Volume 13 Issue 7
Jul.  2023
Turn off MathJax
Article Contents
He Li, Tianyuan Ye, Xingyang Liu, Rui Guo, Xiuzhao Yang, Yangyi Li, Dongmei Qi, Yihua Wei, Yifan Zhu, Lei Wen, Xiaorui Cheng. The role of signaling crosstalk of microglia in hippocampus on progression of ageing and Alzheimer's disease[J]. Journal of Pharmaceutical Analysis, 2023, 13(7): 788-805. doi: 10.1016/j.jpha.2023.05.008
Citation: He Li, Tianyuan Ye, Xingyang Liu, Rui Guo, Xiuzhao Yang, Yangyi Li, Dongmei Qi, Yihua Wei, Yifan Zhu, Lei Wen, Xiaorui Cheng. The role of signaling crosstalk of microglia in hippocampus on progression of ageing and Alzheimer's disease[J]. Journal of Pharmaceutical Analysis, 2023, 13(7): 788-805. doi: 10.1016/j.jpha.2023.05.008

The role of signaling crosstalk of microglia in hippocampus on progression of ageing and Alzheimer's disease

doi: 10.1016/j.jpha.2023.05.008
Funds:

This work was supported by grants from the Key R&D Plan of the Science and Technology Plan of Tibet Autonomous Region, China (Grant No.: XZ202201ZY0026G), the Science and Technology Cooperation Project of Shandong Provincial Department of Science and Technology for Counterpart Assistance to Tibet, China (Grant No.: YDZX2021083), the National Natural Science Foundation of China (Grant No.: 82205078), and the Natural Science Foundation of Shandong Province, China (Grant No.: ZR2021QH157). Professor Yide Zeng from Innovation Research Institute of Shandong University of Traditional Chinese Medicine provided support for immunofluorescence equipment. Animal specific pathogen free feeding environment was provided by the Experimental Center of Shandong University of Traditional Chinese Medicine (Jinan, China).

  • Received Date: Dec. 29, 2022
  • Accepted Date: May 12, 2023
  • Rev Recd Date: May 08, 2023
  • Available Online: Aug. 05, 2023
  • Publish Date: May 15, 2023
  • Based on single-cell sequencing of the hippocampi of 5× familiar Alzheimer's disease (5× FAD) and wild type mice at 2-, 12-, and 24-month of age, we found an increased percentage of microglia in aging and Alzheimer's disease (AD) mice. Blood brain barrier injury may also have contributed to this increase. Immune regulation by microglia plays a major role in the progression of aging and AD, according to the functions of 41 intersecting differentially expressed genes in microglia. Signaling crosstalk between C−C motif chemokine ligand (CCL) and major histocompatibility complex-1 bridges intercellular communication in the hippocampus during aging and AD. The amyloid precursor protein (APP) and colony stimulating factor (CSF) signals drive 5× FAD to deviate from aging track to AD occurrence among intercellular communication in hippocampus. Microglia are involved in the progression of aging and AD can be divided into 10 functional types. The strength of the interaction among microglial subtypes weakened with aging, and the CCL and CSF signaling pathways were the fundamental bridge of communication among microglial subtypes.
  • loading
  • 2022 Alzheimer’s disease facts and figures, Alzheimers Dement. 18 (2022) 700-789.
    Y. Hou, X. Dan, M. Babbar, et al., Ageing as a risk factor for neurodegenerative disease, Nat. Rev. Neurol. 15 (2019) 565-581.
    G.G. Glenner, C.W. Wong, Alzheimer’s disease: Initial report of the purification and characterization of a novel cerebrovascular amyloid protein, Biochem. Biophys. Res. Commun. 120 (1984) 885-890.
    N. Nukina, Y. Ihara, One of the antigenic determinants of paired helical filaments is related to tau protein, J. Biochem. 99 (1986) 1541-1544.
    M.M. Corrada, D.J. Berlau, C.H. Kawas, A population-based clinicopathological study in the oldest-old: The 90+ study, Curr. Alzheimer Res. 9 (2012) 709-717.
    J.L. Robinson, M.M. Corrada, G.G. Kovacs, et al., Non-Alzheimer’s contributions to dementia and cognitive resilience in The 90+ Study, Acta Neuropathol. 136 (2018) 377-388.
    B.G. Perez-Nievas, T.D. Stein, H.C. Tai, et al., Dissecting phenotypic traits linked to human resilience to Alzheimer’s pathology, Brain 136 (2013) 2510-2526.
    I. Barroeta-Espar, L.D. Weinstock, B.G. Perez-Nievas, et al., Distinct cytokine profiles in human brains resilient to Alzheimer’s pathology, Neurobiol. Dis. 121 (2019) 327-337.
    F. Leng, P. Edison, Neuroinflammation and microglial activation in Alzheimer disease: Where do we go from here? Nat. Rev. Neurol. 17 (2021) 157-172.
    R.M. Ransohoff, A polarizing question: Do M1 and M2 microglia exist? Nat. Neurosci. 19 (2016) 987-991.
    S. Rangaraju, E.B. Dammer, S.A. Raza, et al., Identification and therapeutic modulation of a pro-inflammatory subset of disease-associated-microglia in Alzheimer’s disease, Mol. Neurodegener. 13 (2018), 24.
    M. Plescher, G. Seifert, J.N. Hansen, et al., Plaque-dependent morphological and electrophysiological heterogeneity of microglia in an Alzheimer’s disease mouse model, Glia 66 (2018) 1464-1480.
    H. Li, M. Wei, T. Ye, et al., Identification of the molecular subgroups in Alzheimer’s disease by transcriptomic data, Front. Neurol. 13 (2022), 901179.
    R. Satija, J.A. Farrell, D. Gennert, et al., Spatial reconstruction of single-cell gene expression data, Nat. Biotechnol. 33 (2015) 495-502.
    Q. Zhang, Y. He, N. Luo, et al., Landscape and dynamics of single immune cells in hepatocellular carcinoma, Cell 179 (2019) 829-845.e20.
    J.H. Levine, E.F. Simonds, S.C. Bendall, et al., Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis, Cell 162 (2015) 184-197.
    D. Kobak, P. Berens, The art of using t-SNE for single-cell transcriptomics, Nat. Commun. 10 (2019), 5416.
    V. Ntranos, L. Yi, P. Melsted, et al., A discriminative learning approach to differential expression analysis for single-cell RNA-seq, Nat. Methods 16 (2019) 163-166.
    S. Jin, C.F. Guerrero-Juarez, L. Zhang, et al., Inference and analysis of cell-cell communication using CellChat, Nat. Commun. 12 (2021), 1088.
    H. Oakley, S.L. Cole, S. Logan, et al., Intraneuronal β-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: Potential factors in amyloid plaque formation, J. Neurosci. 26 (2006) 10129-10140.
    A. Giladi, M. Cohen, C. Medaglia, et al., Dissecting cellular crosstalk by sequencing physically interacting cells, Nat. Biotechnol. 38 (2020) 629-637.
    R. Vento-Tormo, M. Efremova, R.A. Botting, et al., Single-cell reconstruction of the early maternal-fetal interface in humans, Nature 563 (2018) 347-353.
    M.D. Sweeney, Z. Zhao, A. Montagne, et al., Blood-brain barrier: From physiology to disease and back, Physiol. Rev. 99 (2019) 21-78.
    M.D. Sweeney, A.P. Sagare, B.V. Zlokovic, Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders, Nat. Rev. Neurol. 14 (2018) 133-150.
    D. Gomez-Nicola, N.L. Fransen, S. Suzzi, et al., Regulation of microglial proliferation during chronic neurodegeneration, J. Neurosci. 33 (2013) 2481-2493.
    J. Yao, M. Zhang, Q.-Y. Ma, et al., PAd-shRNA-PTN reduces pleiotrophin of pancreatic cancer cells and inhibits neurite outgrowth of DRG, World J. Gastroenterol. 17 (2011) 2667-2673.
    I.S. Lee, K. Jung, I.S. Kim, et al., Human neural stem cells alleviate Alzheimer-like pathology in a mouse model, Mol. Neurodegener. 10 (2015), 38.
    S.B. Rangasamy, M. Jana, A. Roy, et al., Selective disruption of TLR2-MyD88 interaction inhibits inflammation and attenuates Alzheimer’s pathology, J. Clin. Invest. 128 (2018) 4297-4312.
    S.J. Tsai, Effects of interleukin-1beta polymorphisms on brain function and behavior in healthy and psychiatric disease conditions, Cytokine Growth Factor Rev. 37 (2017) 89-97.
    V. Pons, P. Levesque, M.M. Plante, et al., Conditional genetic deletion of CSF1 receptor in microglia ameliorates the physiopathology of Alzheimer’s disease, Alzheimers Res. Ther. 13 (2021), 8.
    N. Piehl, L. van Olst, A. Ramakrishnan, et al., Cerebrospinal fluid immune dysregulation during healthy brain aging and cognitive impairment, Cell 185 (2022) 5028-5039.e13.
    S.M. Pyonteck, L. Akkari, A.J. Schuhmacher, et al., CSF-1R inhibition alters macrophage polarization and blocks glioma progression, Nat. Med. 19 (2013) 1264-1272.
    L.J. Lawson, V.H. Perry, P. Dri, et al., Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain, Neuroscience 39 (1990) 151-170.
    J. Bruttger, K. Karram, S. Wörtge, et al., Genetic cell ablation reveals clusters of local self-renewing microglia in the mammalian central nervous system, Immunity 43 (2015) 92-106.
    R.C. Paolicelli, G. Bolasco, F. Pagani, et al., Synaptic pruning by microglia is necessary for normal brain development, Science 333 (2011) 1456-1458.
    C.N. Parkhurst, G. Yang, I. Ninan, et al., Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor, Cell 155 (2013) 1596-1609.
    M. Colonna, O. Butovsky, Microglia function in the central nervous system during health and neurodegeneration, Annu. Rev. Immunol. 35 (2017) 441-468.
    A. Serrano-Pozo, M.L. Mielke, T. Gómez-Isla, et al., Reactive glia not only associates with plaques but also parallels tangles in Alzheimer’s disease, Am. J. Pathol. 179 (2011) 1373-1384.
    H. Zhang, W. Wei, M. Zhao, et al., Interaction between Aβ and tau in the pathogenesis of Alzheimer’s disease, Int. J. Biol. Sci. 17 (2021) 2181-2192.
    S.R. Guttikonda, L. Sikkema, J. Tchieu, et al., Fully defined human pluripotent stem cell-derived microglia and tri-culture system model C3 production in Alzheimer’s disease, Nat. Neurosci. 24 (2021) 343-354.
    R.M. Ransohoff, How neuroinflammation contributes to neurodegeneration, Science 353 (2016) 777-783.
    X. Chen, M. Firulyova, M. Manis, et al., Microglia-mediated T cell infiltration drives neurodegeneration in tauopathy, Nature 615 (2023) 668-677.
    S.C. Hopp, Y. Lin, D. Oakley, et al., The role of microglia in processing and spreading of bioactive tau seeds in Alzheimer’s disease, J. Neuroinflammation 15 (2018), 269.
    K. Bhaskar, M. Konerth, O.N. Kokiko-Cochran, et al., Regulation of tau pathology by the microglial fractalkine receptor, Neuron 68 (2010) 19-31.
    R.N. Taddei, M.V. Sanchez-Mico, O. Bonnar, et al., Changes in glial cell phenotypes precede overt neurofibrillary tangle formation, correlate with markers of cortical cell damage, and predict cognitive status of individuals at Braak III-IV stages, Acta Neuropathol. Commun. 10 (2022), 72.
    D. Krstic, A. Madhusudan, J. Doehner, et al., Systemic immune challenges trigger and drive Alzheimer-like neuropathology in mice, J. Neuroinflammation 9 (2012), 151.
    D.S. Davies, J. Ma, T. Jegathees, et al., Microglia show altered morphology and reduced arborization in human brain during aging and Alzheimer’s disease, Brain Pathol. 27 (2017) 795-808.
    D.J. DiSabato, N. Quan, J.P. Godbout, Neuroinflammation: The devil is in the details, J. Neurochem. 139 (2016) 136-153.
    H.L. McConnell, C.N. Kersch, R.L. Woltjer, et al., The translational significance of the neurovascular unit, J. Biol. Chem. 292 (2017) 762-770.
    Y.-M. Qiu, C.-L. Zhang, A.-Q. Chen, et al., Immune cells in the BBB disruption after acute ischemic stroke: Targets for immune therapy? Front. Immunol. 12 (2021), 678744.
    V. Jolivel, F. Bicker, F. Binamé, et al., Perivascular microglia promote blood vessel disintegration in the ischemic penumbra, Acta Neuropathol. 129 (2015) 279-295.
    C. Wallet, M. De Rovere, J. Van Assche, et al., Microglial Cells: The main HIV-1 reservoir in the brain, Front. Cell. Infect. Microbiol. 9 (2019), 362.
    P. Chauhan, S. Hu, W.S. Sheng, et al., Regulatory T-cells suppress cytotoxic T lymphocyte responses against microglia, Cells 11 (2022), 2826.
    E.N. Goddery, C.E. Fain, C.G. Lipovsky, et al., Microglia and perivascular macrophages act as antigen presenting cells to promote CD8 T cell infiltration of the brain, Front Immunol. 12 (2021), 726421.
    M.S. Tsai, L.C. Wang, H.Y. Tsai, et al., Microglia reduce Herpes simplex virus 1 lethality of mice with decreased t cell and interferon responses in brains, Int. J. Mol. Sci. 22 (2021), 12457.
    B.W. Dulken, M.T. Buckley, P. Navarro Negredo, et al., Single-cell analysis reveals T cell infiltration in old neurogenic niches, Nature 571 (2019) 205-210.
    J. Yan, W. Xu, C. Lenahan, et al., CCR5 activation promotes NLRP1-Dependent Neuronal Pyroptosis via CCR5/PKA/CREB pathway after intracerebral hemorrhage, Stroke 52 (2021) 4021-4032.
    P. Chauhan, W.S. Sheng, S. Hu, et al., Differential cytokine-induced responses of polarized microglia, Brain Sci. 11 (2021), 1482.
    D. Hefter, S. Ludewig, A. Draguhn, et al., Amyloid, APP, and electrical activity of the brain, Neuroscientist 26 (2020) 231-251.
    D. Matza, A. Kerem, I. Shachar, Invariant chain, a chain of command, Trends Immunol. 24 (2003) 264-268.
    S. Matsuda, Y. Matsuda, L. D’Adamio, CD74 interacts with APP and suppresses the production of Aβ, Mol. Neurodegener. 4 (2009), 41.
    T. Kiyota, G. Zhang, C.M. Morrison, et al., AAV2/1 CD74 gene transfer reduces β-amyloidosis and improves learning and memory in a mouse model of Alzheimer’s disease, Mol. Ther. 23 (2015) 1712-1721.
    B. Erblich, L. Zhu, A.M. Etgen, et al., Absence of colony stimulation factor-1 receptor results in loss of microglia, disrupted brain development and olfactory deficits, PLoS One 6 (2011), e26317.
    Y.-J. Liu, E.E. Spangenberg, B. Tang, et al., Microglia elimination increases neural circuit connectivity and activity in adult mouse cortex, J. Neurosci. 41 (2021) 1274-1287.
    X. Feng, M. Valdearcos, Y. Uchida, et al., Microglia mediate postoperative hippocampal inflammation and cognitive decline in mice, JCI Insight 2 (2017), e91229.
    S. Wu, R. Xue, S. Hassan, et al., Il34-Csf1r pathway regulates the migration and colonization of microglial precursors, Dev. Cell 46 (2018) 552-563.e4.
    H.S. Suh, M.-L. Zhao, L. Derico, et al., Insulin-like growth factor 1 and 2 (IGF1, IGF2) expression in human microglia: Differential regulation by inflammatory mediators, J. Neuroinflammation 10 (2013), 37.
    M.J. Carson, R.R. Behringer, R.L. Brinster, et al., Insulin-like growth factor I increases brain growth and central nervous system myelination in transgenic mice, Neuron 10 (1993) 729-740.
    Z. Cao, S.S. Harvey, T. Chiang, et al., Unique subtype of microglia in degenerative thalamus after cortical stroke, Stroke 52 (2021) 687-698.
    X. Shen, Y. Qiu, A.E. Wight, et al., Definition of a mouse microglial subset that regulates neuronal development and proinflammatory responses in the brain, Proc. Natl. Acad. Sci. U S A 119 (2022), e2116241119.
    S. Krasemann, C. Madore, R. Cialic, et al., The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases, Immunity 47 (2017) 566-581.e9.
    L. Hou, R.A. Voit, V.G. Sankaran, et al., CD11c regulates hematopoietic stem and progenitor cells under stress, Blood Adv. 4 (2020) 6086-6097.
    J. Helft, J. Böttcher, P. Chakravarty, et al., GM-CSF mouse bone marrow cultures comprise a heterogeneous population of CD11c+MHCII+ macrophages and dendritic cells, Immunity 42 (2015) 1197-1211.
    S.R. Anderson, J.M. Roberts, J. Zhang, et al., Developmental apoptosis promotes a disease-related gene signature and independence from CSF1R signaling in retinal microglia, Cell Rep. 27 (2019) 2002-2013.e5.
    K. Kohno, R. Shirasaka, K. Yoshihara, et al., A spinal microglia population involved in remitting and relapsing neuropathic pain, Science 376 (2022) 86-90.
    Y. Shi, D.M. Holtzman, Interplay between innate immunity and Alzheimer disease: APOE and TREM2 in the spotlight, Nat. Rev. Immunol. 18 (2018) 759-772.
    S. Rangaraju, S.A. Raza, N.X. Li, et al., Differential phagocytic properties of CD45low Microglia and CD45high brain mononuclear phagocytes-activation and age-related effects, Front. Immunol. 9 (2018), 405.
    S. Goudarzi, S.E. Gilchrist, S. Hafizi, Gas6 induces myelination through anti-inflammatory IL-10 and TGF-β upregulation in white matter and glia, Cells 9 (2020), 1779.
    Y. Huang, K.E. Happonen, P.G. Burrola, et al., Microglia use TAM receptors to detect and engulf amyloid β plaques, Nat. Immunol. 22 (2021) 586-594.
    L. Fourgeaud, P.G. Traves, Y. Tufail, et al., TAM receptors regulate multiple features of microglial physiology, Nature 532 (2016) 240-244.
    J.Y. Kim, J. Kim, M. Huang, et al., CCR4 and CCR5 involvement in monocyte-derived macrophage migration in neuroinflammation, Front. Immunol. 13 (2022), 876033.
    K. Haruwaka, A. Ikegami, Y. Tachibana, et al., Dual microglia effects on blood brain barrier permeability induced by systemic inflammation, Nat. Commun. 10 (2019), 5816.
    M.T. Joy, E. Ben Assayag, D. Shabashov-Stone, et al., CCR5 is a therapeutic target for recovery after stroke and traumatic brain injury, Cell 176 (2019) 1143-1157.e13.
    C. Maudet, M. Kheloufi, S. Levallois, et al., Bacterial inhibition of Fas-mediated killing promotes neuroinvasion and persistence, Nature 603 (2022) 900-906.
    M. Mizutani, P.A. Pino, N. Saederup, et al., The fractalkine receptor but not CCR2 is present on microglia from embryonic development throughout adulthood, J. Immunol. 188 (2012) 29-36.
    B.D. Semple, N. Bye, M. Rancan, et al., Role of CCL2 (MCP-1) in traumatic brain injury (TBI): Evidence from severe TBI patients and CCL2-/- mice, J. Cereb Blood Flow Metab. 30 (2010) 769-782.
    C.L. Hsieh, E.C. Niemi, S.H. Wang, et al., CCR2 deficiency impairs macrophage infiltration and improves cognitive function after traumatic brain injury, J. Neurotrauma 31 (2014) 1677-1688.
    K. Somebang, J. Rudolph, I. Imhof, et al., CCR2 deficiency alters activation of microglia subsets in traumatic brain injury, Cell Rep. 36 (2021), 109727.
    B. Spittau, N. Dokalis, M. Prinz, The Role of TGFβ signaling in microglia maturation and activation, Trends Immunol. 41 (2020) 836-848.
    K. Yoshinaga, H. Obata, V. Jurukovski, et al., Perturbation of transforming growth factor (TGF)-β1 association with latent TGF-β binding protein yields inflammation and tumors, Proc. Natl Acad. Sci. U S A 105 (2008) 18758-18763.
    T.C. Brionne, I. Tesseur, E. Masliah, et al., Loss of TGF-β1 leads to increased neuronal cell death and microgliosis in mouse brain, Neuron 40 (2003) 1133-1145.
    S.E. Hickman, N.D. Kingery, T.K. Ohsumi, et al., The microglial sensome revealed by direct RNA sequencing, Nat. Neurosci. 16 (2013) 1896-1905.
    A. Buttgereit, I. Lelios, X. Yu, et al., Sall1 is a transcriptional regulator defining microglia identity and function, Nat. Immunol. 17 (2016) 1397-1406.
    T. Zöller, A. Schneider, C. Kleimeyer, et al., Silencing of TGFβ signalling in microglia results in impaired homeostasis, Nat. Commun. 9 (2018), 4011.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (273) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return