Volume 13 Issue 8
Aug.  2023
Turn off MathJax
Article Contents
Lei Gu, Xumiao Li, Wencheng Zhu, Yi Shen, Qinqin Wang, Wenjun Liu, Junfeng Zhang, Huiping Zhang, Jingquan Li, Ziyi Li, Zhen Liu, Chen Li, Hui Wang. Ultrasensitive proteomics depicted an in-depth landscape for the very early stage of mouse maternal-to-zygotic transition[J]. Journal of Pharmaceutical Analysis, 2023, 13(8): 942-954. doi: 10.1016/j.jpha.2023.05.003
Citation: Lei Gu, Xumiao Li, Wencheng Zhu, Yi Shen, Qinqin Wang, Wenjun Liu, Junfeng Zhang, Huiping Zhang, Jingquan Li, Ziyi Li, Zhen Liu, Chen Li, Hui Wang. Ultrasensitive proteomics depicted an in-depth landscape for the very early stage of mouse maternal-to-zygotic transition[J]. Journal of Pharmaceutical Analysis, 2023, 13(8): 942-954. doi: 10.1016/j.jpha.2023.05.003

Ultrasensitive proteomics depicted an in-depth landscape for the very early stage of mouse maternal-to-zygotic transition

doi: 10.1016/j.jpha.2023.05.003
Funds:

We thank all members of our laboratories for helpful discussions. This work was supported by the National Natural Science Foundation of China (NSFC) (Grant Nos.: 82030099 and 30700397), the National Key R&D Program of China (Grant No.: 2022YFD2101500), the Science and Technology Commission of Shanghai Municipality, China (Grant No.: 22DZ2303000), the Shanghai Municipal Science and Technology Commission “Science and Technology Innovation Action Plan” Technical Standard Project, China (Grant No.: 21DZ2201700), the Shanghai Municipal Science and Technology Commission “Science and Technology Innovation Action Plan” Natural Science Foundation Project, China (Grant No.: 23ZR1435800), the Strategic Priority Research Program of the Chinese Academy of Sciences, China (Grant No.: XDB32060000), the Basic Frontier Scientific Research Program of Chinese Academy of Sciences (Grant No.: ZDBS-LY-SM019), the Yangfan Project of Shanghai Science and Technology Commission, China (Grant No.: 22YF1454100), and the Innovative Research Team of High-level Local Universities in Shanghai, China.

  • Received Date: Dec. 29, 2022
  • Rev Recd Date: May 05, 2023
  • Single-cell or low-input multi-omics techniques have revolutionized the study of pre-implantation embryo development. However, the single-cell or low-input proteomic research in this field is relatively underdeveloped because of the higher threshold of the starting material for mammalian embryo samples and the lack of hypersensitive proteome technology. In this study, a comprehensive solution of ultrasensitive proteome technology (CS-UPT) was developed for single-cell or low-input mouse oocyte/embryo samples. The deep coverage and high-throughput routes significantly reduced the starting material and were selected by investigators based on their demands. Using the deep coverage route, we provided the first large-scale snapshot of the very early stage of mouse maternal-to-zygotic transition, including almost 5,500 protein groups from 20 mouse oocytes or zygotes for each sample. Moreover, significant protein regulatory networks centered on transcription factors and kinases between the MII oocyte and 1-cell embryo provided rich insights into minor zygotic genome activation.
  • loading
  • K.Y. Cha, R.C. Chian, Maturation in vitro of immature human oocytes for clinical use, Hum. Reprod. Update 4 (1998) 103-120.
    WormBook, Control of oocyte meiotic maturation and fertilization. http://www.wormbook.org/chapters/www_controloocytematuration/controloocytematuration.pdf. (Accessed 2 December 2022).
    K.K. Niakan, J. Han, R.A. Pedersen, et al., Human pre-implantation embryo development, Development 139 (2012) 829-841.
    C. Zhang, M. Wang, Y. Li, et al., Profiling and functional characterization of maternal mRNA translation during mouse maternal-to-zygotic transition, Sci. Adv. 8 (2022), eabj3967.
    M.A. Eckersley-Maslin, C. Alda-Catalinas, W. Reik, Dynamics of the epigenetic landscape during the maternal-to-zygotic transition, Nat. Rev. Mol. Cell Biol. 19 (2018) 436-450.
    X. Lu, Z. Gao, D. Qin, et al., A maternal functional module in the mammalian oocyte-to-embryo transition, Trends Mol. Med. 23 (2017) 1014-1023.
    K.N. Schulz, M.M. Harrison, Mechanisms regulating zygotic genome activation, Nat. Rev. Genet. 20 (2019) 221-234.
    V. Yartseva, A.J. Giraldez, The maternal-to-zygotic transition during vertebrate development: a model for reprogramming, Curr. Top. Dev. Biol. 113 (2015) 191-232.
    W. Tadros, H.D. Lipshitz, The maternal-to-zygotic transition: a play in two acts, Development 136 (2009) 3033-3042.
    M.T. Lee, A.R. Bonneau, A.J. Giraldez, Zygotic genome activation during the maternal-to-zygotic transition, Annu. Rev. Cell Dev. Biol. 30 (2014) 581-613.
    Z. Zou, C. Zhang, Q. Wang, et al., Translatome and transcriptome co-profiling reveals a role of TPRXs in human zygotic genome activation, Science 378 (2022), abo7923.
    Z. Xue, K. Huang, C. Cai, et al., Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing, Nature 500 (2013) 593-597.
    M. Asami, B.Y.H. Lam, M.K. Ma, et al., Human embryonic genome activation initiates at the one-cell stage, Cell Stem Cell 29 (2022) 209-216.e4.
    Y. Wu, X. Xu, M. Qi, et al., N6-methyladenosine regulates maternal RNA maintenance in oocytes and timely RNA decay during mouse maternal-to-zygotic transition, Nat. Cell Biol. 24 (2022) 917-927.
    J. Li, J. Zhang, W. Hou, et al., Metabolic control of histone acetylation for precise and timely regulation of minor ZGA in early mammalian embryos, Cell Discov. 8 (2022), 96.
    R. Xu, C. Li, X. Liu, et al., Insights into epigenetic patterns in mammalian early embryos, Protein Cell 12 (2021) 7-28.
    Z. Xiong, K. Xu, Z. Lin, et al., Ultrasensitive Ribo-seq reveals translational landscapes during mammalian oocyte-to-embryo transition and pre-implantation development, Nat. Cell Biol. 24 (2022) 968-980.
    J. Zhao, K. Yao, H. Yu, et al., Metabolic remodelling during early mouse embryo development, Nat. Metab. 3 (2021) 1372-1384.
    K.-I. Abe, S. Funaya, D. Tsukioka, et al., Minor zygotic gene activation is essential for mouse preimplantation development, Proc. Natl. Acad. Sci. U S A 115 (2018) E6780-E6788.
    W. Zhu, Y. Ding, J. Meng, et al., Reading and writing of mRNA m^6A modification orchestrate maternal-to-zygotic transition in mice, Genome Biol. 24 (2023) 1-16.
    L. Peshkin, M. Wuhr, E. Pearl, et al., On the relationship of protein and mRNA dynamics in vertebrate embryonic development, Dev. Cell 35 (2015) 383-394.
    S. Israel, M. Ernst, O.E. Psathaki, et al., An integrated genome-wide multi-omics analysis of gene expression dynamics in the preimplantation mouse embryo, Sci. Rep. 9 (2019), 13356.
    Y. Guo, L. Cai, X. Liu, et al., Single-cell quantitative proteomic analysis of human oocyte maturation revealed high heterogeneity in in vitro-matured oocytes, Mol. Cell. Proteom. 21 (2022), 100267.
    R. Aebersold, M. Mann, Mass-spectrometric exploration of proteome structure and function, Nature 537 (2016) 347-355.
    L.C. Gillet, A. Leitner, R. Aebersold, Mass spectrometry applied to bottom-up proteomics: entering the high-throughput era for hypothesis testing, Annual Rev. Anal. Chem. 9 (2016) 449-472.
    Y. Gao, X. Liu, B. Tang, et al., Protein expression landscape of mouse embryos during pre-implantation development, Cell Rep. 21 (2017) 3957-3969.
    S. Wang, Z. Kou, Z. Jing, et al., Proteome of mouse oocytes at different developmental stages, Proc. Natl. Acad. Sci. U S A 107 (2010) 17639-17644.
    L. Li, S. Zhu, W. Shu, et al., Characterization of metabolic patterns in mouse oocytes during meiotic maturation, Mol. Cell 80 (2020) 525-540.e9.
    F. Chen, B. Ma, Y. Lin, et al., Comparative maternal protein profiling of mouse biparental and uniparental embryos, Gigascience 11 (2022), giac084.
    M. Ma, X. Guo, F. Wang, et al., Protein expression profile of the mouse metaphase-II oocyte, J. Proteome Res. 7 (2008) 4821-4830.
    P. Zhang, X. Ni, Y. Guo, et al., Proteomic-based identification of maternal proteins in mature mouse oocytes, BMC Genomics 10 (2009), 348.
    M.J. Pfeiffer, M. Siatkowski, Y. Paudel, et al., Proteomic analysis of mouse oocytes reveals 28 candidate factors of the. Proteome Res. 10 (2011) 2140-2153.
    S. Cao, S. Huang, Y. Guo, et al., Proteomic-based identification of oocyte maturation-related proteins in mouse germinal vesicle oocytes, Reprod. Domest. Anim. 55 (2020) 1607-1618.
    M. Li, C. Ren, S. Zhou, et al., Integrative proteome analysis implicates aberrant RNA splicing in impaired developmental potential of aged mouse oocytes, Aging Cell 20 (2021), e13482.
    B. Wang, M.J. Pfeiffer, H.C.A. Drexler, et al., Proteomic analysis of mouse oocytes identifies PRMT7 as a reprogramming factor that replaces SOX2 in the induction of pluripotent stem cells, J. Proteome Res. 15 (2016) 2407-2421.
    A.D. Brunner, M. Thielert, C. Vasilopoulou, et al., Ultra-high sensitivity mass spectrometry quantifies single-cell proteome changes upon perturbation, Mol. Syst. Biol. 18 (2022), e10798.
    L. Gu, Z. Li, Q. Wang, et al., An ultra-sensitive and easy-to-use multiplexed single-cell proteomic analysis, bioRxiv. 2022. https://doi.org/10.1101/2022.01.02.474723.
    Y. Wang, Z.-Y. Guan, S.-W. Shi, et al., Pick-up single-cell proteomic analysis for quantifying up to 3000 proteins in a tumor cell, bioRxiv. 2022. https://doi.org/10.1101/2022.06.28.498038.
    L. Li, X. Lu, J. Dean, The maternal to zygotic transition in mammals, Mol. Aspects Med. 34 (2013) 919-938.
    Z. Li, M. Huang, X. Wang, et al., Nanoliter-scale oil-air-droplet chip-based single cell proteomic analysis, Anal. Chem. 90 (2018) 5430-5438.
    F. Lu, Y. Liu, A. Inoue, et al., Establishing chromatin regulatory landscape during mouse preimplantation development, Cell 165 (2016) 1375-1388.
    C.S. Hughes, S. Moggridge, T. Muller, et al., Single-pot, solid-phase-enhanced sample preparation for proteomics experiments, Nat. Protoc. 14 (2019) 68-85.
    J. Rappsilber, M. Mann, Y. Ishihama, Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips, Nat. Protoc. 2 (2007) 1896-1906.
    J.R. Wisniewski, A. Zougman, N. Nagaraj, et al., Universal sample preparation method for proteome analysis, Nat. Methods 6 (2009) 359-362.
    F. Meier, A.D. Brunner, S. Koch, et al., Online parallel accumulation-serial fragmentation (PASEF) with a novel trapped ion mobility mass spectrometer, Mol. Cell. Proteom. 17 (2018) 2534-2545.
    E.W. Deutsch, N. Bandeira, Y. Perez-Riverol, et al., The ProteomeXchange consortium at 10 years: 2023 update, Nucleic Acids Res. 51 (2023) D1539-D1548.
    Y. Perez-Riverol, J. Bai, C. Bandla, et al., The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences, Nucleic Acids Res. 50 (2022) D543-D552.
    P. Bardou, J. Mariette, F. Escudie, et al., Jvenn: an interactive Venn diagram viewer, BMC Bioinform. 15 (2014), 293.
    Y. Zhou, B. Zhou, L. Pache, et al., Metascape provides a biologist-oriented resource for the analysis of systems-level datasets, Nat. Commun. 10 (2019), 1523.
    G. Alanis-Lobato, J.S. Mollmann, M.H. Schaefer, et al., MIPPIE: The mouse integrated protein-protein interaction reference, Database (Oxford) 2020 (2020), baaa035.
    H. Han, J.W. Cho, S. Lee, et al., TRRUST v2: an expanded reference database of human and mouse transcriptional regulatory interactions, Nucleic Acids Res. 46 (2018) D380-D386.
    P. Shannon, A. Markiel, O. Ozier, et al., Cytoscape: a software environment for integrated models of biomolecular interaction networks, Genome Res. 13 (2003) 2498-2504.
    F. Meier, A.D. Brunner, M. Frank, et al., diaPASEF: parallel accumulation-serial fragmentation combined with data-independent acquisition, Nat. Methods 17 (2020) 1229-1236.
    P.M. Wassarman, E.S. Litscher, The mouse egg’s zona pellucida, Current Topics in Developmental Biology, Vol. 130, Elsevier, Amsterdam, 2018, pp. 331-356.
    P.M. Wassarman, E.S. Litscher, A bespoke coat for eggs: getting ready for fertilization, Current Topics in Developmental Biology, Vol. 117, Elsevier, Amsterdam, 2016, pp. 539-552.
    J.D. Bleil, P.M. Wassarman, Structure and function of the zona pellucida: identification and characterization of the proteins of the mouse oocyte’s zona pellucida, Dev. Biol. 76 (1980) 185-202.
    P.M. Wassarman, L. Jovine, E.S. Litscher, Mouse zona pellucida genes and glycoproteins, Cytogenet. Genome Res. 105 (2004) 228-234.
    P.M. Wassarman, Zona pellucida glycoproteins, Annu. Rev. Biochem. 57 (1988) 415-442.
    Z. Huang, G. Yan, M. Gao, et al., Array-based online two dimensional liquid chromatography system applied to effective depletion of high-abundance proteins in human plasma, Anal. Chem. 88 (2016) 2440-2445.
    A. Raymond, M.A. Ensslin, B.D. Shur, SED1/MFG-E8: a Bi-Motif protein that orchestrates diverse cellular interactions, J. Cell. Biochem. 106 (2009) 957-966.
    A. Kajdasz, E. Warzych, N. Derebecka, et al., Lipid stores and lipid metabolism associated gene expression in porcine and bovine parthenogenetic embryos revealed by fluorescent staining and RNA-seq, Int. J. Mol. Sci. 21 (2020), 6488.
    A. Regassa, F. Rings, M. Hoelker, et al., Transcriptome dynamics and molecular cross-talk between bovine oocyte and its companion cumulus cells, BMC Genomics 12 (2011), 57.
    S.P. Gygi, B. Rist, S.A. Gerber, et al., Quantitative analysis of complex protein mixtures using isotope-coded affinity tags, Nat. Biotechnol. 17 (1999) 994-999.
    S.E. Ong, B. Blagoev, I. Kratchmarova, et al., Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics, Mol. Cell. Proteomics 1 (2002) 376-386.
    A. Thompson, J. Schafer, K. Kuhn, et al., Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS, Anal. Chem. 75 (2003) 1895-1904.
    P.L. Ross, Y.N. Huang, J.N. Marchese, et al., Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents, Mol. Cell. Proteom. 3 (2004) 1154-1169.
    K.G. Kline, M.R. Sussman, Protein quantitation using isotope-assisted mass spectrometry, Annu. Rev. Biophys. 39 (2010) 291-308.
    Z. Zhang, S. Wu, D.L. Stenoien, et al., High-throughput proteomics, Annual Rev. Anal. Chem. 7 (2014) 427-454.
    L. Dayon, A. Hainard, V. Licker, et al., Relative quantification of proteins in human cerebrospinal fluids by MS/MS using 6-plex isobaric tags, Anal. Chem. 80 (2008) 2921-2931.
    G.C. McAlister, E.L. Huttlin, W. Haas, et al., Increasing the multiplexing capacity of TMTs using reporter ion isotopologues with isobaric masses, Anal. Chem. 84 (2012) 7469-7478.
    J. Li, J.G. Van Vranken, L. Pontano Vaites, et al., TMTpro reagents: a set of isobaric labeling mass tags enables simultaneous proteome-wide measurements across 16 samples, Nat. Methods 17 (2020) 399-404.
    B. Budnik, E. Levy, G. Harmange, et al., SCoPE-MS: mass spectrometry of single mammalian cells quantifies proteome heterogeneity during cell differentiation, Genome Biol. 19 (2018), 161.
    J. Muntel, J. Kirkpatrick, R. Bruderer, et al., Comparison of protein quantification in a complex background by DIA and TMT workflows with fixed instrument time, J. Proteome Res. 18 (2019) 1340-1351.
    T.K. Cheung, C.Y. Lee, F.P. Bayer, et al., Defining the carrier proteome limit for single-cell proteomics, Nat. Methods 18 (2021) 76-83.
    K.E. Latham, J.I. Garrels, C. Chang, et al., Quantitative analysis of protein synthesis in mouse embryos. I. Extensive reprogramming at the one- and two-cell stages, Development 112 (1991) 921-932.
    J. Levinson, P. Goodfellow, M. Vadeboncoeur, et al., Identification of stage-specific polypeptides synthesized during murine preimplantation development, Proc. Natl. Acad. Sci. U S A 75 (1978) 3332-3336.
    L. Huo, H. Fan, C. Liang, et al., Regulation of ubiquitin-proteasome pathway on pig oocyte meiotic maturation and fertilization, Biol. Reprod. 71 (2004) 853-862.
    Q.Y. Sun, D. Fuchimoto, T. Nagai, Regulatory roles of ubiquitin-proteasome pathway in pig oocyte meiotic maturation and fertilization, Theriogenology 62 (2004) 245-255.
    L. Huo, H. Fan, Z. Zhong, et al., Ubiquitin-proteasome pathway modulates mouse oocyte meiotic maturation and fertilization via regulation of MAPK cascade and cyclin B1 degradation, Mech. Dev. 121 (2004) 1275-1287.
    J. Wu, B. Huang, H. Chen, et al., The landscape of accessible chromatin in mammalian preimplantation embryos, Nature 534 (2016) 652-657.
    C.B. Messner, V. Demichev, N. Bloomfield, et al., Ultra-fast proteomics with scanning SWATH, Nat. Biotechnol. 39 (2021) 846-854.
    S.L. Beedie, A.J. Diamond, L.R. Fraga, et al., Vertebrate embryos as tools for anti-angiogenic drug screening and function, Reprod. Toxicol. 70 (2017) 49-59.
    N. Moris, C. Alev, M. Pera, et al., Biomedical and societal impacts of in vitro embryo models of mammalian development, Stem Cell Rep. 16 (2021) 1021-1030.
    D. Bebbere, D.F. Albertini, G. Coticchio, et al., The subcortical maternal complex: Emerging roles and novel perspectives, Mol. Hum. Reprod. 27 (2021), gaab043.
    F. Tashiro, M. Kanai-Azuma, S. Miyazaki, et al., Maternal-effect gene Ces5/Ooep/Moep19/Floped is essential for oocyte cytoplasmic lattice formation and embryonic development at the maternal-zygotic stage transition, Genes Cells 15 (2010) 813-828.
    Z. Gao, X. Zhang, X. Yu, et al., Zbed3 participates in the subcortical maternal complex and regulates the distribution of organelles, J. Mol. Cell Biol. 10 (2018) 74-88.
    Z. Du, H. Liang, X. Liu, et al., Single cell RNA-seq reveals genes vital to in vitro fertilized embryos and parthenotes in pigs, Sci. Rep. 11 (2021), 14393.
    N. Iwamori, K. Naito, K. Sugiura, et al., Phosphorylation of mitogen-activated protein kinase cascade during early embryo development in the mouse, Reprod. Fertil. Dev. 12 (2000) 209-214.
    Y. Wang, F. Wang, T. Sun, et al., Entire mitogen activated protein kinase (MAPK) pathway is present in preimplantation mouse embryos, Dev. Dyn. 231 (2004) 72-87.
    R. Feng, J. Gong, L. Wu, et al., MAPK and Hippo signaling pathways crosstalk via the RAF-1/MST-2 interaction in malignant melanoma, Oncol. Rep. 38 (2017) 1199-1205.
    W. Ou, M.Z. Lundberg, S. Zhu, et al., YWHAE-NUTM2 oncoprotein regulates proliferation and cyclin D1 via RAF/MAPK and Hippo pathways, Oncogenesis 10 (2021), 37.
    A. Miller, M. Ralser, S.L. Kloet, et al., Sall4 controls differentiation of pluripotent cells independently of the Nucleosome Remodelling and Deacetylation (NuRD) complex, Development 143 (2016) 3074-3084.
    C. Liu, Y. Ma, Y. Shang, et al., Post-translational regulation of the maternal-to-zygotic transition, Cell. Mol. Life Sci. 75 (2018) 1707-1722.
    Q.-Q. Sha, X.-X. Dai, Y. Dang, et al., MAPK cascade couples maternal mRNA translation and degradation to meiotic cell cycle progression in mouse oocyte, Development 144 (2017) 452-463.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (504) PDF downloads(27) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return