Citation: | Limei Li, Qingce Zang, Xinzhu Li, Ying Zhu, Shanjing Wen, Jiuming He, Ruiping Zhang, Zeper Abliz. Spatiotemporal pharmacometabolomics based on ambient mass spectrometry imaging to evaluate the metabolism and hepatotoxicity of amiodarone in HepG2 spheroids[J]. Journal of Pharmaceutical Analysis, 2023, 13(5): 483-493. doi: 10.1016/j.jpha.2023.04.007 |
A.S. Serras, J.S. Rodrigues, M. Cipriano, et al., A critical perspective on 3D liver models for drug metabolism and toxicology studies, Front. Cell Dev. Biol. 9 (2021), 626805.
|
V.M. Lauschke, D.F.G. Hendriks, C.C. Bell, et al., Novel 3D culture systems for studies of human liver function and assessments of the hepatotoxicity of drugs and drug candidates, Chem. Res. Toxicol. 29 (2016) 1936-1955.
|
D. Zhang, G. Luo, X. Ding, et al., Preclinical experimental models of drug metabolism and disposition in drug discovery and development, Acta Pharm. Sin. B 2 (2012) 549-561.
|
M.J. Gomez-Lechon, L. Tolosa, I. Conde, et al., Competency of different cell models to predict human hepatotoxic drugs, Expet Opin. Drug Metabol. Toxicol. 10 (2014) 1553-1568.
|
R. Nudischer, K. Renggli, A. Hierlemann, et al., Characterization of a long-term mouse primary liver 3D tissue model recapitulating innate-immune responses and drug-induced liver toxicity, PLoS One 15 (2020), e0235745.
|
L. Kuna, I. Bozic, T. Kizivat, et al., Models of drug induced liver injury (DILI) - current issues and future perspectives, Curr. Drug Metabol. 19 (2018) 830-838.
|
A. Segovia-Zafra, D.E. Di Zeo-Sanchez, C. Lopez-Gomez, et al., Preclinical models of idiosyncratic drug-induced liver injury (iDILI): Moving towards prediction, Acta Pharm. Sin. B 11 (2021) 3685-3726.
|
M.J. Gomez-Lechon, A. Lahoz, L. Gombau, et al., In vitro evaluation of potential hepatotoxicity induced by drugs, Against Curr. Pharm. Des. 16 (2010) 1963-1977.
|
J. Liu, R. Li, R. Xue, et al., Liver extracellular matrices bioactivated hepatic spheroids as a model system for drug hepatotoxicity evaluations, Adv. Biosyst. 2 (2018), 1800110.
|
O.J. Trask Jr, A. Moore, E.L. LeCluyse, A micropatterned hepatocyte coculture model for assessment of liver toxicity using high-content imaging analysis, Assay Drug Dev. Technol. 12 (2014) 16-27.
|
M.T. Donato, A. Martinez-Romero, N. Jimenez, et al., Cytometric analysis for drug-induced steatosis in HepG2 cells, Chem. Biol. Interact. 181 (2009) 417-423.
|
L. Pan, P. Han, S. Ma, et al., Abnormal metabolism of gut microbiota reveals the possible molecular mechanism of nephropathy induced by hyperuricemia, Acta Pharm. Sin. B 10 (2020) 249-261.
|
A.M. Araujo, M. Carvalho, F. Carvalho, et al., Metabolomic approaches in the discovery of potential urinary biomarkers of drug-induced liver injury (DILI), Crit. Rev. Toxicol. 47 (2017) 638-654.
|
L. Goracci, A. Valeri, S. Sciabola, et al., A novel lipidomics-based approach to evaluating the risk of clinical hepatotoxicity potential of drugs in 3D human microtissues, Chem. Res. Toxicol. 33 (2020) 258-270.
|
D. Wang, D. Li, Y. Zhang, et al., Functional metabolomics reveal the role of AHR/GPR35 mediated kynurenic acid gradient sensing in chemotherapy-induced intestinal damage, Acta Pharm. Sin. B 11 (2021) 763-780.
|
L. Wang, Q. Zang, Y. Zhu, et al., On-tissue chemical oxidation followed by derivatization for mass spectrometry imaging enables visualization of primary and secondary hydroxyl-containing metabolites in biological tissues, Anal. Chem. 95 (2023) 1975-1984.
|
T. Greer, R. Sturm, L. Li, Mass spectrometry imaging for drugs and metabolites, J. Proteonomics 74 (2011) 2617-2631.
|
A. Nilsson, R.J.A. Goodwin, M. Shariatgorji, et al., Mass spectrometry imaging in drug development, Anal. Chem. 87 (2015) 1437-1455.
|
Z. Wang, W. Fu, M. Huo, et al., Spatial-resolved metabolomics reveals tissue-specific metabolic reprogramming in diabetic nephropathy by using mass spectrometry imaging, Acta Pharm. Sin. B 11 (2021) 3665-3677.
|
M. Huo, Z. Wang, W. Fu, et al., Spatially resolved metabolomics based on air-flow-assisted desorption electrospray ionization-mass spectrometry imaging reveals region-specific metabolic alterations in diabetic encephalopathy, J. Proteome Res. 20 (2021) 3567-3579.
|
Z. Wang, B. He, Y. Liu, et al., In situ metabolomics in nephrotoxicity of aristolochic acids based on air flow-assisted desorption electrospray ionization mass spectrometry imaging, Acta Pharm. Sin. B 10 (2020) 1083-1093.
|
X. Liu, A.B. Hummon, Mass spectrometry imaging of therapeutics from animal models to three-dimensional cell cultures, Anal. Chem. 87 (2015) 9508-9519.
|
L.E. Flint, G. Hamm, J.D. Ready, et al., Characterization of an aggregated three-dimensional cell culture model by multimodal mass spectrometry imaging, Anal. Chem. 92 (2020) 12538-12547.
|
P. Xie, H. Zhang, P. Wu, et al., Three-dimensional mass spectrometry imaging reveals distributions of lipids and the drug metabolite associated with the enhanced growth of colon cancer cell spheroids treated with triclosan, Anal. Chem. 94 (2022) 13667-13675.
|
M. Machalkova, B. Pavlatovska, J. Michalek, et al., Drug penetration analysis in 3D cell cultures using fiducial-based semiautomatic coregistration of MALDI MSI and immunofluorescence images, Anal. Chem. 91 (2019) 13475-13484.
|
X. Liu, J.K. Lukowski, C. Flinders, et al., MALDI-MSI of immunotherapy: Mapping the EGFR-targeting antibody cetuximab in 3D colon-cancer cell cultures, Anal. Chem. 90 (2018) 14156-14164.
|
Q. Zang, C. Sun, X. Chu, et al., Spatially resolved metabolomics combined with multicellular tumor spheroids to discover cancer tissue relevant metabolic signatures, Anal. Chim. Acta 1155 (2021), 338342.
|
P. Xie, X. Liang, Y. Song, et al., Mass spectrometry imaging combined with metabolomics revealing the proliferative effect of environmental pollutants on multicellular tumor spheroids, Anal. Chem. 92 (2020) 11341-11348.
|
Y. Chen, T. Wang, P. Xie, et al., Mass spectrometry imaging revealed alterations of lipid metabolites in multicellular tumor spheroids in response to hydroxychloroquine, Anal. Chim. Acta 1184 (2021), 339011.
|
H. Liu, F. Xu, Y. Gao, et al., An integrated LC-MS/MS strategy for quantifying the oxidative-redox metabolome in multiple biological samples, Anal. Chem. 92 (2020) 8810-8818.
|
R.P. Goodman, S.E. Calvo, V.K. Mootha, Spatiotemporal compartmentalization of hepatic NADH and NADPH metabolism, J. Biol. Chem. 293 (2018) 7508-7516.
|
M. Babatin, S.S. Lee, P.T. Pollak, Amiodarone hepatotoxicity, Curr. Vasc. Pharmacol. 6 (2008) 228-236.
|
S. Endo, Y. Toyoda, T. Fukami, et al., Stimulation of human monocytic THP-1 cells by metabolic activation of hepatotoxic drugs, Drug Metabol. Pharmacokinet. 27 (2012) 621-630.
|
K.M. Waldhauser, M. Torok, H.R. Ha, et al., Hepatocellular toxicity and pharmacological effect of amiodarone and amiodarone derivatives, J. Pharmacol. Exp. Therapeut. 319 (2006) 1413-1423.
|
J. He, C. Sun, T. Li, et al., A sensitive and wide coverage ambient mass spectrometry imaging method for functional metabolites based molecular histology, Adv. Sci. 5 (2018), 1800250.
|
C.R. Thoma, M. Zimmermann, I. Agarkova, et al., 3D cell culture systems modeling tumor growth determinants in cancer target discovery, Adv. Drug Deliv. Rev. 69-70 (2014) 29-41.
|
S. Nath, G.R. Devi, Three-dimensional culture systems in cancer research: Focus on tumor spheroid model, Pharmacol. Ther. 163 (2016) 94-108.
|
H.R. Ha, L. Bigler, B. Wendt, et al., Identification and quantitation of novel metabolites of amiodarone in plasma of treated patients, Eur. J. Pharmaceut. Sci. 24 (2005) 271-279.
|
P. Deng, T. You, X. Chen, et al., Identification of amiodarone metabolites in human bile by ultraperformance liquid chromatography/quadrupole time-of-flight mass spectrometry, Drug Metab. Dispos. 39 (2011) 1058-1069.
|
E.S. Jeong, G. Kim, D. Yim, et al., Identification and characterization of amiodarone metabolites in rats using UPLC-ESI-QTOFMS-based untargeted metabolomics approach, J. Toxicol. Environ. Health 81 (2018) 481-492.
|
M.R. Ghovanloo, M. Abdelsayed, P.C. Ruben, Effects of amiodarone and N-desethylamiodarone on cardiac voltage-gated sodium channels, Front. Pharmacol. 7 (2016), 39.
|
S. Nithiyanandam, S. Evan Prince, Toxins mechanism in instigating hepatotoxicity, Toxin Rev. 40 (2021) 616-631.
|
Y. Xue, Q. Deng, Q. Zhang, et al., Gigantol ameliorates CCl4-induced liver injury via preventing activation of JNK/cPLA2/12-LOX inflammatory pathway, Sci. Rep. 10 (2020), 22265.
|
Z. Yang, M. Jiang, Z. Yue, et al., Metabonomics analysis of semen euphorbiae and semen Euphorbiae Pulveratum using UPLC-Q-TOF/MS, Biomed. Chromatogr. 36 (2022), e5279.
|
S.A. Scott, T.P. Mathews, P.T. Ivanova, et al., Chemical modulation of glycerolipid signaling and metabolic pathways, Biochim. Biophys. Acta 1841 (2014) 1060-1084.
|
L.S. Csaki, J.R. Dwyer, L.G. Fong, et al., Lipins, lipinopathies, and the modulation of cellular lipid storage and signaling, Prog. Lipid Res. 52 (2013) 305-316.
|