Volume 13 Issue 6
Jun.  2023
Turn off MathJax
Article Contents
Tingting Gou, Minghao Hu, Min Xu, Yuchen Chen, Rong Chen, Tao Zhou, Junjing Liu, Li Guo, Hui Ao, Qiang Ye. Novel wine in an old bottle: Preventive and therapeutic potentials of andrographolide in atherosclerotic cardiovascular diseases[J]. Journal of Pharmaceutical Analysis, 2023, 13(6): 563-589. doi: 10.1016/j.jpha.2023.05.010
Citation: Tingting Gou, Minghao Hu, Min Xu, Yuchen Chen, Rong Chen, Tao Zhou, Junjing Liu, Li Guo, Hui Ao, Qiang Ye. Novel wine in an old bottle: Preventive and therapeutic potentials of andrographolide in atherosclerotic cardiovascular diseases[J]. Journal of Pharmaceutical Analysis, 2023, 13(6): 563-589. doi: 10.1016/j.jpha.2023.05.010

Novel wine in an old bottle: Preventive and therapeutic potentials of andrographolide in atherosclerotic cardiovascular diseases

doi: 10.1016/j.jpha.2023.05.010
Funds:

This research was funded by the National Natural Science Foundation of China (Grant Nos.: 81891012 and U19A2010), the National Interdisciplinary Innovation Team Program of Traditional Chinese Medicine (Grant No.: ZYYCXTD-D-202209), Chinese Medicine Science and Technology Industry Innovation Team Program of Sichuan Province (Grant No.: 2022C001), and Chengdu University of Traditional Chinese Medicine “Xinglin Scholars” Discipline Talent Research Promotion Program (Grant No.: XCZX2022010). We would like to thank Adobe Illustrator for their valuable contribution to this review. The software's powerful graphic design and editing capabilities allow us to create visually appealing numbers and illustrations. We acknowledge the important role Adobe Illustrator played in the success of this study, and I am grateful for its contributions.

  • Received Date: Nov. 30, 2022
  • Accepted Date: May 16, 2023
  • Rev Recd Date: May 13, 2023
  • Publish Date: May 20, 2023
  • Atherosclerotic cardiovascular disease (ASCVD) frequently results in sudden death and poses a serious threat to public health worldwide. The drugs approved for the prevention and treatment of ASCVD are usually used in combination but are inefficient owing to their side effects and single therapeutic targets. Therefore, the use of natural products in developing drugs for the prevention and treatment of ASCVD has received great scholarly attention. Andrographolide (AG) is a diterpenoid lactone compound extracted from Andrographis paniculata. In addition to its use in conditions such as sore throat, AG can be used to prevent and treat ASCVD. It is different from drugs that are commonly used in the prevention and treatment of ASCVD and can not only treat obesity, diabetes, hyperlipidaemia and ASCVD but also inhibit the pathological process of atherosclerosis (AS) including lipid accumulation, inflammation, oxidative stress and cellular abnormalities by regulating various targets and pathways. However, the pharmacological mechanisms of AG underlying the prevention and treatment of ASCVD have not been corroborated, which may hinder its clinical development and application. Therefore, this review summarizes the physiological and pathological mechanisms underlying the development of ASCVD and the in vivo and in vitro pharmacological effects of AG on the relative risk factors of AS and ASCVD. The findings support the use of the old pharmacological compound (‘old bottle’) as a novel drug (‘novel wine’) for the prevention and treatment of ASCVD. Additionally, this review summarizes studies on the availability as well as pharmaceutical and pharmacokinetic properties of AG, aiming to provide more information regarding the clinical application and further research and development of AG.
  • loading
  • S. Surma, M. Banach, Fibrinogen and atherosclerotic cardiovascular diseases-review of the literature and clinical studies, Int. J. Mol. Sci. 23 (2021), 193.
    P. Libby, J.E. Buring, L. Badimon, et al., Atherosclerosis, Nat. Rev. Dis. Primers 5 (2019), 56.
    M. Sanz, A.M. del Castillo, S. Jepsen, et al., Periodontitis and cardiovascular diseases. consensus report, Glob. Heart 15 (2020), 1.
    G.A. Roth, G.A. Mensah, C.O. Johnson, et al., Global burden of cardiovascular diseases and risk factors, 1990-2019: Update from the GBD 2019 study, J. Am. Coll. Cardiol. 76 (2020) 2982-3021.
    N.D. Wong, M.J. Budoff, K. Ferdinand, et al., Atherosclerotic cardiovascular disease risk assessment: An American Society for Preventive Cardiology clinical practice statement, Am. J. Prev. Cardiol. 10 (2022), 100335.
    M. Cainzos-Achirica, K. Glassner, H.S. Zawahir, et al., Inflammatory bowel disease and atherosclerotic cardiovascular disease: JACC review topic of the week, J. Am. Coll. Cardiol. 76 (2020) 2895-2905.
    A. Lazaro, G. Alvarez-Llamas, J. Gallego-Delgado, et al., Pharmacoproteomics in cardiac hypertrophy and atherosclerosis, Cardiovasc. Hematol. Disord. Drug Targets 9 (2009) 141-148.
    B. Rauff, A. Malik, Y.A. Bhatti, et al., Association of viruses in the development of cardiovascular diseases, Curr. Pharm. Des. 27 (2021) 3913-3923.
    Y. Geng, Molecular mechanisms for cardiovascular stem cell apoptosis and growth in the hearts with atherosclerotic coronary disease and ischemic heart failure, Ann. N. Y. Acad. Sci. 1010 (2003) 687-697.
    G.D. Flora, M.K. Nayak, A brief review of cardiovascular diseases, associated risk factors and current treatment regimes, Curr. Pharm. Des. 25 (2019) 4063-4084.
    A.N. Hasso, W.A. Stringer, K.D. Brown, Cerebral ischemia and infarction, Neuroimaging Clin. N. Am. 4 (1994) 733-752.
    Y. Wan, J. Xia, J. Xu, et al., Nuciferine, an active ingredient derived from lotus leaf, lights up the way for the potential treatment of obesity and obesity-related diseases, Pharmacol. Res. 175 (2022), 106002.
    X. Dong, Y. Zeng, Y. Liu, et al., Aloe-emodin: A review of its pharmacology, toxicity, and pharmacokinetics, Phytother. Res. 34 (2020) 270-281.
    A. Zia, T. Farkhondeh, A.M. Pourbagher-Shahri, et al., The role of curcumin in aging and senescence: Molecular mechanisms, Biomed. Pharmacother. 134 (2021), 111119.
    B. Kulczynski, A. Gramza-Michalowska, J. Suliburska, et al., Puerarin-an isoflavone with beneficial effects on bone health, Front. Biosci. Landmark Ed. 26 (2021) 1653-1667.
    J. Wu, Y. Yang, Y. Wan, et al., New insights into the role and mechanisms of ginsenoside Rg1 in the management of Alzheimer’s disease, Biomed. Pharmacother. 152 (2022), 113207.
    Y. Wan, J. Wang, J. Xu, et al., Panax ginseng and its ginsenosides: Potential candidates for the prevention and treatment of chemotherapy-induced side effects, J. Ginseng Res. 45 (2021) 617-630.
    J. Xu, Y. Wan, F. Tang, et al., Emerging significance of ginsenosides as potentially reversal agents of chemoresistance in cancer therapy, Front. Pharmacol. 12 (2021), 720474.
    Y. Wan, D. Liu, J. Xia, et al., Ginsenoside CK, rather than Rb1, possesses potential chemopreventive activities in human gastric cancer via regulating PI3K/AKT/NF-κB signal pathway, Front. Pharmacol. 13 (2022), 977539.
    A.B. Smith, B.H. Toder, P.J. Carroll, et al., Andrographolide: An X-ray crystallographic analysis, J. Crystallogr. Spectrosc. Res. 12 (1982) 309-319.
    D. Dalawai, C. Aware, J.P. Jadhav, et al., RP-HPLC analysis of diterpene lactones in leaves and stem of different species of Andrographis, Nat. Prod. Res. 35 (2021) 2239-2242.
    J. Chang,, R. Zhang, Y. Zhang, et al., Andrographolide drop-pill in treatment of acute upper respiratory tract infection with external wind-heat syndrome: A multicenter and randomized controlled trial, J. Chin. Integr. Med. 6 (2008) 1238-1245.
    E.S. Gabrielian, A.K. Shukarian, G.I. Goukasova, et al., A double blind, placebo-controlled study of Andrographis paniculata fixed combination Kan Jang in the treatment of acute upper respiratory tract infections including sinusitis, Phytomed. 9 (2002) 589-597.
    Y. Zhao, P. Huang, Z. Chen, et al., Clinical application analysis of andrographolide total ester sulfonate injection, a traditional Chinese medicine licensed in China, Huazhong Keji Daxue Xuebao Yixue Yingdewen Ban 37 (2017) 293-299.
    J. Melchior, S. Palm, G. Wikman, Controlled clinical study of standardized Andrographis paniculata extract in common cold - a pilot trial, Phytomed. 3 (1997) 315-318.
    S.K. Wong, K.Y. Chin, S. Ima-Nirwana, A review on the molecular basis underlying the protective effects of Andrographis paniculata and andrographolide against myocardial injury, Drug Des. Devel. Ther. 15 (2021) 4615-4632.
    V. Arya and V.K. Gupta, Chemistry and pharmacology of plant cardioprotectives: A review, International Journal of Pharmaceutical Sciences and Research 2 (2011) 1156-1167.
    S.K. Ojha, M. Nandave, S. Kumari, et al., Antioxidant activity of Andrographis paniculata in ischemic myocardium of rats, Global Journal of pharmacology 3 (2009) 154-157.
    Y. Dai, S. Chen, L. Chai, et al., Overview of pharmacological activities of Andrographis paniculata and its major compound andrographolide, Crit. Rev. Food Sci. Nutr. 59 (2019) S17-S29.
    M.T. Islam, Andrographolide, a new hope in the prevention and treatment of metabolic syndrome, Front. Pharmacol. 8 (2017), 571.
    K. Driscoll, A.D. Cruz, J.T. Butcher, Inflammatory and biomechanical drivers of endothelial-interstitial interactions in calcific aortic valve disease, Circ. Res. 128 (2021) 1344-1370.
    Y. Li, K.C. Ueng, J.S. Jeng, et al., Taiwan lipid guidelines for high risk patients, J. Formos. Med. Assoc. 116 (2017) 217-248.
    A.M. Shafter, K. Shaikh, A. Johanis, et al., De-risking primary prevention: Role of imaging, Ther. Adv. Cardiovasc. Dis. 15 (2021), 17539447211051248.
    J.T. Wilkins, S.S. Gidding, J.G. Robinson, Can atherosclerosis be cured? Curr. Opin. Lipidol. 30 (2019) 477-484.
    T. Quillard, G. Franck, T. Mawson, et al., Mechanisms of erosion of atherosclerotic plaques, Curr. Opin. Lipidol. 28 (2017) 434-441.
    A.E. Neele, L. Willemsen, H.J. Chen, et al., Targeting epigenetics as atherosclerosis treatment: An updated view, Curr. Opin. Lipidol. 31 (2020) 324-330.
    R. Ross, Atherosclerosis: An inflammatory disease, N. Engl. J. Med. 340 (1999) 115-126.
    S.N. Bhupathiraju, F.B. Hu, Epidemiology of obesity and diabetes and their cardiovascular complications, Circ. Res. 118 (2016) 1723-1735.
    S. Mitra, T. Goyal, J.L. Mehta, Oxidized LDL, LOX-1 and atherosclerosis, Cardiovasc. Drugs Ther. 25 (2011) 419-429.
    F. Lovren, H. Teoh, S. Verma, Obesity and atherosclerosis: Mechanistic insights, Can. J. Cardiol. 31 (2015) 177-183.
    J. Tian, Y. Liu, Y. Liu, et al., Cellular and molecular mechanisms of diabetic atherosclerosis: Herbal medicines as a potential therapeutic approach, Oxid. Med. Cell. Longev. 2017 (2017) 1-16.
    R.P. Mason, Optimal therapeutic strategy for treating patients with hypertension and atherosclerosis: Focus on olmesartan medoxomil, Vasc. Health Risk Manag. 7 (2011) 405-416.
    K. Iglay, H. Hannachi, P.J. Howie, et al., Prevalence and co-prevalence of comorbidities among patients with type 2 diabetes mellitus, Curr. Med. Res. Opin. 32 (2016) 1243-1252.
    S. Tabaei, S.S. Tabaee, DNA methylation abnormalities in atherosclerosis, Artif. Cells Nanomed. Biotechnol. 47 (2019) 2031-2041.
    D. Mauricio, E. Castelblanco, N. Alonso, Cholesterol and inflammation in atherosclerosis: An immune-metabolic hypothesis, Nutrients 12 (2020), 2444.
    L.M. Buja, Nikolai N. anitschkow and the lipid hypothesis of atherosclerosis, Cardiovasc. Pathol. 23 (2014) 183-184.
    M. Naito, Amide-adducts in atherosclerosis, Sub Cell. Biochem. 77 (2014) 95-102.
    P. Sun, K.M. Dwyer, C.N. Merz, et al., Blood pressure, LDL cholesterol, and intima-media thickness: A test of the “response to injury” hypothesis of atherosclerosis, Arterioscler. Thromb. Vasc. Biol. 20 (2000) 2005-2010.
    Z. Liu, R.A. Khalil, Evolving mechanisms of vascular smooth muscle contraction highlight key targets in vascular disease, Biochem. Pharmacol. 153 (2018) 91-122.
    R. Wang, M. Wang, J. Ye, et al., Mechanism overview and target mining of atherosclerosis: Endothelial cell injury in atherosclerosis is regulated by glycolysis (Review), Int. J. Mol. Med. 47 (2021) 65-76.
    R. Kaur, M. Kaur, J. Singh, Endothelial dysfunction and platelet hyperactivity in type 2 diabetes mellitus: Molecular insights and therapeutic strategies, Cardiovasc. Diabetol. 17 (2018), 121.
    S. Paone, A.A. Baxter, M.D. Hulett, et al., Endothelial cell apoptosis and the role of endothelial cell-derived extracellular vesicles in the progression of atherosclerosis, Cell. Mol. Life Sci. 76 (2019) 1093-1106.
    A. Gaiz, S. Mosawy, N. Colson, et al., Thrombotic and cardiovascular risks in type two diabetes; Role of platelet hyperactivity, Biomed. Pharmacother. 94 (2017) 679-686.
    J. Hurtubise, K. McLellan, K. Durr, et al., The different facets of dyslipidemia and hypertension in atherosclerosis, Curr. Atheroscler. Rep. 18 (2016), 82.
    A.J. van Boven, J.W. Jukema, R. Paoletti, Endothelial dysfunction and dyslipidemia: Possible effects of lipid lowering and lipid modifying therapy, Pharmacol. Res. 29 (1994) 261-272.
    J.M. van Gils, J.J. Zwaginga, P.L. Hordijk, Molecular and functional interactions among monocytes, platelets, and endothelial cells and their relevance for cardiovascular diseases, J. Leukoc. Biol. 85 (2009) 195-204.
    P. Libby, P.M. Ridker, G.K. Hansson, et al., Inflammation in atherosclerosis: From pathophysiology to practice, J. Am. Coll. Cardiol. 54 (2009) 2129-2138.
    A. Tedgui, Z. Mallat, Cytokines in atherosclerosis: Pathogenic and regulatory pathways, Physiol. Rev. 86 (2006) 515-581.
    L. Groh, S.T. Keating, L.A.B. Joosten, et al., Monocyte and macrophage immunometabolism in atherosclerosis, Semin. Immunopathol. 40 (2018) 203-214.
    G.L. Basatemur, H.F. Jørgensen, M.C.H. Clarke, et al., Vascular smooth muscle cells inatherosclerosis, Nat. Rev. Cardiol. 16 (2019) 727–744
    S. Taleb, Inflammation in atherosclerosis, Arch. Cardiovasc. Dis. 109 (2016) 708-715.
    A.C. Newby, Metalloproteinases and vulnerable atherosclerotic plaques, Trends Cardiovasc. Med. 17 (2007) 253-258.
    Z.A. Massy, W.F. Keane, Pathogenesis of atherosclerosis, Semin. Nephrol. 16 (1996) 12-20.
    M. Sponder, M. Fritzer-Szekeres, R. Marculescu, et al., A new coronary artery disease grading system correlates with numerous routine parameters that were associated with atherosclerosis: A grading system for coronary artery disease severity, Vasc. Heath. Risk Manag. 10 (2014) 641-647.
    M. Sekulic, M. Zacharias, B. Medalion, Ischemic cardiomyopathy and heart failure, Circ. Heart Fail. 12 (2019), e006006.
    N. Narula, J.W. Olin, N. Narula, Pathologic disparities between peripheral artery disease and coronary artery disease, Arterioscler. Thromb. Vasc. Biol. 40 (2020) 1982-1989.
    F. Malakootikhah, H. Naghavi, N. Firouzabadi, et al., Association of human platelet alloantigens encoding gene polymorphisms with the risk of Coronary artery disease in Iranian patients, BMC Cardiovasc. Disord. 21 (2021), 68.
    R. Arasu, A. Arasu, J. Muller, Carotid artery stenosis: An approach to its diagnosis and management, Aust. J. Gen. Pract. 50 (2021) 821-825.
    J. Pappachan, F.J. Kirkham, Cerebrovascular disease and stroke, Arch. Dis. Child. 93 (2008) 890-898.
    Y. Wang, R. Meng, G. Liu, et al., Intracranial atherosclerotic disease, Neurobiol. Dis. 124 (2019) 118-132.
    N. Nirala, R. Periyasamy, A. Kumar, Noninvasive diagnostic methods for better screening of peripheral arterial disease, Ann. Vasc. Surg. 52 (2018) 263-272.
    M. Luczak, D. Formanowicz, L. Marczak, et al., Deeper insight into chronic kidney disease-related atherosclerosis: Comparative proteomic studies of blood plasma using 2DE and mass spectrometry, J. Transl. Med. 13 (2015), 20.
    C. Heiss, Chronic mesenteric ischemia, Dtsch. Med. Wochenschr. 1946 143 (2018) 1426-1429.
    Y. Zhu, X. Xian, Z. Wang, et al., Research progress on the relationship between atherosclerosis and inflammation, Biomolecules 8 (2018), 80.
    Q. Zhang, J. Liu, H. Duan, et al., Activation of Nrf2/HO-1 signaling: An important molecular mechanism of herbal medicine in the treatment of atherosclerosis via the protection of vascular endothelial cells from oxidative stress, J. Adv. Res. 34 (2021) 43-63.
    W. Droge, Free radicals in the physiological control of cell function, Physiol. Rev. 82 (2002) 47-95.
    X. Yu, X. Zheng, C. Tang, Nuclear factor-κB activation as a pathological mechanism of lipid metabolism and atherosclerosis, Adv. Clin. Chem. 70 (2015) 1-30.
    X. Yang, T. He, S. Han, et al., The role of traditional Chinese medicine in the regulation of oxidative stress in treating coronary heart disease, Oxid. Med. Cell. Longev. 2019 (2019), 3231424.
    T.V. Arumugam, S.H. Baik, P. Balaganapathy, et al., Notch signaling and neuronal death in stroke, Prog. Neurobiol. 165-167 (2018) 103-116.
    J. Zeng, Y. Chen, R. Ding, et al., Isoliquiritigenin alleviates early brain injury after experimental intracerebral hemorrhage via suppressing ROS- and/or NF-κB-mediated NLRP3 inflammasome activation by promoting Nrf2 antioxidant pathway, J. Neuroinflammation 14 (2017), 119.
    A. Gistera, G.K. Hansson, The immunology of atherosclerosis, Nat. Rev. Nephrol. 13 (2017) 368-380.
    J. Pedro-Botet, E. Climent, D. Benaiges, Atherosclerosis and inflammation. New therapeutic approaches, Med. Clin. 155 (2020) 256-262.
    G. Kyriakos, L.V. Quiles-SAnchez, E. Diamantis, et al., Lipid-lowering drugs and neurocognitive function: A systematic review, Vivo Athens Greece 34 (2020) 3109-3114.
    G.A. Fitzgerald, E.A. Meagher, Antiplatelet drugs, Eur. J. Clin. Investig. 24 (1994) 46-49.
    M.N. McComb, J.Y. Chao, T.M.H. Ng, Direct vasodilators and sympatholytic agents, J. Cardiovasc. Pharmacol. Ther. 21 (2016) 3-19.
    J. Yee, C.G. Kaide, Emergency reversal of anticoagulation, West. J. Emerg. Med. 20 (2019) 770-783.
    A. Tiwari, V. Bansal, A. Chugh, et al., Statins and myotoxicity: A therapeutic limitation, Expert Opin. Drug Saf. 5 (2006) 651-666.
    D.N. Kiortsis, T.D. Filippatos, D.P. Mikhailidis, et al., Statin-associated adverse effects beyond muscle and liver toxicity, Atherosclerosis 195 (2007) 7-16.
    H.L. Figge, J. Figge, P.F. Souney, et al., Nicotinic acid: A review of its clinical use in the treatment of lipid disorders, Pharmacotherapy 8 (1988) 287-294.
    T. Yang, H. Shi, Z. Wang, et al., Hypolipidemic effects of andrographolide and neoandrographolide in mice and rats, Phytother. Res. 27 (2013) 618-623.
    R. Al Batran, F. Al-Bayaty, M.M. Al-Obaidi, et al., Acute toxicity and the effect of andrographolide on Porphyromonas gingivalis-induced hyperlipidemia in rats, BioMed Res. Int. 2013 (2013), 594012.
    L. Ding, J. Li, B. Song, et al., Andrographolide prevents high-fat diet-induced obesity in C57BL/6 mice by suppressing the sterol regulatory element-binding protein pathway, J. Pharmacol. Exp. Ther. 351 (2014) 474-483.
    L.J. Engelking, M.J. Cantoria, Y. Xu, et al., Developmental and extrahepatic physiological functions of SREBP pathway genes in mice, Semin. Cell Dev. Biol. 81 (2018) 98-109.
    S. Muraoka, Y. Nitta, T. Yamada, et al., Increase of anti-oxidative capacity during differentiation of 3T3-L1 preadipocytes into adipocytes, YAKUGAKU ZASSHI 137 (2017) 1137-1145.
    W. Chen, H. Su, L. Feng, et al., Andrographolide suppresses preadipocytes proliferation through glutathione antioxidant systems abrogation, Life Sci. 156 (2016) 21-29.
    N. Umek, S. Horvat, E. Cvetko, Skeletal muscle and fiber type-specific intramyocellular lipid accumulation in obese mice, Bosn. J. Basic Med. Sci. 21 (2021) 730-738.
    A. Engin, Fat cell and fatty acid turnover in obesity, Adv. Exp. Med. Biol. 960 (2017) 135-160.
    C.C. Chen, W. Chuang, A.H. Lin, et al., Andrographolide inhibits adipogenesis of 3T3-L1 cells by suppressing C/EBPβ expression and activation, Toxicol. Appl. Pharmacol. 307 (2016) 115-122.
    L. Jin, W. Fang, B. Li, et al., Inhibitory effect of andrographolide in 3T3-L1 adipocytes differentiation through the PPARγ pathway, Mol. Cell. Endocrinol. 358 (2012) 81-87.
    M. Kaewkittikhun, N. Boonmuen, P. Kheolamai, et al., Andrographolide reduces lipid droplet accumulation in adipocytes derived from human bone marrow mesenchymal stem cells by suppressing regulators of adipogenesis, J. Agric. Food Chem. 69 (2021) 9259-9269.
    M.A. Kalwat, M.H. Cobb, Mechanisms of the amplifying pathway of insulin secretion in the β cell, Pharmacol. Ther. 179 (2017) 17-30.
    S.L. Shumak, M. Gulan, B. Zinman, et al., Determination and kinetic analysis of non-insulin mediated glucose uptake in type 1 (insulin-dependent) diabetes mellitus, Diabetologia 32 (1989) 28-33.
    K. Cheng, A. Asakawa, Y. Li, et al., Opioid μ-receptors as new target for insulin resistance, Pharmacol. Ther. 139 (2013) 334-340.
    S.A. Wohaieb, D.V. Godin, Alterations in free radical tissue-defense mechanisms in streptozocin-induced diabetes in rat. Effects of insulin treatment, Diabetes 36 (1987) 1014-1018.
    A.E. Nugroho, I.R. Rais, I. Setiawan, et al., Pancreatic effect of andrographolide isolated from Andrographis paniculata (Burm. f.) Nees, Pak. J. Biol. Sci. 17 (2014) 22-31.
    B. Ahmed, R. Sultana, M.W. Greene, Adipose tissue and insulin resistance in obese, Biomed. Pharmacother. 137 (2021), 111315.
    L. Jin, G. Shi, G. Ning, et al., Andrographolide attenuates tumor necrosis factor-alpha-induced insulin resistance in 3T3-L1 adipocytes, Mol. Cell. Endocrinol. 332 (2011) 134-139.
    R. Ballotti, Y. Le Marchand-Brustel, S. Gammeltoft, et al., Insulin receptor: Tyrosine kinase activity and insulin action, Reprod. Nutr. Dev. 29 (1989) 653-661.
    S. Khan, A.A.L. Evans, S. Hughes, et al., Beta-endorphin decreases fatigue and increases glucose uptake independently in normal and dystrophic mice, Muscle Nerve 31 (2005) 481-486.
    A.A.L. Evans, M.E. Smith, Opioid receptors in fast and slow skeletal muscles of normal and dystrophic mice, Neurosci. Lett. 366 (2004) 339-341.
    A.A. Evans, S. Khan, M.E. Smith, Evidence for a hormonal action of beta-endorphin to increase glucose uptake in resting and contracting skeletal muscle, J. Endocrinol. 155 (1997) 387-392.
    B.C. Yu, C.K. Chang, C.F. Su, et al., Mediation of beta-endorphin in andrographolide-induced plasma glucose-lowering action in type I diabetes-like animals, Naunyn. Schmiedebergs. Arch. Pharmacol. 377 (2008) 529-540.
    J. Berger, C. Biswas, P.P. Vicario, et al., Decreased expression of the insulin-responsive glucose transporter in diabetes and fasting, Nature 340 (1989) 70-72.
    A. Consoli, N. Nurjhan, F. Capani, et al., Predominant role of gluconeogenesis in increased hepatic glucose production in NIDDM, Diabetes 38 (1989) 550-557.
    B.C. Yu, C.R. Hung, W. Chen, et al., Antihyperglycemic effect of andrographolide in streptozotocin-induced diabetic rats, Planta Med. 69 (2003) 1075-1079.
    S.J. Custodio-Chable, R.A. Lezama, E. Reyes-Maldonado, Platelet activation as a trigger factor for inflammation and atherosclerosis, Cir. Cir. 88 (2020) 233-243.
    D.A. Chistiakov, Y.V. Bobryshev, A.N. Orekhov, Macrophage-mediated cholesterol handling in atherosclerosis, J. Cell. Mol. Med. 20 (2016) 17-28.
    E. Butoi, A.M. Gan, I. Manduteanu, Molecular and functional interactions among monocytes/macrophages and smooth muscle cells and their relevance for atherosclerosis, Crit. Rev. Eukaryot. Gene Expr. 24 (2014) 341-355.
    J. Liu, S. Dong, Y. Ru, A review: Pathological and molecular biological study on atherosclerosis, Clin. Chim. Acta 531 (2022) 217-222.
    R. Al Batran, F. Al-Bayaty, M.M. Al-Obaidi, et al., Evaluation of the effect of andrographolide on atherosclerotic rabbits induced by Porphyromonas gingivalis, BioMed Res. Int. 2014 (2014), 724718.
    R. Batran, F. Al-Bayaty, M.M.J. Al-Obaidi, et al., Insights into the antiatherogenic molecular mechanisms of andrographolide against Porphyromonas gingivalis-induced atherosclerosis in rabbits, Naunyn Schmiedeberg’s Arch. Pharmacol. 387 (2014) 1141-1152.
    T. Wu, Y. Peng, S. Yan, et al., Andrographolide ameliorates atherosclerosis by suppressing pro-inflammation and ROS generation-mediated foam cell formation, Inflammation 41 (2018) 1681-1689.
    M.Y. Hamidy, F. Oenzil, Yanwirasti, et al., Effect of andrographolide on foam cell formation at the initiation stage of atherosclerosis, Kne Eng. 1 (2019), 329.
    M. Yulis Hamidy, F. Oenzil, Y. Yanwirasti, et al., Effect of andrographolide on monocyte chemoattractant protein-1 expression at the initiation stage of atherosclerosis in atherogenic diet-fed rats, Biomed. Pharmacol. J. 12 (2019) 1167-1173.
    M.M. Kavurma, M.R. Bennett, Expression, regulation and function of trail in atherosclerosis, Biochem. Pharmacol. 75 (2008) 1441-1450.
    X. Lin, S. Ouyang, C. Zhi, et al., Focus on ferroptosis, pyroptosis, apoptosis and autophagy of vascular endothelial cells to the strategic targets for the treatment of atherosclerosis, Arch. Biochem. Biophys. 715 (2022), 109098.
    N. Song, L. Jia, H. Cao, et al., Gypenoside inhibits endothelial cell apoptosis in atherosclerosis by modulating mitochondria through PI3K/Akt/bad pathway, BioMed Res. Int. 2020 (2020), 2819658.
    M. Duan, H. Zhou, Q. Wu, et al., Andrographolide protects against HG-induced inflammation, apoptosis, migration, and impairment of angiogenesis via PI3K/AKT-eNOS signalling in HUVECs, Mediators Inflamm. 2019 (2019), 6168340.
    J.H. Chen, G. Hsiao, A. Lee, et al., Andrographolide suppresses endothelial cell apoptosis via activation of phosphatidyl inositol-3-kinase/Akt pathway, Biochem. Pharmacol. 67 (2004) 1337-1345.
    S. Sitia, L. Tomasoni, F. Atzeni, et al., From endothelial dysfunction to atherosclerosis, Autoimmun. Rev. 9 (2010) 830-834.
    M. Mudau, A. Genis, A. Lochner, et al., Endothelial dysfunction: The early predictor of atherosclerosis, Cardiovasc. J. Afr. 23 (2012) 222-231.
    G. Du, Y. Song, T. Zhang, et al., Simvastatin attenuates TNF-α-induced apoptosis in endothelial progenitor cells via the upregulation of SIRT1, Int. J. Mol. Med. 34 (2014) 177-182.
    M.A. Incalza, R. D’Oria, A. Natalicchio, et al., Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases, Vasc. Pharmacol. 100 (2018) 1-19.
    A.J. Valente, A.M. Irimpen, U. Siebenlist, et al., OxLDL induces endothelial dysfunction and death via TRAF3IP2: Inhibition by HDL3 and AMPK activators, Free. Radic. Biol. Med. 70 (2014) 117-128.
    T. Jain, E.A. Nikolopoulou, Q. Xu, et al., Hypoxia inducible factor as a therapeutic target for atherosclerosis, Pharmacol. Ther. 183 (2018) 22-33.
    T.F. Luscher, R.R. Wenzel, Endothelin and endothelin antagonists: Pharmacology and clinical implications, Agents Actions Suppl. 45 (1995) 237-253.
    H.C. Lin, S.L. Su, C.Y. Lu, et al., Andrographolide inhibits hypoxia-induced HIF-1α-driven endothelin 1 secretion by activating Nrf2/HO-1 and promoting the expression of prolyl hydroxylases 2/3 in human endothelial cells, Environ. Toxicol. 32 (2017) 918-930.
    H.C. Lin, S.L. Su, W. Lin, et al., Andrographolide inhibits hypoxia-induced hypoxia-inducible factor 1α and endothelin 1 expression through the heme oxygenase 1/CO/cGMP/MKP-5 pathways in EA.hy926 cells, Environ. Toxicol. 33 (2018) 269-279.
    I.M. Fenyo, A.V. Gafencu, The involvement of the monocytes/macrophages in chronic inflammation associated with atherosclerosis, Immunobiology 218 (2013) 1376-1384.
    A. Yu, C.Y. Lu, T.S. Wang, et al., Induction of heme oxygenase 1 and inhibition of tumor necrosis factor alpha-induced intercellular adhesion molecule expression by andrographolide in EA.hy926 cells, J. Agric. Food Chem. 58 (2010) 7641-7648.
    C. Chao, C.K. Lii, I.T. Tsai, et al., Andrographolide inhibits ICAM-1 expression and NF-κB activation in TNF-α-treated EA.hy926 cells, J. Agric. Food Chem. 59 (2011) 5263-5271.
    C.Y. Lu, Y. Yang, C.C. Li, et al., Andrographolide inhibits TNFα-induced ICAM-1 expression via suppression of NADPH oxidase activation and induction of HO-1 and GCLM expression through the PI3K/Akt/Nrf2 and PI3K/Akt/AP-1 pathways in human endothelial cells, Biochem. Pharmacol. 91 (2014) 40-50.
    H.C. Lin, C.C. Li, Y. Yang, et al., Andrographis paniculata diterpenoids and ethanolic extract inhibit TNFα-induced ICAM-1 expression in EA.hy926 cells, Phytomedicine 52 (2019) 157-167.
    K.D. Mason, M.R. Carpinelli, J.I. Fletcher, et al., Programmed anuclear cell death delimits platelet life span, Cell 128 (2007) 1173-1186.
    G.L. Dale, P. Friese, Bax activators potentiate coated-platelet formation, J. Thromb. Haemost. 4 (2006) 2664-2669.
    M.K.S. Lee, M.J. Kraakman, D. Dragoljevic, et al., Apoptotic ablation of platelets reduces atherosclerosis in mice with diabetes, Arterioscler. Thromb. Vasc. Biol. 41 (2021) 1167-1178.
    L. Lien, C. Su, W.H. Hsu, et al., Mechanisms of andrographolide-induced platelet apoptosis in human platelets: Regulatory roles of the extrinsic apoptotic pathway, Phytother. Res. 27 (2013) 1671-1677.
    E. Khodadi, Platelet function in cardiovascular disease: Activation of molecules and activation by molecules, Cardiovasc. Toxicol. 20 (2020) 1-10.
    R. Lordan, A. Tsoupras, I. Zabetakis, Investigation of platelet aggregation in atherosclerosis, Meth. Mol. Biol. Clifton N J 2419 (2022) 333-347.
    W.J. Lu, J.J. Lee, D.S. Chou, et al., A novel role of andrographolide, an NF-kappa B inhibitor, on inhibition of platelet activation: The pivotal mechanisms of endothelial nitric oxide synthase/cyclic GMP, J. Mol. Med. Berlin Ger. 89 (2011) 1261-1273.
    P. Thisoda, N. Rangkadilok, N. Pholphana, et al., Inhibitory effect of Andrographis paniculata extract and its active diterpenoids on platelet aggregation, Eur. J. Pharmacol. 553 (2006) 39-45.
    E. Amroyan, E. Gabrielian, A. Panossian, et al., Inhibitory effect of andrographolide from Andrographis paniculata on PAF-induced platelet aggregation, Phytomed. 6 (1999) 27-31.
    W.J. Lu, K.H. Lin, M.J. Hsu, et al., Suppression of NF-κB signaling by andrographolide with a novel mechanism in human platelets: Regulatory roles of the p38 MAPK-hydroxyl radical-ERK2 cascade, Biochem. Pharmacol. 84 (2012) 914-924.
    T. Wu, M. Tan, H. Gong, et al., Co-delivery of andrographolide and Notch1-targeted siRNA to macrophages with polymer-based nanocarrier for enhanced anti-inflammation, Chin. J. Polym. Sci. 36 (2018) 1312-1320.
    H.C. Lin, C.K. Lii, H. Chen, et al., Andrographolide inhibits oxidized LDL-induced cholesterol accumulation and foam cell formation in macrophages, Am. J. Chin. Med. 46 (2018) 87-106.
    A. Roy, S. Banerjee, U. Saqib, et al., NOS1-derived nitric oxide facilitates macrophage uptake of low-density lipoprotein, J. Cell. Biochem. 120 (2019) 11593-11603.
    W.F. Chiou, J.J. Lin, C.F. Chen, Andrographolide suppresses the expression of inducible nitric oxide synthase in macrophage and restores the vasoconstriction in rat aorta treated with lipopolysaccharide, Br. J. Pharmacol. 125 (1998) 327-334.
    W.F. Chiou, C.F. Chen, J.J. Lin, Mechanisms of suppression of inducible nitric oxide synthase (iNOS) expression in RAW 264.7 cells by andrographolide, Br. J. Pharmacol. 129 (2000) 1553-1560.
    F. Li, S. Li, Effects of andrographolide on the activation of mitogen activated protein kinases and nuclear factor-κB in mouse peritoneal macrophage-derived foam cells, Chin. J. Integr. Med. 18 (2012) 391-394.
    Y. Chen, M.J. Hsu, J.R. Sheu, et al., Andrographolide, a novel NF- κ B inhibitor, induces vascular smooth muscle cell apoptosis via a ceramide-p47phox-ROS signaling cascade, Evid. Based Complement. Alternat. Med. 2013 (2013), 821813.
    Y. Chen, C.Y. Hsieh, T. Jayakumar, et al., Andrographolide induces vascular smooth muscle cell apoptosis through a SHP-1-PP2A-p38MAPK-p53 cascade, Sci. Rep. 4 (2014), 5651.
    Y. Wang, J. Wang, Q. Fan, et al., Andrographolide inhibits NF-kappaBeta activation and attenuates neointimal hyperplasia in arterial restenosis, Cell Res. 17 (2007) 933-941.
    Z. Zhu, X. Jiang, B. Wang, et al., Andrographolide inhibits intimal hyperplasia in a rat model of autogenous vein grafts, Cell Biochem. Biophys. 60 (2011) 231-239.
    Y. Chen, M.J. Hsu, C.Y. Hsieh, et al., Andrographolide inhibits nuclear factor-κB activation through JNK-Akt-p65 signaling cascade in tumor necrosis factor-α-stimulated vascular smooth muscle cells, Sci. World J. 2014 (2014), 130381.
    C.Y. Hsieh, M.J. Hsu, G. Hsiao, et al., Andrographolide enhances nuclear factor-kappaB subunit p65 Ser536 dephosphorylation through activation of protein phosphatase 2A in vascular smooth muscle cells, J. Biol. Chem. 286 (2011) 5942-5955.
    A.C. Doran, N. Meller, C.A. McNamara, Role of smooth muscle cells in the initiation and early progression of atherosclerosis, Arterioscler. Thromb. Vasc. Biol. 28 (2008) 812-819.
    C.C. Chang, Y.F. Duann, T.L. Yen, et al., Andrographolide, a novel NF-κB inhibitor, inhibits vascular smooth muscle cell proliferation and cerebral endothelial cell inflammation, Acta Cardiol. Sin. 30 (2014) 308-315.
    D.J. Medina-Leyte, O. Zepeda-Garcia, M. Dominguez-Perez, et al., Endothelial dysfunction, inflammation and coronary artery disease: Potential biomarkers and promising therapeutical approaches, Int. J. Mol. Sci. 22 (2021), 3850.
    T. Lawrence, D.W. Gilroy, P.R. Colville-Nash, et al., Possible new role for NF-kappaB in the resolution of inflammation, Nat. Med. 7 (2001) 1291-1297.
    L. Yang, H. Guo, Y. Li, et al., Oleoylethanolamide exerts anti-inflammatory effects on LPS-induced THP-1 cells by enhancing PPARα signaling and inhibiting the NF-κB and ERK1/2/AP-1/STAT3 pathways, Sci. Rep. 6 (2016), 34611.
    Z. Khuchua, A.I. Glukhov, A.W. Strauss, et al., Elucidating the beneficial role of PPAR agonists in cardiac diseases, Int. J. Mol. Sci. 19 (2018), 3464.
    J. Shu, R. Huang, Y. Tian, et al., Andrographolide protects against endothelial dysfunction and inflammatory response in rats with coronary heart disease by regulating PPAR and NF-κB signaling pathways, Ann. Palliat. Med. 9 (2020) 1965-1975.
    A. Lejay, F. Fang, R. John, et al., Ischemia reperfusion injury, ischemic conditioning and diabetes mellitus, J. Mol. Cell. Cardiol. 91 (2016) 11-22.
    S.N. Goyal, S. Bharti, S. Arora, et al., Endothelin receptor antagonist BQ-123 ameliorates myocardial ischemic-reperfusion injury in rats: A hemodynamic, biochemical, histopathological and electron microscopic evidence, Biomed. Pharmacother. 64 (2010) 639-646.
    A.Y. Woo, M.M. Waye, S.K. Tsui, et al., Andrographolide up-regulates cellular-reduced glutathione level and protects cardiomyocytes against hypoxia/reoxygenation injury, J. Pharmacol. Exp. Ther. 325 (2008) 226-235.
    K. Thygesen, J.S. Alpert, H.D. White, et al., Universal definition of myocardial infarction, J. Am. Coll. Cardiol. 50 (2007) 2173-2195.
    S.E. Elasoru, P. Rhana, T. de Oliveira Barreto, et al., Andrographolide protects against isoproterenol-induced myocardial infarction in rats through inhibition of L-type Ca2+ and increase of cardiac transient outward K+ currents, Eur. J. Pharmacol. 906 (2021), 174194.
    S.E. Elasoru, Biophysical and pharmacological evaluation of protective potentials of andrographolide against isoproterenol-induced myocardial infarction in rats [dissertation], Universidade Federal de Minas Gerais, 906 (2021), 174194.
    S. Xie, W. Deng, J. Chen, et al., Andrographolide protects against adverse cardiac remodeling after myocardial infarction through enhancing Nrf2 signaling pathway, Int. J. Biol. Sci. 16 (2020) 12-26.
    Y. Li, L. Xiang, J. Miao, et al., Protective effects of andrographolide against cerebral ischemia-reperfusion injury in mice, Int. J. Mol. Med. 48 (2021), 186.
    S. Chan, W.S. Fred Wong, P.T. Wong, et al., Neuroprotective effects of andrographolide in a rat model of permanent cerebral ischaemia, Br. J. Pharmacol. 161 (2010) 668-679.
    T.L. Yen, R.J. Chen, T. Jayakumar, et al., Andrographolide stimulates p38 mitogen-activated protein kinase-nuclear factor erythroid-2-related factor 2-heme oxygenase 1 signaling in primary cerebral endothelial cells for definite protection against ischemic stroke in rats, Transl. Res. 170 (2016) 57-72.
    C.M. Chern, Liou, Y.H. Wang, et al., Andrographolide inhibits PI3K/AKT-dependent NOX2 and iNOS expression protecting mice against hypoxia/ischemia-induced oxidative brain injury, Planta Med. 77 (2011) 1669-1679.
    D. Wang, K. Kang, J. Sun, et al., URB597 and andrographolide improve brain microvascular endothelial cell permeability and apoptosis by reducing oxidative stress and inflammation associated with activation of Nrf2 signaling in oxygen-glucose deprivation, Oxid. Med. Cell. Longev. 2022 (2022), 4139330.
    X. Li, T. Wang, D. Zhang, et al., Andrographolide ameliorates intracerebral hemorrhage induced secondary brain injury by inhibiting neuroinflammation induction, Neuropharmacology 141 (2018) 305-315.
    W. Zhang, Z. Zhang, Z. Zhang, et al., Andrographolide induced acute kidney injury: Analysis of 26 cases reported in Chinese Literature, Nephrology 19 (2014) 21-26.
    C. Calabrese, S.H. Berman, J.G. Babish, et al., A phase I trial of andrographolide in HIV positive patients and normal volunteers, Phytother. Res. 14 (2000) 333-338.
    E. Ciampi, R. Uribe-San-Martin, C. Carcamo, et al., Efficacy of andrographolide in not active progressive multiple sclerosis: A prospective exploratory double-blind, parallel-group, randomized, placebo-controlled trial, BMC Neurol. 20 (2020), 173.
    M.A. Akbarsha, P. Murugaian, Aspects of the male reproductive toxicity/male antifertility property of andrographolide in albino rats: Effect on the testis and the cauda epididymidal spermatozoa, Phytother. Res. 14 (2000) 432-435.
    H. Liang, S. Lu, Z. Yan, et al., Andrographolide disrupts meiotic maturation by blocking cytoskeletal reorganisation and decreases the fertilisation potential of mouse oocytes, Reprod. Fertil. Dev. 29 (2017) 2336-2344.
    H. Huang, H. Cao, C. Xing, et al., Andrographolide induce human embryonic stem cell apoptosis by oxidative stress response, Mol. Cell. Toxicol. 15 (2019) 209-219.
    L. Gu, X. Zhang, W. Xing, et al., Andrographolide-induced apoptosis in human renal tubular epithelial cells: Roles of endoplasmic reticulum stress and inflammatory response, Environ. Toxicol. Pharmacol. 45 (2016) 257-264.
    T.L. Yen, W.H. Hsu, S.K. Huang, et al., A novel bioactivity of andrographolide from Andrographis paniculata on cerebral ischemia/reperfusion-induced brain injury through induction of cerebral endothelial cell apoptosis, Pharm. Biol. 51 (2013) 1150-1157.
    M. Rajani, N. Shrivastava, M.N. Ravishankara, A rapid method for isolation of andrographolide from Andrographis paniculata nees (kalmegh), Pharm. Biol. 38 (2000) 204-209.
    R. Wongkittipong, L. Prat, S. Damronglerd, et al., Solid-liquid extraction of andrographolide from plants-Experimental study, kinetic reaction and model, Sep. Purif. Technol. 40 (2004) 147-154.
    S. Sharma, Y.P. Sharma, Comparison of different extraction methods and HPLC method development for the quantification of andrographolide from Andrographis paniculata (Burm.f.) Wall. ex Nees, Ann. Phytomed. 7 (2018) 119-130.
    A.C. Kumoro and M. Hasan, Proceedings of the 1st International Conference on Natural Resources Engineering & Technology July 24-25, 2006, Putrajaya, Malaysia, pp. 664-670.
    A. Kumoro, Hasan, Singh, Effects of solvent properties on the soxhlet extraction of diterpenoid lactones from Andrographis paniculata leaves, ScienceAsia 35 (2009) 306-309.
    K. Chen, W. Yin, W. Zhang, et al., Technical optimization of the extraction of andrographolide by supercritical CO2, Food Bioprod. Process. 89 (2011) 92-97.
    A.C. Kumoro, M. Hasan, H. Singh, Extraction of andrographolide from Andrographis paniculata dried leaves using supercritical CO2 and ethanol mixture, Ind. Eng. Chem. Res. 58 (2019) 742-751.
    M. Karpakavalli, K.R. Sini and I. Arthi, Microwave assisted extraction and estimation of piperine, andrographolide using HPLC techniques, Pharmacie Globale 3 (2012), 1.
    S. Vasu, V. Palaniyappan, S. Badami, A novel microwave-assisted extraction for the isolation of andrographolide from Andrographis paniculata and its in vitro antioxidant activity, Nat. Prod. Res. 24 (2010) 1560-1567.
    M. Mohan, S. Khanam and B. Shivananda, Optimization of microwave assisted extraction of andrographolide from Andrographis paniculata and its comparison with refluxation extraction method, Journal of Pharmacognosy and Phytochemistry 2 (2013) 342-348.
    M. Bhan, S. Satija, C. Garg, et al., Optimization of ionic liquid-based microwave assisted extraction of a diterpenoid lactone-andrographolide from Andrographis paniculata by response surface methodology, J. Mol. Liq. 229 (2017) 161-166.
    R.V. Rubi, A. University, J. Olay, et al., Ultrasound-microwave assisted extraction (UMAE) of andrographolide from sinta (Andrographis paniculata) with its bioactivity assessment, J. Environ. Sci. Manag. (2020) 1-7.
    L. Chen, H. Jin, L. Ding, et al., On-line coupling of dynamic microwave-assisted extraction with high-performance liquid chromatography for determination of andrographolide and dehydroandrographolide in Andrographis paniculata Nees, J. Chromatogr. A 1140 (2007) 71-77.
    P.R. Rao, V.K. Rathod, Rapid extraction of andrographolide from Andrographis paniculata Nees by three phase partitioning and determination of its antioxidant activity, Biocatal. Agric. Biotechnol. 4 (2015) 586-593.
    P.R. Rao, V.K. Rathod, Microwave assisted three phase extraction of andrographolide from Andrographis paniculata, J. Biol. Act. Prod. Nat. 9 (2019) 215-226.
    H. Gao, B. Wang, W.D Z. Li, Synthetic applications of homoiodo allylsilane II. total syntheses of (-)-andrographolide and (+)-rostratone, Tetrahedron 70 (2014) 9436-9448.
    L. Yang, T. Wurm, B.S. Poudel, et al., Enantioselective total synthesis of andrographolide and 14-hydroxy-colladonin: Carbonyl reductive coupling and trans-decalin formation by hydrogen transfer, Angew. Chem. Int. Ed. 59 (2020) 23169-23173.
    L. Ye, T. Wang, L. Tang, et al., Poor oral bioavailability of a promising anticancer agent andrographolide is due to extensive metabolism and efflux by P-glycoprotein, J. Pharm. Sci. 100 (2011) 5007-5017.
    H.W. Chen, C.S. Huang, C.C. Li, et al., Bioavailability of andrographolide and protection against carbon tetrachloride-induced oxidative damage in rats, Toxicol. Appl. Pharmacol. 280 (2014) 1-9.
    A. Panossian, A. Hovhannisyan, G. Mamikonyan, et al., Pharmacokinetic and oral bioavailability of andrographolide from Andrographis paniculata fixed combination Kan Jang in rats and human, Phytomed. 7 (2000) 351-364.
    R. Bera, S.K. Milan Ahmed, L. Sarkar, et al., Pharmacokinetic analysis and tissue distribution of andrographolide in rat by a validated LC-MS/MS method, Pharm. Biol. 52 (2014) 321-329.
    F. Xu, S. Fu, S. Gu, et al., Simultaneous determination of andrographolide, dehydroandrographolide and neoandrographolide in dog plasma by LC-MS/MS and its application to a dog pharmacokinetic study of Andrographis paniculata tablet, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 990 (2015) 125-131.
    K. Liu, L. He, H. Gao, et al., Simultaneous determination of andrographolide and dehydroandrographolide in chicken plasma for application to pharmacokinetic studies, Chromatographia 70 (2009) 1441-1445.
    L. Xu, D. Xiao, S. Lou, et al., A simple and sensitive HPLC-ESI-MS/MS method for the determination of andrographolide in human plasma, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 877 (2009) 502-506.
    N. Pholphana, D. Panomvana, N. Rangkadilok, et al., Andrographis paniculata: Dissolution investigation and pharmacokinetic studies of four major active diterpenoids after multiple oral dose administration in healthy Thai volunteers, J. Ethnopharmacol. 194 (2016) 513-521.
    J. Wangboonskul, S. Daodee, K. Jarukamjorn, et al., Pharmacokinetic study of Andrographis paniculata tablets in healthy Thai male volunteers, Thai Pharm Health Sci J 1 (2006) 209-218.
    X. He, J. Li, H. Gao, et al., Identification of a rare sulfonic acid metabolite of andrographolide in rats, Drug Metab. Dispos. 31 (2003) 983-985.
    D.P. Yeggoni, C. Kuehne, A. Rachamallu, et al., Elucidating the binding interaction of andrographolide with the plasma proteins: Biophysical and computational approach, RSC Adv. 7 (2017) 5002-5012.
    H. Zhao, H. Hu, Y. Wang, Comparative metabolism and stability of andrographolide in liver microsomes from humans, dogs and rats using ultra-performance liquid chromatography coupled with triple-quadrupole and Fourier transform ion cyclotron resonance mass spectrometry, Rapid Commun. Mass Spectrom. 27 (2013) 1385-1392.
    T. Yang, C. Xu, Z. Wang, et al., Comparative pharmacokinetic studies of andrographolide and its metabolite of 14-deoxy-12-hydroxy-andrographolide in rat by ultra-performance liquid chromatography-mass spectrometry, Biomed. Chromatogr. 27 (2013) 931-937.
    X. He, J. Li, H. Gao, et al., Six new andrographolide metabolites in rats, Chem. Pharm. Bull. 51 (2003) 586-589.
    L. Cui, F. Qiu, X. Yao, Isolation and identification of seven glucuronide conjugates of andrographolide in human urine, Drug Metab. Dispos. 33 (2005) 555-562.
    L. Cui, W. Chan, F. Qiu, et al., Identification of four urea adducts of andrographolide in humans, Drug Metab. Lett. 2 (2008) 261-268.
    L. Xu, D. Xiao, S. Lou, et al., A simple and sensitive HPLC-ESI-MS/MS method for the determination of andrographolide in human plasma, J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 877 (2009) 502-506.
    L.G. Vaishali, J.H. Patel, R.D. Varia, et al., Pharmacokinetics and anti-inflammatory activity of andrographolide in rats, Int.J.Curr.Microbiol.App.Sci 6 (2017) 1458-1463.
    M. Casamonti, L. Risaliti, G. Vanti, et al., Andrographolide loaded in micro- and nano-formulations: Improved bioavailability, target-tissue distribution, and efficacy of the “king of bitters”, Engineering 5 (2019) 69-75.
    J.P. Loureiro Damasceno, H.S. da Rosa, L.S. de Araujo, et al., Andrographis paniculata formulations: Impact on diterpene lactone oral bioavailability, Eur. J. Drug Metab. Pharmacokinet. 47 (2022) 19-30.
    S. Dokania, A.K. Joshi, Self-microemulsifying drug delivery system (SMEDDS): challenges and road ahead, Drug Deliv. 22 (2015) 675-690.
    M.J. Lawrence, G.D. Rees, Microemulsion-based media as novel drug delivery systems, Adv. Drug Deliv. Rev. 45 (2000) 89-121.
    H. Du, X. Yang, H. Li, et al., Preparation and evaluation of andrographolide-loaded microemulsion, J. Microencapsul. 29 (2012) 657-665.
    Y. Zhu, J. Ye, Q. Zhang, Self-emulsifying drug delivery system improve oral bioavailability: Role of excipients and physico-chemical characterization, Pharm. Nanotechnol. 8 (2020) 290-301.
    N. Sermkaew, W. Ketjinda, P. Boonme, et al., Liquid and solid self-microemulsifying drug delivery systems for improving the oral bioavailability of andrographolide from a crude extract of Andrographis paniculata, Eur. J. Pharm. Sci. 50 (2013) 459-466.
    J. Wen, E.B. Moloney, A. Canning, et al., Synthesized nanoparticles, biomimetic nanoparticles and extracellular vesicles for treatment of autoimmune disease: Comparison and prospect, Pharmacol. Res. 172 (2021), 105833.
    K. Rajpoot, Solid lipid nanoparticles: A promising nanomaterial in drug delivery, Curr. Pharm. Des. 25 (2019) 3943-3959.
    R. Shankar, M. Joshi, K. Pathak, Lipid nanoparticles: A novel approach for brain targeting, Pharm. Nanotechnol. 6 (2018) 81-93.
    G. Graverini, V. Piazzini, E. Landucci, et al., Solid lipid nanoparticles for delivery of andrographolide across the blood-brain barrier: in vitro and in vivo evaluation, Colloids Surf. B Biointerfaces 161 (2018) 302-313.
    T. Kulsirirat, K. Sathirakul, N. Kamei, et al., The in vitro and in vivo study of novel formulation of andrographolide PLGA nanoparticle embedded into gelatin-based hydrogel to prolong delivery and extend residence time in joint, Int. J. Pharm. 602 (2021), 120618.
    L. Hao, Y. Jiang, R. Zhang, et al., Preparation and in vivo/in vitro characterization of Ticagrelor PLGA sustained-release microspheres for injection, Des. Monomers Polym. 24 (2021) 305-319.
    Y. Jiang, F. Wang, H. Xu, et al., Development of andrographolide loaded PLGA microspheres: Optimization, characterization and in vitro-in vivo correlation, Int. J. Pharm. 475 (2014) 475-484.
    Y. Zhang, X. Hu, X. Liu, et al., Dry state microcrystals stabilized by an HPMC film to improve the bioavailability of andrographolide, Int. J. Pharm. 493 (2015) 214-223.
    D. Zhang, J. Lin, F. Zhang, et al., Preparation and evaluation of andrographolide solid dispersion vectored by silicon dioxide, Pharmacogn. Mag. 12 (2016) S245-S252.
    G. Zhao, Q. Zeng, S. Zhang, et al., Effect of carrier lipophilicity and preparation method on the properties of Andrographolide-Solid dispersion, Pharmaceutics 11 (2019), 74.
    S. Hu, Z. Zhang, X. Jia, Study on andrographolide solid dispersion vectored by hydroxyapatite, Zhongguo Zhong Yao Za Zhi 38 (2013) 341-345.
    C.C. Yen, Y. Liang, C. Cheng, et al., Oral bioavailability enhancement and anti-fatigue assessment of the andrographolide loaded solid dispersion, Int. J. Mol. Sci. 21 (2020), 2506.
    Y. Ma, Y. Yang, J. Xie, et al., Novel nanocrystal-based solid dispersion with high drug loading, enhanced dissolution, and bioavailability of andrographolide, Int. J. Nanomed. 13 (2018) 3763-3779.
    O. Indrati, R. Martien, A. Rohman, et al., Development of nanoemulsion-based hydrogel containing andrographolide: Physical properties and stability evaluation, J. Pharm. Bioallied Sci. 12 (2020) S816-S820.
    Z.A. Awan, U.A. Fahmy, S.M. Badr-Eldin, et al., The enhanced cytotoxic and pro-apoptotic effects of optimized simvastatin-loaded emulsomes on MCF-7 breast cancer cells, Pharmaceutics 12 (2020), 597.
    M.A. Elsheikh, S.A. Rizk, Y.S.R. Elnaggar, et al., Nanoemulsomes for enhanced oral bioavailability of the anticancer phytochemical andrographolide: Characterization and pharmacokinetics, AAPS PharmSciTech 22 (2021), 246.
    R. Sari, A. Widyawaruyanti, F.B.T. Anindita, et al., Development of andrographolide-carboxymethyl chitosan nanoparticles: Characterization, in vitro release and in vivo antimalarial activity study, Turk. J. Pharm. Sci. 15 (2018) 136-141.
    E. Feng, K. Shen, F. Lin, et al., Improved osteogenic activity and inhibited bacterial biofilm formation on andrographolide-loaded titania nanotubes, Ann. Transl. Med. 8 (2020), 987.
    F. De Jaeghere, E. Allemann, R. Cerny, et al., pH-Dependent dissolving nano- and microparticles for improved peroral delivery of a highly lipophilic compound in dogs, AAPS PharmSci. 3 (2001), E8.
    B. Chellampillai, A.P. Pawar, Improved bioavailability of orally administered andrographolide from pH-sensitive nanoparticles, Eur. J. Drug Metab. Pharmacokinet. 35 (2011) 123-129.
    H.N. Ginsberg, C.J. Packard, M.J. Chapman, et al., Triglyceride-rich lipoproteins and their remnants: Metabolic insights, role in atherosclerotic cardiovascular disease, and emerging therapeutic strategies-a consensus statement from the European Atherosclerosis Society, Eur. Heart J. 42 (2021) 4791-4806.
    O. Taskin, K. Rikhraj, J. Tan, et al., Link between endometriosis, atherosclerotic cardiovascular disease, and the health of women midlife, J. Minim. Invasive Gynecol. 26 (2019) 781-784.
    L. Monnier, A. Avignon, C. Colette, et al., Primary nutritional and drug prevention of atherosclerosis, Rev. Med. Interne 20 (1999) 360s-370s.
    M.D. Huffman, S. Yusuf, Polypills: Essential medicines for cardiovascular disease secondary prevention? J. Am. Coll. Cardiol. 63 (2014) 1368-1370.
    G.R. Prozzi, M. Canas, M.A. Urtasun, et al., Cardiovascular risk of non-steroidal anti-inflammatory drugs, Medicina 78 (2018) 349-355.
    X. Li, Y. Liu, H. Zhang, et al., Animal models for the atherosclerosis research: A review, Protein Cell 2 (2011) 189-201.
    Y. Zhao, H. Qu, Y. Wang, et al., Small rodent models of atherosclerosis, Biomed. Pharmacother. 129 (2020), 110426.
    A. Sharma, K. Lal, S.S. Handa, Standardization of the Indian crude drug Kalmegh by high pressure liquid chromatographic determination of andrographolide, Phytochem. Anal. 3 (1992) 129-131.
    N.A. Yusof, A. Isha, I.S. Ismail, et al., Infrared-metabolomics approach in detecting changes in Andrographis paniculata metabolites due to different harvesting ages and times, J. Sci. Food Agric. 95 (2015) 2533-2543.
    X. Zhang, L. Lv, Y. Zhou, et al., Efficacy and safety of Xiyanping injection in the treatment of COVID-19: A multicenter, prospective, open-label and randomized controlled trial, Phytother. Res. 35 (2021) 4401-4410.
    Y.S. Tu, D.M. Sun, J.J. Zhang, et al., Preparation and characterisation of andrographolide niosomes and its anti-hepatocellular carcinoma activity, J. Microencapsul. 31 (2014) 307-316.
    S. Shrivastava, C.D. Kaur, Development of andrographolide-loaded solid lipid nanoparticles for lymphatic targeting: Formulation, optimization, characterization, in vitro, and in vivo evaluation, Drug Deliv. Transl. Res. 13 (2023) 658-674.
    K. Wu, B. Yu, D. Li, et al., Recent advances in nanoplatforms for the treatment of osteosarcoma, Front. Oncol. 12 (2022), 805978.
    N.T. Huynh, C. Passirani, P. Saulnier, et al., Lipid nanocapsules: A new platform for nanomedicine, Int. J. Pharm. 379 (2009) 201-209.
    L. Zhao, G. Shen, G. Ma, et al., Engineering and delivery of nanocolloids of hydrophobic drugs, Adv. Colloid Interface Sci. 249 (2017) 308-320.
    B. Begines, T. Ortiz, M. Pérez-Aranda, et al., Polymeric nanoparticles for drug delivery: Recent developments and future prospects, Nanomaterials 10 (2020), 1403.
    H. Daraee, A. Etemadi, M. Kouhi, et al., Application of liposomes in medicine and drug delivery, Artif. Cells Nanomed. Biotechnol. 44 (2016) 381-391.
    R.J. Ahiwale, B. Chellampillai, A.P. Pawar, Investigation of 1, 2-dimyristoyl-sn-glycero-3-phosphoglycerol-sodium (DMPG-Na) lipid with various metal cations in nanocochleate preformulation: Application for andrographolide oral delivery in cancer therapy, AAPS PharmSciTech 21 (2020), 279.
    V. Piazzini, E. Landucci, G. Graverini, et al., Stealth and cationic nanoliposomes as drug delivery systems to increase andrographolide BBB permeability, Pharmaceutics 10 (2018), 128.
    V.K. Verma, M.K. Zaman, S. Verma, et al., Role of semi-purified andrographolide from Andrographis paniculata extract as nano-phytovesicular carrier for enhancing oral absorption and hypoglycemic activity, Chin. Herb. Med. 12 (2020) 142-155.
    B.A. Oseni, C.P. Azubuike, O.O. Okubanjo, et al., Encapsulation of andrographolide in poly(lactide-co-glycolide) nanoparticles: Formulation optimization and in vitro efficacy studies, Front. Bioeng. Biotechnol. 9 (2021), 639409.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (169) PDF downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return