 550-557.
|
B.C. Yu, C.R. Hung, W. Chen, et al., Antihyperglycemic effect of andrographolide in streptozotocin-induced diabetic rats, Planta Med. 69 (2003) 1075-1079.
|
S.J. Custodio-Chable, R.A. Lezama, E. Reyes-Maldonado, Platelet activation as a trigger factor for inflammation and atherosclerosis, Cir. Cir. 88 (2020) 233-243.
|
D.A. Chistiakov, Y.V. Bobryshev, A.N. Orekhov, Macrophage-mediated cholesterol handling in atherosclerosis, J. Cell. Mol. Med. 20 (2016) 17-28.
|
E. Butoi, A.M. Gan, I. Manduteanu, Molecular and functional interactions among monocytes/macrophages and smooth muscle cells and their relevance for atherosclerosis, Crit. Rev. Eukaryot. Gene Expr. 24 (2014) 341-355.
|
J. Liu, S. Dong, Y. Ru, A review: Pathological and molecular biological study on atherosclerosis, Clin. Chim. Acta 531 (2022) 217-222.
|
R. Al Batran, F. Al-Bayaty, M.M. Al-Obaidi, et al., Evaluation of the effect of andrographolide on atherosclerotic rabbits induced by Porphyromonas gingivalis, BioMed Res. Int. 2014 (2014), 724718.
|
R. Batran, F. Al-Bayaty, M.M.J. Al-Obaidi, et al., Insights into the antiatherogenic molecular mechanisms of andrographolide against Porphyromonas gingivalis-induced atherosclerosis in rabbits, Naunyn Schmiedeberg’s Arch. Pharmacol. 387 (2014) 1141-1152.
|
T. Wu, Y. Peng, S. Yan, et al., Andrographolide ameliorates atherosclerosis by suppressing pro-inflammation and ROS generation-mediated foam cell formation, Inflammation 41 (2018) 1681-1689.
|
M.Y. Hamidy, F. Oenzil, Yanwirasti, et al., Effect of andrographolide on foam cell formation at the initiation stage of atherosclerosis, Kne Eng. 1 (2019), 329.
|
M. Yulis Hamidy, F. Oenzil, Y. Yanwirasti, et al., Effect of andrographolide on monocyte chemoattractant protein-1 expression at the initiation stage of atherosclerosis in atherogenic diet-fed rats, Biomed. Pharmacol. J. 12 (2019) 1167-1173.
|
M.M. Kavurma, M.R. Bennett, Expression, regulation and function of trail in atherosclerosis, Biochem. Pharmacol. 75 (2008) 1441-1450.
|
X. Lin, S. Ouyang, C. Zhi, et al., Focus on ferroptosis, pyroptosis, apoptosis and autophagy of vascular endothelial cells to the strategic targets for the treatment of atherosclerosis, Arch. Biochem. Biophys. 715 (2022), 109098.
|
N. Song, L. Jia, H. Cao, et al., Gypenoside inhibits endothelial cell apoptosis in atherosclerosis by modulating mitochondria through PI3K/Akt/bad pathway, BioMed Res. Int. 2020 (2020), 2819658.
|
M. Duan, H. Zhou, Q. Wu, et al., Andrographolide protects against HG-induced inflammation, apoptosis, migration, and impairment of angiogenesis via PI3K/AKT-eNOS signalling in HUVECs, Mediators Inflamm. 2019 (2019), 6168340.
|
J.H. Chen, G. Hsiao, A. Lee, et al., Andrographolide suppresses endothelial cell apoptosis via activation of phosphatidyl inositol-3-kinase/Akt pathway, Biochem. Pharmacol. 67 (2004) 1337-1345.
|
S. Sitia, L. Tomasoni, F. Atzeni, et al., From endothelial dysfunction to atherosclerosis, Autoimmun. Rev. 9 (2010) 830-834.
|
M. Mudau, A. Genis, A. Lochner, et al., Endothelial dysfunction: The early predictor of atherosclerosis, Cardiovasc. J. Afr. 23 (2012) 222-231.
|
G. Du, Y. Song, T. Zhang, et al., Simvastatin attenuates TNF-α-induced apoptosis in endothelial progenitor cells via the upregulation of SIRT1, Int. J. Mol. Med. 34 (2014) 177-182.
|
M.A. Incalza, R. D’Oria, A. Natalicchio, et al., Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases, Vasc. Pharmacol. 100 (2018) 1-19.
|
A.J. Valente, A.M. Irimpen, U. Siebenlist, et al., OxLDL induces endothelial dysfunction and death via TRAF3IP2: Inhibition by HDL3 and AMPK activators, Free. Radic. Biol. Med. 70 (2014) 117-128.
|
T. Jain, E.A. Nikolopoulou, Q. Xu, et al., Hypoxia inducible factor as a therapeutic target for atherosclerosis, Pharmacol. Ther. 183 (2018) 22-33.
|
T.F. Luscher, R.R. Wenzel, Endothelin and endothelin antagonists: Pharmacology and clinical implications, Agents Actions Suppl. 45 (1995) 237-253.
|
H.C. Lin, S.L. Su, C.Y. Lu, et al., Andrographolide inhibits hypoxia-induced HIF-1α-driven endothelin 1 secretion by activating Nrf2/HO-1 and promoting the expression of prolyl hydroxylases 2/3 in human endothelial cells, Environ. Toxicol. 32 (2017) 918-930.
|
H.C. Lin, S.L. Su, W. Lin, et al., Andrographolide inhibits hypoxia-induced hypoxia-inducible factor 1α and endothelin 1 expression through the heme oxygenase 1/CO/cGMP/MKP-5 pathways in EA.hy926 cells, Environ. Toxicol. 33 (2018) 269-279.
|
I.M. Fenyo, A.V. Gafencu, The involvement of the monocytes/macrophages in chronic inflammation associated with atherosclerosis, Immunobiology 218 (2013) 1376-1384.
|
A. Yu, C.Y. Lu, T.S. Wang, et al., Induction of heme oxygenase 1 and inhibition of tumor necrosis factor alpha-induced intercellular adhesion molecule expression by andrographolide in EA.hy926 cells, J. Agric. Food Chem. 58 (2010) 7641-7648.
|
C. Chao, C.K. Lii, I.T. Tsai, et al., Andrographolide inhibits ICAM-1 expression and NF-κB activation in TNF-α-treated EA.hy926 cells, J. Agric. Food Chem. 59 (2011) 5263-5271.
|
C.Y. Lu, Y. Yang, C.C. Li, et al., Andrographolide inhibits TNFα-induced ICAM-1 expression via suppression of NADPH oxidase activation and induction of HO-1 and GCLM expression through the PI3K/Akt/Nrf2 and PI3K/Akt/AP-1 pathways in human endothelial cells, Biochem. Pharmacol. 91 (2014) 40-50.
|
H.C. Lin, C.C. Li, Y. Yang, et al., Andrographis paniculata diterpenoids and ethanolic extract inhibit TNFα-induced ICAM-1 expression in EA.hy926 cells, Phytomedicine 52 (2019) 157-167.
|
K.D. Mason, M.R. Carpinelli, J.I. Fletcher, et al., Programmed anuclear cell death delimits platelet life span, Cell 128 (2007) 1173-1186.
|
G.L. Dale, P. Friese, Bax activators potentiate coated-platelet formation, J. Thromb. Haemost. 4 (2006) 2664-2669.
|
M.K.S. Lee, M.J. Kraakman, D. Dragoljevic, et al., Apoptotic ablation of platelets reduces atherosclerosis in mice with diabetes, Arterioscler. Thromb. Vasc. Biol. 41 (2021) 1167-1178.
|
L. Lien, C. Su, W.H. Hsu, et al., Mechanisms of andrographolide-induced platelet apoptosis in human platelets: Regulatory roles of the extrinsic apoptotic pathway, Phytother. Res. 27 (2013) 1671-1677.
|
E. Khodadi, Platelet function in cardiovascular disease: Activation of molecules and activation by molecules, Cardiovasc. Toxicol. 20 (2020) 1-10.
|
R. Lordan, A. Tsoupras, I. Zabetakis, Investigation of platelet aggregation in atherosclerosis, Meth. Mol. Biol. Clifton N J 2419 (2022) 333-347.
|
W.J. Lu, J.J. Lee, D.S. Chou, et al., A novel role of andrographolide, an NF-kappa B inhibitor, on inhibition of platelet activation: The pivotal mechanisms of endothelial nitric oxide synthase/cyclic GMP, J. Mol. Med. Berlin Ger. 89 (2011) 1261-1273.
|
P. Thisoda, N. Rangkadilok, N. Pholphana, et al., Inhibitory effect of Andrographis paniculata extract and its active diterpenoids on platelet aggregation, Eur. J. Pharmacol. 553 (2006) 39-45.
|
E. Amroyan, E. Gabrielian, A. Panossian, et al., Inhibitory effect of andrographolide from Andrographis paniculata on PAF-induced platelet aggregation, Phytomed. 6 (1999) 27-31.
|
W.J. Lu, K.H. Lin, M.J. Hsu, et al., Suppression of NF-κB signaling by andrographolide with a novel mechanism in human platelets: Regulatory roles of the p38 MAPK-hydroxyl radical-ERK2 cascade, Biochem. Pharmacol. 84 (2012) 914-924.
|
T. Wu, M. Tan, H. Gong, et al., Co-delivery of andrographolide and Notch1-targeted siRNA to macrophages with polymer-based nanocarrier for enhanced anti-inflammation, Chin. J. Polym. Sci. 36 (2018) 1312-1320.
|
H.C. Lin, C.K. Lii, H. Chen, et al., Andrographolide inhibits oxidized LDL-induced cholesterol accumulation and foam cell formation in macrophages, Am. J. Chin. Med. 46 (2018) 87-106.
|
A. Roy, S. Banerjee, U. Saqib, et al., NOS1-derived nitric oxide facilitates macrophage uptake of low-density lipoprotein, J. Cell. Biochem. 120 (2019) 11593-11603.
|
W.F. Chiou, J.J. Lin, C.F. Chen, Andrographolide suppresses the expression of inducible nitric oxide synthase in macrophage and restores the vasoconstriction in rat aorta treated with lipopolysaccharide, Br. J. Pharmacol. 125 (1998) 327-334.
|
W.F. Chiou, C.F. Chen, J.J. Lin, Mechanisms of suppression of inducible nitric oxide synthase (iNOS) expression in RAW 264.7 cells by andrographolide, Br. J. Pharmacol. 129 (2000) 1553-1560.
|
F. Li, S. Li, Effects of andrographolide on the activation of mitogen activated protein kinases and nuclear factor-κB in mouse peritoneal macrophage-derived foam cells, Chin. J. Integr. Med. 18 (2012) 391-394.
|
Y. Chen, M.J. Hsu, J.R. Sheu, et al., Andrographolide, a novel NF- κ B inhibitor, induces vascular smooth muscle cell apoptosis via a ceramide-p47phox-ROS signaling cascade, Evid. Based Complement. Alternat. Med. 2013 (2013), 821813.
|
Y. Chen, C.Y. Hsieh, T. Jayakumar, et al., Andrographolide induces vascular smooth muscle cell apoptosis through a SHP-1-PP2A-p38MAPK-p53 cascade, Sci. Rep. 4 (2014), 5651.
|
Y. Wang, J. Wang, Q. Fan, et al., Andrographolide inhibits NF-kappaBeta activation and attenuates neointimal hyperplasia in arterial restenosis, Cell Res. 17 (2007) 933-941.
|
Z. Zhu, X. Jiang, B. Wang, et al., Andrographolide inhibits intimal hyperplasia in a rat model of autogenous vein grafts, Cell Biochem. Biophys. 60 (2011) 231-239.
|
Y. Chen, M.J. Hsu, C.Y. Hsieh, et al., Andrographolide inhibits nuclear factor-κB activation through JNK-Akt-p65 signaling cascade in tumor necrosis factor-α-stimulated vascular smooth muscle cells, Sci. World J. 2014 (2014), 130381.
|
C.Y. Hsieh, M.J. Hsu, G. Hsiao, et al., Andrographolide enhances nuclear factor-kappaB subunit p65 Ser536 dephosphorylation through activation of protein phosphatase 2A in vascular smooth muscle cells, J. Biol. Chem. 286 (2011) 5942-5955.
|
A.C. Doran, N. Meller, C.A. McNamara, Role of smooth muscle cells in the initiation and early progression of atherosclerosis, Arterioscler. Thromb. Vasc. Biol. 28 (2008) 812-819.
|
C.C. Chang, Y.F. Duann, T.L. Yen, et al., Andrographolide, a novel NF-κB inhibitor, inhibits vascular smooth muscle cell proliferation and cerebral endothelial cell inflammation, Acta Cardiol. Sin. 30 (2014) 308-315.
|
D.J. Medina-Leyte, O. Zepeda-Garcia, M. Dominguez-Perez, et al., Endothelial dysfunction, inflammation and coronary artery disease: Potential biomarkers and promising therapeutical approaches, Int. J. Mol. Sci. 22 (2021), 3850.
|
T. Lawrence, D.W. Gilroy, P.R. Colville-Nash, et al., Possible new role for NF-kappaB in the resolution of inflammation, Nat. Med. 7 (2001) 1291-1297.
|
L. Yang, H. Guo, Y. Li, et al., Oleoylethanolamide exerts anti-inflammatory effects on LPS-induced THP-1 cells by enhancing PPARα signaling and inhibiting the NF-κB and ERK1/2/AP-1/STAT3 pathways, Sci. Rep. 6 (2016), 34611.
|
Z. Khuchua, A.I. Glukhov, A.W. Strauss, et al., Elucidating the beneficial role of PPAR agonists in cardiac diseases, Int. J. Mol. Sci. 19 (2018), 3464.
|
J. Shu, R. Huang, Y. Tian, et al., Andrographolide protects against endothelial dysfunction and inflammatory response in rats with coronary heart disease by regulating PPAR and NF-κB signaling pathways, Ann. Palliat. Med. 9 (2020) 1965-1975.
|
A. Lejay, F. Fang, R. John, et al., Ischemia reperfusion injury, ischemic conditioning and diabetes mellitus, J. Mol. Cell. Cardiol. 91 (2016) 11-22.
|
S.N. Goyal, S. Bharti, S. Arora, et al., Endothelin receptor antagonist BQ-123 ameliorates myocardial ischemic-reperfusion injury in rats: A hemodynamic, biochemical, histopathological and electron microscopic evidence, Biomed. Pharmacother. 64 (2010) 639-646.
|
A.Y. Woo, M.M. Waye, S.K. Tsui, et al., Andrographolide up-regulates cellular-reduced glutathione level and protects cardiomyocytes against hypoxia/reoxygenation injury, J. Pharmacol. Exp. Ther. 325 (2008) 226-235.
|
K. Thygesen, J.S. Alpert, H.D. White, et al., Universal definition of myocardial infarction, J. Am. Coll. Cardiol. 50 (2007) 2173-2195.
|
S.E. Elasoru, P. Rhana, T. de Oliveira Barreto, et al., Andrographolide protects against isoproterenol-induced myocardial infarction in rats through inhibition of L-type Ca2+ and increase of cardiac transient outward K+ currents, Eur. J. Pharmacol. 906 (2021), 174194.
|
S.E. Elasoru, Biophysical and pharmacological evaluation of protective potentials of andrographolide against isoproterenol-induced myocardial infarction in rats [dissertation], Universidade Federal de Minas Gerais, 906 (2021), 174194.
|
S. Xie, W. Deng, J. Chen, et al., Andrographolide protects against adverse cardiac remodeling after myocardial infarction through enhancing Nrf2 signaling pathway, Int. J. Biol. Sci. 16 (2020) 12-26.
|
Y. Li, L. Xiang, J. Miao, et al., Protective effects of andrographolide against cerebral ischemia-reperfusion injury in mice, Int. J. Mol. Med. 48 (2021), 186.
|
S. Chan, W.S. Fred Wong, P.T. Wong, et al., Neuroprotective effects of andrographolide in a rat model of permanent cerebral ischaemia, Br. J. Pharmacol. 161 (2010) 668-679.
|
T.L. Yen, R.J. Chen, T. Jayakumar, et al., Andrographolide stimulates p38 mitogen-activated protein kinase-nuclear factor erythroid-2-related factor 2-heme oxygenase 1 signaling in primary cerebral endothelial cells for definite protection against ischemic stroke in rats, Transl. Res. 170 (2016) 57-72.
|
C.M. Chern, Liou, Y.H. Wang, et al., Andrographolide inhibits PI3K/AKT-dependent NOX2 and iNOS expression protecting mice against hypoxia/ischemia-induced oxidative brain injury, Planta Med. 77 (2011) 1669-1679.
|
D. Wang, K. Kang, J. Sun, et al., URB597 and andrographolide improve brain microvascular endothelial cell permeability and apoptosis by reducing oxidative stress and inflammation associated with activation of Nrf2 signaling in oxygen-glucose deprivation, Oxid. Med. Cell. Longev. 2022 (2022), 4139330.
|
X. Li, T. Wang, D. Zhang, et al., Andrographolide ameliorates intracerebral hemorrhage induced secondary brain injury by inhibiting neuroinflammation induction, Neuropharmacology 141 (2018) 305-315.
|
W. Zhang, Z. Zhang, Z. Zhang, et al., Andrographolide induced acute kidney injury: Analysis of 26 cases reported in Chinese Literature, Nephrology 19 (2014) 21-26.
|
C. Calabrese, S.H. Berman, J.G. Babish, et al., A phase I trial of andrographolide in HIV positive patients and normal volunteers, Phytother. Res. 14 (2000) 333-338.
|
E. Ciampi, R. Uribe-San-Martin, C. Carcamo, et al., Efficacy of andrographolide in not active progressive multiple sclerosis: A prospective exploratory double-blind, parallel-group, randomized, placebo-controlled trial, BMC Neurol. 20 (2020), 173.
|
M.A. Akbarsha, P. Murugaian, Aspects of the male reproductive toxicity/male antifertility property of andrographolide in albino rats: Effect on the testis and the cauda epididymidal spermatozoa, Phytother. Res. 14 (2000) 432-435.
|
H. Liang, S. Lu, Z. Yan, et al., Andrographolide disrupts meiotic maturation by blocking cytoskeletal reorganisation and decreases the fertilisation potential of mouse oocytes, Reprod. Fertil. Dev. 29 (2017) 2336-2344.
|
H. Huang, H. Cao, C. Xing, et al., Andrographolide induce human embryonic stem cell apoptosis by oxidative stress response, Mol. Cell. Toxicol. 15 (2019) 209-219.
|
L. Gu, X. Zhang, W. Xing, et al., Andrographolide-induced apoptosis in human renal tubular epithelial cells: Roles of endoplasmic reticulum stress and inflammatory response, Environ. Toxicol. Pharmacol. 45 (2016) 257-264.
|
T.L. Yen, W.H. Hsu, S.K. Huang, et al., A novel bioactivity of andrographolide from Andrographis paniculata on cerebral ischemia/reperfusion-induced brain injury through induction of cerebral endothelial cell apoptosis, Pharm. Biol. 51 (2013) 1150-1157.
|
M. Rajani, N. Shrivastava, M.N. Ravishankara, A rapid method for isolation of andrographolide from Andrographis paniculata nees (kalmegh), Pharm. Biol. 38 (2000) 204-209.
|
R. Wongkittipong, L. Prat, S. Damronglerd, et al., Solid-liquid extraction of andrographolide from plants-Experimental study, kinetic reaction and model, Sep. Purif. Technol. 40 (2004) 147-154.
|
S. Sharma, Y.P. Sharma, Comparison of different extraction methods and HPLC method development for the quantification of andrographolide from Andrographis paniculata (Burm.f.) Wall. ex Nees, Ann. Phytomed. 7 (2018) 119-130.
|
A.C. Kumoro and M. Hasan, Proceedings of the 1st International Conference on Natural Resources Engineering & Technology July 24-25, 2006, Putrajaya, Malaysia, pp. 664-670.
|
A. Kumoro, Hasan, Singh, Effects of solvent properties on the soxhlet extraction of diterpenoid lactones from Andrographis paniculata leaves, ScienceAsia 35 (2009) 306-309.
|
K. Chen, W. Yin, W. Zhang, et al., Technical optimization of the extraction of andrographolide by supercritical CO2, Food Bioprod. Process. 89 (2011) 92-97.
|
A.C. Kumoro, M. Hasan, H. Singh, Extraction of andrographolide from Andrographis paniculata dried leaves using supercritical CO2 and ethanol mixture, Ind. Eng. Chem. Res. 58 (2019) 742-751.
|
M. Karpakavalli, K.R. Sini and I. Arthi, Microwave assisted extraction and estimation of piperine, andrographolide using HPLC techniques, Pharmacie Globale 3 (2012), 1.
|
S. Vasu, V. Palaniyappan, S. Badami, A novel microwave-assisted extraction for the isolation of andrographolide from Andrographis paniculata and its in vitro antioxidant activity, Nat. Prod. Res. 24 (2010) 1560-1567.
|
M. Mohan, S. Khanam and B. Shivananda, Optimization of microwave assisted extraction of andrographolide from Andrographis paniculata and its comparison with refluxation extraction method, Journal of Pharmacognosy and Phytochemistry 2 (2013) 342-348.
|
M. Bhan, S. Satija, C. Garg, et al., Optimization of ionic liquid-based microwave assisted extraction of a diterpenoid lactone-andrographolide from Andrographis paniculata by response surface methodology, J. Mol. Liq. 229 (2017) 161-166.
|
R.V. Rubi, A. University, J. Olay, et al., Ultrasound-microwave assisted extraction (UMAE) of andrographolide from sinta (Andrographis paniculata) with its bioactivity assessment, J. Environ. Sci. Manag. (2020) 1-7.
|
L. Chen, H. Jin, L. Ding, et al., On-line coupling of dynamic microwave-assisted extraction with high-performance liquid chromatography for determination of andrographolide and dehydroandrographolide in Andrographis paniculata Nees, J. Chromatogr. A 1140 (2007) 71-77.
|
P.R. Rao, V.K. Rathod, Rapid extraction of andrographolide from Andrographis paniculata Nees by three phase partitioning and determination of its antioxidant activity, Biocatal. Agric. Biotechnol. 4 (2015) 586-593.
|
P.R. Rao, V.K. Rathod, Microwave assisted three phase extraction of andrographolide from Andrographis paniculata, J. Biol. Act. Prod. Nat. 9 (2019) 215-226.
|
H. Gao, B. Wang, W.D Z. Li, Synthetic applications of homoiodo allylsilane II. total syntheses of (-)-andrographolide and (+)-rostratone, Tetrahedron 70 (2014) 9436-9448.
|
L. Yang, T. Wurm, B.S. Poudel, et al., Enantioselective total synthesis of andrographolide and 14-hydroxy-colladonin: Carbonyl reductive coupling and trans-decalin formation by hydrogen transfer, Angew. Chem. Int. Ed. 59 (2020) 23169-23173.
|
L. Ye, T. Wang, L. Tang, et al., Poor oral bioavailability of a promising anticancer agent andrographolide is due to extensive metabolism and efflux by P-glycoprotein, J. Pharm. Sci. 100 (2011) 5007-5017.
|
H.W. Chen, C.S. Huang, C.C. Li, et al., Bioavailability of andrographolide and protection against carbon tetrachloride-induced oxidative damage in rats, Toxicol. Appl. Pharmacol. 280 (2014) 1-9.
|
A. Panossian, A. Hovhannisyan, G. Mamikonyan, et al., Pharmacokinetic and oral bioavailability of andrographolide from Andrographis paniculata fixed combination Kan Jang in rats and human, Phytomed. 7 (2000) 351-364.
|
R. Bera, S.K. Milan Ahmed, L. Sarkar, et al., Pharmacokinetic analysis and tissue distribution of andrographolide in rat by a validated LC-MS/MS method, Pharm. Biol. 52 (2014) 321-329.
|
F. Xu, S. Fu, S. Gu, et al., Simultaneous determination of andrographolide, dehydroandrographolide and neoandrographolide in dog plasma by LC-MS/MS and its application to a dog pharmacokinetic study of Andrographis paniculata tablet, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 990 (2015) 125-131.
|
K. Liu, L. He, H. Gao, et al., Simultaneous determination of andrographolide and dehydroandrographolide in chicken plasma for application to pharmacokinetic studies, Chromatographia 70 (2009) 1441-1445.
|
L. Xu, D. Xiao, S. Lou, et al., A simple and sensitive HPLC-ESI-MS/MS method for the determination of andrographolide in human plasma, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 877 (2009) 502-506.
|
N. Pholphana, D. Panomvana, N. Rangkadilok, et al., Andrographis paniculata: Dissolution investigation and pharmacokinetic studies of four major active diterpenoids after multiple oral dose administration in healthy Thai volunteers, J. Ethnopharmacol. 194 (2016) 513-521.
|
J. Wangboonskul, S. Daodee, K. Jarukamjorn, et al., Pharmacokinetic study of Andrographis paniculata tablets in healthy Thai male volunteers, Thai Pharm Health Sci J 1 (2006) 209-218.
|
X. He, J. Li, H. Gao, et al., Identification of a rare sulfonic acid metabolite of andrographolide in rats, Drug Metab. Dispos. 31 (2003) 983-985.
|
D.P. Yeggoni, C. Kuehne, A. Rachamallu, et al., Elucidating the binding interaction of andrographolide with the plasma proteins: Biophysical and computational approach, RSC Adv. 7 (2017) 5002-5012.
|
H. Zhao, H. Hu, Y. Wang, Comparative metabolism and stability of andrographolide in liver microsomes from humans, dogs and rats using ultra-performance liquid chromatography coupled with triple-quadrupole and Fourier transform ion cyclotron resonance mass spectrometry, Rapid Commun. Mass Spectrom. 27 (2013) 1385-1392.
|
T. Yang, C. Xu, Z. Wang, et al., Comparative pharmacokinetic studies of andrographolide and its metabolite of 14-deoxy-12-hydroxy-andrographolide in rat by ultra-performance liquid chromatography-mass spectrometry, Biomed. Chromatogr. 27 (2013) 931-937.
|
X. He, J. Li, H. Gao, et al., Six new andrographolide metabolites in rats, Chem. Pharm. Bull. 51 (2003) 586-589.
|
L. Cui, F. Qiu, X. Yao, Isolation and identification of seven glucuronide conjugates of andrographolide in human urine, Drug Metab. Dispos. 33 (2005) 555-562.
|
L. Cui, W. Chan, F. Qiu, et al., Identification of four urea adducts of andrographolide in humans, Drug Metab. Lett. 2 (2008) 261-268.
|
L. Xu, D. Xiao, S. Lou, et al., A simple and sensitive HPLC-ESI-MS/MS method for the determination of andrographolide in human plasma, J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 877 (2009) 502-506.
|
L.G. Vaishali, J.H. Patel, R.D. Varia, et al., Pharmacokinetics and anti-inflammatory activity of andrographolide in rats, Int.J.Curr.Microbiol.App.Sci 6 (2017) 1458-1463.
|
M. Casamonti, L. Risaliti, G. Vanti, et al., Andrographolide loaded in micro- and nano-formulations: Improved bioavailability, target-tissue distribution, and efficacy of the “king of bitters”, Engineering 5 (2019) 69-75.
|
J.P. Loureiro Damasceno, H.S. da Rosa, L.S. de Araujo, et al., Andrographis paniculata formulations: Impact on diterpene lactone oral bioavailability, Eur. J. Drug Metab. Pharmacokinet. 47 (2022) 19-30.
|
S. Dokania, A.K. Joshi, Self-microemulsifying drug delivery system (SMEDDS): challenges and road ahead, Drug Deliv. 22 (2015) 675-690.
|
M.J. Lawrence, G.D. Rees, Microemulsion-based media as novel drug delivery systems, Adv. Drug Deliv. Rev. 45 (2000) 89-121.
|
H. Du, X. Yang, H. Li, et al., Preparation and evaluation of andrographolide-loaded microemulsion, J. Microencapsul. 29 (2012) 657-665.
|
Y. Zhu, J. Ye, Q. Zhang, Self-emulsifying drug delivery system improve oral bioavailability: Role of excipients and physico-chemical characterization, Pharm. Nanotechnol. 8 (2020) 290-301.
|
N. Sermkaew, W. Ketjinda, P. Boonme, et al., Liquid and solid self-microemulsifying drug delivery systems for improving the oral bioavailability of andrographolide from a crude extract of Andrographis paniculata, Eur. J. Pharm. Sci. 50 (2013) 459-466.
|
J. Wen, E.B. Moloney, A. Canning, et al., Synthesized nanoparticles, biomimetic nanoparticles and extracellular vesicles for treatment of autoimmune disease: Comparison and prospect, Pharmacol. Res. 172 (2021), 105833.
|
K. Rajpoot, Solid lipid nanoparticles: A promising nanomaterial in drug delivery, Curr. Pharm. Des. 25 (2019) 3943-3959.
|
R. Shankar, M. Joshi, K. Pathak, Lipid nanoparticles: A novel approach for brain targeting, Pharm. Nanotechnol. 6 (2018) 81-93.
|
G. Graverini, V. Piazzini, E. Landucci, et al., Solid lipid nanoparticles for delivery of andrographolide across the blood-brain barrier: in vitro and in vivo evaluation, Colloids Surf. B Biointerfaces 161 (2018) 302-313.
|
T. Kulsirirat, K. Sathirakul, N. Kamei, et al., The in vitro and in vivo study of novel formulation of andrographolide PLGA nanoparticle embedded into gelatin-based hydrogel to prolong delivery and extend residence time in joint, Int. J. Pharm. 602 (2021), 120618.
|
L. Hao, Y. Jiang, R. Zhang, et al., Preparation and in vivo/in vitro characterization of Ticagrelor PLGA sustained-release microspheres for injection, Des. Monomers Polym. 24 (2021) 305-319.
|
Y. Jiang, F. Wang, H. Xu, et al., Development of andrographolide loaded PLGA microspheres: Optimization, characterization and in vitro-in vivo correlation, Int. J. Pharm. 475 (2014) 475-484.
|
Y. Zhang, X. Hu, X. Liu, et al., Dry state microcrystals stabilized by an HPMC film to improve the bioavailability of andrographolide, Int. J. Pharm. 493 (2015) 214-223.
|
D. Zhang, J. Lin, F. Zhang, et al., Preparation and evaluation of andrographolide solid dispersion vectored by silicon dioxide, Pharmacogn. Mag. 12 (2016) S245-S252.
|
G. Zhao, Q. Zeng, S. Zhang, et al., Effect of carrier lipophilicity and preparation method on the properties of Andrographolide-Solid dispersion, Pharmaceutics 11 (2019), 74.
|
S. Hu, Z. Zhang, X. Jia, Study on andrographolide solid dispersion vectored by hydroxyapatite, Zhongguo Zhong Yao Za Zhi 38 (2013) 341-345.
|
C.C. Yen, Y. Liang, C. Cheng, et al., Oral bioavailability enhancement and anti-fatigue assessment of the andrographolide loaded solid dispersion, Int. J. Mol. Sci. 21 (2020), 2506.
|
Y. Ma, Y. Yang, J. Xie, et al., Novel nanocrystal-based solid dispersion with high drug loading, enhanced dissolution, and bioavailability of andrographolide, Int. J. Nanomed. 13 (2018) 3763-3779.
|
O. Indrati, R. Martien, A. Rohman, et al., Development of nanoemulsion-based hydrogel containing andrographolide: Physical properties and stability evaluation, J. Pharm. Bioallied Sci. 12 (2020) S816-S820.
|
Z.A. Awan, U.A. Fahmy, S.M. Badr-Eldin, et al., The enhanced cytotoxic and pro-apoptotic effects of optimized simvastatin-loaded emulsomes on MCF-7 breast cancer cells, Pharmaceutics 12 (2020), 597.
|
M.A. Elsheikh, S.A. Rizk, Y.S.R. Elnaggar, et al., Nanoemulsomes for enhanced oral bioavailability of the anticancer phytochemical andrographolide: Characterization and pharmacokinetics, AAPS PharmSciTech 22 (2021), 246.
|
R. Sari, A. Widyawaruyanti, F.B.T. Anindita, et al., Development of andrographolide-carboxymethyl chitosan nanoparticles: Characterization, in vitro release and in vivo antimalarial activity study, Turk. J. Pharm. Sci. 15 (2018) 136-141.
|
E. Feng, K. Shen, F. Lin, et al., Improved osteogenic activity and inhibited bacterial biofilm formation on andrographolide-loaded titania nanotubes, Ann. Transl. Med. 8 (2020), 987.
|
F. De Jaeghere, E. Allemann, R. Cerny, et al., pH-Dependent dissolving nano- and microparticles for improved peroral delivery of a highly lipophilic compound in dogs, AAPS PharmSci. 3 (2001), E8.
|
B. Chellampillai, A.P. Pawar, Improved bioavailability of orally administered andrographolide from pH-sensitive nanoparticles, Eur. J. Drug Metab. Pharmacokinet. 35 (2011) 123-129.
|
H.N. Ginsberg, C.J. Packard, M.J. Chapman, et al., Triglyceride-rich lipoproteins and their remnants: Metabolic insights, role in atherosclerotic cardiovascular disease, and emerging therapeutic strategies-a consensus statement from the European Atherosclerosis Society, Eur. Heart J. 42 (2021) 4791-4806.
|
O. Taskin, K. Rikhraj, J. Tan, et al., Link between endometriosis, atherosclerotic cardiovascular disease, and the health of women midlife, J. Minim. Invasive Gynecol. 26 (2019) 781-784.
|
L. Monnier, A. Avignon, C. Colette, et al., Primary nutritional and drug prevention of atherosclerosis, Rev. Med. Interne 20 (1999) 360s-370s.
|
M.D. Huffman, S. Yusuf, Polypills: Essential medicines for cardiovascular disease secondary prevention? J. Am. Coll. Cardiol. 63 (2014) 1368-1370.
|
G.R. Prozzi, M. Canas, M.A. Urtasun, et al., Cardiovascular risk of non-steroidal anti-inflammatory drugs, Medicina 78 (2018) 349-355.
|
X. Li, Y. Liu, H. Zhang, et al., Animal models for the atherosclerosis research: A review, Protein Cell 2 (2011) 189-201.
|
Y. Zhao, H. Qu, Y. Wang, et al., Small rodent models of atherosclerosis, Biomed. Pharmacother. 129 (2020), 110426.
|
A. Sharma, K. Lal, S.S. Handa, Standardization of the Indian crude drug Kalmegh by high pressure liquid chromatographic determination of andrographolide, Phytochem. Anal. 3 (1992) 129-131.
|
N.A. Yusof, A. Isha, I.S. Ismail, et al., Infrared-metabolomics approach in detecting changes in Andrographis paniculata metabolites due to different harvesting ages and times, J. Sci. Food Agric. 95 (2015) 2533-2543.
|
X. Zhang, L. Lv, Y. Zhou, et al., Efficacy and safety of Xiyanping injection in the treatment of COVID-19: A multicenter, prospective, open-label and randomized controlled trial, Phytother. Res. 35 (2021) 4401-4410.
|
Y.S. Tu, D.M. Sun, J.J. Zhang, et al., Preparation and characterisation of andrographolide niosomes and its anti-hepatocellular carcinoma activity, J. Microencapsul. 31 (2014) 307-316.
|
S. Shrivastava, C.D. Kaur, Development of andrographolide-loaded solid lipid nanoparticles for lymphatic targeting: Formulation, optimization, characterization, in vitro, and in vivo evaluation, Drug Deliv. Transl. Res. 13 (2023) 658-674.
|
K. Wu, B. Yu, D. Li, et al., Recent advances in nanoplatforms for the treatment of osteosarcoma, Front. Oncol. 12 (2022), 805978.
|
N.T. Huynh, C. Passirani, P. Saulnier, et al., Lipid nanocapsules: A new platform for nanomedicine, Int. J. Pharm. 379 (2009) 201-209.
|
L. Zhao, G. Shen, G. Ma, et al., Engineering and delivery of nanocolloids of hydrophobic drugs, Adv. Colloid Interface Sci. 249 (2017) 308-320.
|
B. Begines, T. Ortiz, M. Pérez-Aranda, et al., Polymeric nanoparticles for drug delivery: Recent developments and future prospects, Nanomaterials 10 (2020), 1403.
|
H. Daraee, A. Etemadi, M. Kouhi, et al., Application of liposomes in medicine and drug delivery, Artif. Cells Nanomed. Biotechnol. 44 (2016) 381-391.
|
R.J. Ahiwale, B. Chellampillai, A.P. Pawar, Investigation of 1, 2-dimyristoyl-sn-glycero-3-phosphoglycerol-sodium (DMPG-Na) lipid with various metal cations in nanocochleate preformulation: Application for andrographolide oral delivery in cancer therapy, AAPS PharmSciTech 21 (2020), 279.
|
V. Piazzini, E. Landucci, G. Graverini, et al., Stealth and cationic nanoliposomes as drug delivery systems to increase andrographolide BBB permeability, Pharmaceutics 10 (2018), 128.
|
V.K. Verma, M.K. Zaman, S. Verma, et al., Role of semi-purified andrographolide from Andrographis paniculata extract as nano-phytovesicular carrier for enhancing oral absorption and hypoglycemic activity, Chin. Herb. Med. 12 (2020) 142-155.
|
B.A. Oseni, C.P. Azubuike, O.O. Okubanjo, et al., Encapsulation of andrographolide in poly(lactide-co-glycolide) nanoparticles: Formulation optimization and in vitro efficacy studies, Front. Bioeng. Biotechnol. 9 (2021), 639409.
|