Volume 13 Issue 5
May  2023
Turn off MathJax
Article Contents
Sarfraz Ahmad, Muhammad Usman Mirza, John F. Trant. Dock-able linear and homodetic di, tri, tetra and pentapeptide library from canonical amino acids: SARS-CoV-2 Mpro as a case study[J]. Journal of Pharmaceutical Analysis, 2023, 13(5): 523-534. doi: 10.1016/j.jpha.2023.04.008
Citation: Sarfraz Ahmad, Muhammad Usman Mirza, John F. Trant. Dock-able linear and homodetic di, tri, tetra and pentapeptide library from canonical amino acids: SARS-CoV-2 Mpro as a case study[J]. Journal of Pharmaceutical Analysis, 2023, 13(5): 523-534. doi: 10.1016/j.jpha.2023.04.008

Dock-able linear and homodetic di, tri, tetra and pentapeptide library from canonical amino acids: SARS-CoV-2 Mpro as a case study

doi: 10.1016/j.jpha.2023.04.008
Funds:

The authors highly acknowledge the Natural Sciences and Engineering Research Council of Canada (Grant No.: 2018-06338) for providing the resources to conduct this work. Sarfraz Ahmad, Muhammad Usman Mirza and John F. Trant wish to recognize that this work was made possible by the facilities of the Shared Hierarchical Academic Research Computing Network (SHARCNET: www.sharcnet.ca) and Compute/Calculation Canada, now the Digital Research Alliance of Canada (https://alliancecan.ca/en). The authors are also affiliated with Binary Star Research Services (https://binarystarchem.ca/). The content of this article is exclusively the responsibility of the authors and does not necessarily reflect the official views of Binary Star Research Services. Binary Star Research Services had no input into the conclusions of this article.

  • Received Date: Jan. 05, 2023
  • Accepted Date: Apr. 13, 2023
  • Rev Recd Date: Mar. 07, 2023
  • Publish Date: Apr. 15, 2023
  • Peptide-based therapeutics are increasingly pushing to the forefront of biomedicine with their promise of high specificity and low toxicity. Although noncanonical residues can always be used, employing only the natural 20 residues restricts the chemical space to a finite dimension allowing for comprehensive in silico screening. Towards this goal, the dataset comprising all possible di-, tri-, and tetra-peptide combinations of the canonical residues has been previously reported. However, with increasing computational power, the comprehensive set of pentapeptides is now also feasible for screening as the comprehensive set of cyclic peptides comprising four or five residues. Here, we provide both the complete and prefiltered libraries of all di-, tri-, tetra-, and penta-peptide sequences from 20 canonical amino acids and their homodetic (N-to-C-terminal) cyclic homologues. The FASTA, simplified molecular-input line-entry system (SMILES), and structure-data file (SDF)-three dimension (3D) libraries can be readily used for screening against protein targets. We also provide a simple method and tool for conducting identity-based filtering. Access to this dataset will accelerate small peptide screening workflows and encourage their use in drug discovery campaigns. As a case study, the developed library was screened against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease to identify potential small peptide inhibitors.
  • loading
  • B.J. Bruno, G.D. Miller, C.S. Lim, Basics and recent advances in peptide and protein drug delivery, Ther. Deliv. 4 (2013) 1443-1467.
    U. Anand, A. Bandyopadhyay, N.K. Jha, et al., Translational aspect in peptide drug discovery and development: An emerging therapeutic candidate, Biofactors 9 (2023) 251-269.
    M. Muttenthaler, G.F. King, D.J. Adams, et al., Trends in peptide drug discovery, Nat. Rev. Drug Discov. 20 (2021) 309-325.
    E. Petsalaki, R.B. Russell, Peptide-mediated interactions in biological systems: New discoveries and applications, Curr. Opin. Biotechnol. 19 (2008) 344-350.
    L. Wang, N. Wang, W. Zhang, et al., Therapeutic peptides: Current applications and future directions, Signal Transduct. Target Ther. 7 (2022), 48.
    S.L. Johnston, Biologic therapies: What and when?, J. Clin. Pathol. 60 (2007) 8-17.
    W.-H. Boehncke, N.C. Brembilla, Immunogenicity of biologic therapies: Couses and consequences, Expert Rev. Clin. Immunol. 14 (2018) 513-523.
    F.D. Makurvet, Biologics vs. small molecules: Drug costs and patient access, Med. Drug Discov. 9 (2021),100075.
    N. Skalko-Basnet, Biologics: The role of delivery systems in improved therapy, Biol. Targets Ther. 8 (2014) 107-114.
    M.C. Smith, J.E. Gestwicki, Features of protein-protein interactions that translate into potent inhibitors: Topology, surface area and affinity, Expert Rev. Mol. Med. 14 (2012), e16.
    M.G. de Lomana, F. Svensson, A. Volkamer, et al., Consideration of predicted small-molecule metabolites in computational toxicology, Digit. Discov. 1 (2022) 158-172.
    H. Waldmann, Human monoclonal antibodies: The residual challenge of antibody immunogenicity, Methods Mol. Biol. (2014) 1-8.
    K. Fosgerau, T. Hoffmann, Peptide therapeutics: Current status and future directions, Drug Discov. Today 20 (2015) 122-128.
    M. Hale, G. Oyler, S. Swaminathan, et al., Basic tetrapeptides as potent intracellular inhibitors of type A botulinum neurotoxin protease activity, J. Biol. Chem. 286 (2011) 1802-1811.
    P. Vlieghe, V. Lisowski, J. Martinez, et al., Synthetic therapeutic peptides: Science and market, Drug Discov. Today 15 (2010) 40-56.
    D.J. Craik, D.P. Fairlie, S. Liras, et al., The future of peptide-based drugs, Chem. Biol. Drug Des. 81 (2013) 136-147.
    A.A. Kaspar, J.M. Reichert, Future directions for peptide therapeutics development, Drug Discov. Today 18 (2013) 807-817.
    J. Caballero, The latest automated docking technologies for novel drug discovery, Expert Opin. Drug Discov. 16 (2021) 625-645.
    F. Stanzione, I. Giangreco, J.C. Cole, Use of molecular docking computational tools in drug discovery, Prog. Med. Chem. 60 (2021) 273-343.
    G. Weng, J. Gao, Z. Wang, et al., Comprehensive evaluation of fourteen docking programs on protein-peptide complexes, J. Chem. Theory Comput. 16 (2020) 3959-3969.
    A.S. Hauser, B.r. Windshügel, LEADS-PEP: A benchmark data set for assessment of peptide docking performance, J. Chem. Inf. Model. 56 (2016) 188-200.
    O.M.H. Salo-Ahen, I. Alanko, R. Bhadane, et al., Molecular dynamics simulations in drug discovery and pharmaceutical development, Processes 9 (2020), 71.
    K. Steuten, H. Kim, J.C. Widen, et al., Challenges for targeting SARS-CoV-2 proteases as a therapeutic strategy for COVID-19, ACS Infect. Dis. 7 (2021) 1457-1468.
    K. Anand, J. Ziebuhr, P. Wadhwani, et al., Coronavirus main proteinase (3CLpro) structure: Basis for design of anti-SARS drugs, Science 300 (2003) 1763-1767.
    Y. Zhao, C. Fang, Q. Zhang, et al., Crystal structure of SARS-CoV-2 main protease in complex with protease inhibitor PF-07321332, Prot. Cell 13 (2022) 689-693.
    J. Lee, L.J. Worrall, M. Vuckovic, et al., Crystallographic structure of wild-type SARS-CoV-2 main protease acyl-enzyme intermediate with physiological C-terminal autoprocessing site, Nat. Commun. 11 (2020), 5877.
    L. Zhang, D. Lin, X. Sun, et al., Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors, Science 368 (2020) 409-412.
    M.U. Mirza, M. Froeyen, Structural elucidation of SARS-CoV-2 vital proteins: Computational methods reveal potential drug candidates against main protease, Nsp12 polymerase and Nsp13 helicase, J. Pharm. Anal. 10 (2020) 320-328.
    L. Zhang, D. Lin, Y. Kusov, et al., α-Ketoamides as broad-spectrum inhibitors of coronavirus and enterovirus replication: Structure-based design, synthesis, and activity assessment, J. Med. Chem. 63 (2020) 4562-4578.
    S. Ahmad, M.U. Mirza, Y.K. Lee, et al., Fragment-based in silico design of SARS CoV-2 main protease inhibitors, Chem. Biol. Drug Des. (2021).
    C. Wu, Y. Liu, Y. Yang, et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, Acta Pharm. Sin. B 10 (2020) 766-788.
    G. Macip, P. Garcia-Segura, J. Mestres-Truyol, et al., Haste makes waste: A critical review of docking-based virtual screening in drug repurposing for SARS-CoV-2 main protease (M-pro) inhibition, Med. Res. Rev. 42 (2022) 744-769.
    J. Breidenbach, C. Lemke, T. Pillaiyar, et al., Targeting the main protease of SARS-CoV-2: From the establishment of high throughput screening to the design of tailored inhibitors, Angew. Chem. Int. Ed. Engl. 60 (2021) 10423-10429.
    T. Pillaiyar, P. Flury, N. Kruger, et al., Small-molecule thioesters as SARS-CoV-2 main protease inhibitors: Enzyme inhibition, structure-activity relationships, antiviral activity, and X-ray structure determination, J. Med. Chem. 65 (2022) 9376-9395.
    Q. Hu, Y. Xiong, G.-H. Zhu, et al., The SARS-CoV-2 main protease (Mpro): Structure, function, and emerging therapies for COVID-19, MedComm 3 (2022), e151.
    G. La Monica, A. Bono, A. Lauria, et al., Targeting SARS-CoV-2 main protease for treatment of COVID-19: Covalent inhibitors structure-activity relationship insights and evolution perspectives, J. Med. Chem. 65 (2022) 12500-12534.
    K. Gao, R. Wang, J. Chen, et al., Perspectives on SARS-CoV-2 main protease inhibitors, J. Med. Chem. 64 (2021) 16922-16955.
    M. Bzowka, K. Mitusinska, A. Raczynska, et al., Structural and evolutionary analysis indicate that the SARS-CoV-2 Mpro is a challenging target for small-molecule inhibitor design, Int. J. Mol. Sci. 21 (2020), 3099.
    B.-X. Quan, H. Shuai, A.-J. Xia, et al., An orally available Mpro inhibitor is effective against wild-type SARS-CoV-2 and variants including Omicron, Nat. Microbiol. 7 (2022) 716-725.
    P. Kashyap, V.K. Bhardwaj, M. Chauhan, et al., A ricin-based peptide BRIP from Hordeum vulgare inhibits Mpro of SARS-CoV-2, Sci. Rep. 12 (2022), 12802.
    J. Johansen-Leete, S. Ullrich, S.E. Fry, et al., Antiviral cyclic peptides targeting the main protease of SARS-CoV-2, Chem. Sci. 13 (2022) 3826-3836.
    M.U. Mirza, I. Alanko, M. Vanmeert, et al., The discovery of Zika virus NS2B-NS3 inhibitors with antiviral activity via an integrated virtual screening approach, Eur. J. Pharm. Sci. 175 (2022), 106220.
    E. Anderson, G.D. Veith, D. Weininger, SMILES, A Line Notation and Computerized Interpreter for Chemical Structures, US Environmental Protection Agency, Environmental Research Laboratory, Duluth, MN, 1987.
    D.J. Lipman, W.R. Pearson, Rapid and sensitive protein similarity searches, Science 227 (1985) 1435-1441.
    N.M. O’Boyle, M. Banck, C.A. James, et al., Open Babel: An open chemical toolbox, J. Cheminformatics 3 (2011), 33.
    G.M. Sastry, M. Adzhigirey, T. Day, et al., Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments, J. Comput. Aided Mol. Des. 27 (2013) 221-234.
    K. Roos, C. Wu, W. Damm, et al., OPLS3e: Extending force field coverage for drug-like small molecules, J. Chem. Theory Comput. 15 (2019) 1863-1874.
    B. Anson, A.K. Ghosh, A. Mesecar, X-ray structure of SARS-CoV-2 main protease bound to GRL-024-20 at 1.45 A, 6XR3, Protein Databank, 2020.
    M.U. Mirza, A. Saadabadi, M. Vanmeert, et al., Discovery of HIV entry inhibitors via a hybrid CXCR4 and CCR5 receptor pharmacophore-based virtual screening approach, Eur. J. Pharm. Sci. 155 (2020), 105537.
    J. Li, R. Abel, K. Zhu, et al., The VSGB 2.0 model: A next generation energy model for high resolution protein structure modeling, Proteins Struct. Funct. Bioinform. 79 (2011) 2794-2812.
    G. Jones, P. Willett, R.C. Glen, et al., Development and validation of a genetic algorithm for flexible docking, J. Mol. Biol. 267 (1997) 727-748.
    M.J. Hartshorn, M.L. Verdonk, G. Chessari, et al., Diverse, high-quality test set for the validation of protein-ligand docking performance, J. Med. Chem. 50 (2007) 726-741.
    P. Agrawal, H. Singh, H.K. Srivastava, et al., Benchmarking of different molecular docking methods for protein-peptide docking, BMC Bioinform. 19 (2019) 105-124.
    M.F. Sanner, L. Dieguez, S. Forli, et al., Improving docking power for short peptides using random forest, J. Chem. Inf. Model. 61 (2021) 3074-3090.
    V.D. Prasasty, E.P. Istyastono, Data of small peptides in SMILES and three-dimensional formats for virtual screening campaigns, Data Br. 27 (2019), 104607.
    T. Panyayai, P. Sangsawad, E. Pacharawongsakda, et al., The potential peptides against angiotensin-I converting enzyme through a virtual tripeptide-constructing library, Comput. Biol. Chem. 77 (2018) 207-213.
    A. Mollica, G. Zengin, S. Durdagi, et al., Combinatorial peptide library screening for discovery of diverse α-glucosidase inhibitors using molecular dynamics simulations and binary QSAR models, J. Biomol. Struct. Dyn. 37 (2019) 726-740.
    C. Petrou, Y. Sarigiannis, Peptide synthesis: Methods, trends, and challenges, Pept. Appli. Biomed. Biotech. Bioengin. (2018) 1-21.
    R. Sarma, K.-Y. Wong, G.C. Lynch, et al., Peptide solubility limits: Backbone and side-chain interactions, J. Phys. Chem. B 122 (2018) 3528-3539.
    T.G. Kapp, F. Rechenmacher, S. Neubauer, et al., A comprehensive evaluation of the activity and selectivity profile of ligands for RGD-binding integrins, Sci. Rep. 7 (2017), 39805.
    R.E. Rocha, E.J. Chaves, P.H. Fischer, et al., A higher flexibility at the SARS-CoV-2 main protease active site compared to SARS-CoV and its potentialities for new inhibitor virtual screening targeting multi-conformers, J. Biomol. Struct. Dyn. 40 (2022) 9214-9234
    M. Ciemny, M. Kurcinski, K. Kamel, et al., Protein-peptide docking: Opportunities and challenges, Drug Discov. Today 23 (2018) 1530-1537.
    I. Tubert-Brohman, W. Sherman, M. Repasky, et al., Improved docking of polypeptides with Glide, J. Chem. Inf. Model. 53 (2013) 1689-1699.
    M. Feher, C.I. Williams, Numerical errors and chaotic behavior in docking simulations, J. Chem. Inf. Model. 52 (2012) 724-738.
    H. Su, S. Yao, W. Zhao, et al., Anti-SARS-CoV-2 activities in vitro of Shuanghuanglian preparations and bioactive ingredients, Acta Pharmacol. Sin. 41 (2020) 1167-1177.
    M.T. ul Qamar, M.U. Mirza, J.-M. Song, et al., Probing the structural basis of Citrus phytochrome B using computational modelling and molecular dynamics simulation approaches, J. Mol. Liq. 340 (2021), 116895.
    J. Zhang, H.I. Pettersson, C. Huitema, et al., Design, synthesis, and evaluation of inhibitors for severe acute respiratory syndrome 3C-like protease based on phthalhydrazide ketones or heteroaromatic esters, J. Med. Chem. 50 (2007) 1850-1864.
    S. Yang, S.-J. Chen, M.-F. Hsu, et al., Synthesis, crystal structure, structure-activity relationships, and antiviral activity of a potent SARS coronavirus 3CL protease inhibitor, J. Med. Chem. 49 (2006) 4971-4980.
    H. Yang, W. Xie, X. Xue, et al., Design of wide-spectrum inhibitors targeting coronavirus main proteases, PLoS Biol. 3 (2005), e324.
    A.K. Ghosh, K. Xi, V. Grum-Tokars, et al., Structure-based design, synthesis, and biological evaluation of peptidomimetic SARS-CoV 3CLpro inhibitors, Bioorg. Med. Chem. Lett. 17 (2007) 5876-5880.
    T.-W. Lee, M.M. Cherney, C. Huitema, et al., Crystal structures of the main peptidase from the SARS coronavirus inhibited by a substrate-like aza-peptide epoxide, J. Mol. Biol. 353 (2005) 1137-1151.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (480) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return