Citation: | Shilin Chen, Xianmei Yin, Jianping Han, Wei Sun, Hui Yao, Jingyuan Song, Xiwen Li. DNA barcoding in herbal medicine: Retrospective and prospective[J]. Journal of Pharmaceutical Analysis, 2023, 13(5): 431-441. doi: 10.1016/j.jpha.2023.03.008 |
L. Luo, J. Jiang, C. Wang, et al., Analysis on herbal medicines utilized for treatment of COVID-19, Acta Pharm. Sin. B 10 (2020) 1192-1204.
|
J. Han, X. Pang, B. Liao, et al., An authenticity survey of herbal medicines from markets in China using DNA barcoding, Sci. Rep. 6 (2016), 18723.
|
T.R. Gregory, DNA barcoding does not compete with taxonomy, Nature 434 (2005), 1067.
|
S. Chen, X. Pang, J. Song, et al., A renaissance in herbal medicine identification: From morphology to DNA, Biotechnol. Adv. 32 (2014) 1237-1244.
|
M.W. Chase, M.F. Fay, Ecology. Barcoding of plants and fungi, Science 325 (2009) 682-683.
|
S. Chen, H. Yao, J. Han, et al., Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species, PLoS One 5 (2010), e8613.
|
P.D. Hebert, E.H. Penton, J.M. Burns, et al., Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator, Proc. Natl. Acad. Sci. USA 101 (2004) 14812-14817.
|
W.J. Kress, D.L. Erickson, A two-locus global DNA barcode for land plants: The coding rbcL gene complements the non-coding trnH-psbA spacer region, PLoS One 2 (2007), e508.
|
D.L. Erickson, J. Spouge, A. Resch, et al., DNA barcoding in land plants: Developing standards to quantify and maximize success, Taxon 57 (2008) 1304-1316.
|
N. Kane, S. Sveinsson, H. Dempewolf, et al., Ultra-barcoding in cacao (Theobroma spp.; Malvaceae) using whole chloroplast genomes and nuclear ribosomal DNA, Am. J. Bot. 99 (2012) 320-329.
|
N.J. Sucher, M.C. Carles, Genome-based approaches to the authentication of medicinal plants, Planta Med. 74 (2008) 603-623.
|
M. Parks, R. Cronn, A. Liston, Increasing phylogenetic resolution at low taxonomic levels using massively parallel sequencing of chloroplast genomes, BMC Biol. 7 (2009), 84.
|
C.J. Nock, D.L.E. Waters, M.A. Edwards, et al., Chloroplast genome sequences from total DNA for plant identification, Plant Biotechnol. J. 9 (2011) 328-333.
|
L.J. Yan, J. Liu, M. Moller, et al., DNA barcoding of Rhododendron (Ericaceae), the largest Chinese plant genus in biodiversity hotspots of the Himalaya-Hengduan Mountains, Mol. Ecol. Resour. 15 (2015) 932-944.
|
H. Yao, J. Song, C. Liu, et al., Use of ITS2 region as the universal DNA barcode for plants and animals, PLoS One 5 (2010), e13102.
|
Q. Yao, X. Zhu, M. Han, et al., Decoding herbal materials of TCM preparations with the multi-barcode sequencing approach, Sci. Rep. 12 (2022), 5988.
|
J.L. Hu, X.Q. Ci, Z.F. Liu, et al., Assessing candidate DNA barcodes for Chinese and internationally traded timber species, Mol. Ecol. Resour. 22 (2022) 1478-1492.
|
S.J. Ma, Q.D. Lv, H. Zhou, et al., Identification of traditional she medicine Shi-Liang tea species and closely related species using the ITS2 barcode, Appl. Sci. 7 (2017), 195.
|
J. Song, L. Shi, D. Li, et al., Extensive pyrosequencing reveals frequent intra-genomic variations of internal transcribed spacer regions of nuclear ribosomal DNA, PLoS One 7 (2012), e43971.
|
B.O.L.G. China Plant, D.Z. Li, L.M. Gao, et al., Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants, Proc. Natl. Acad. Sci. USA. 108 (2011) 19641-19646.
|
J. Sokolowska, H. Fuchs, K. Celinski, Assessment of ITS2 region relevance for taxa discrimination and phylogenetic inference among pinaceae, Plants-Basel. 11 (2022), 1078.
|
P.D. Hebert, S. Ratnasingham, J.R. deWaard, Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species, Proc. Biol. Sci. 270 Suppl 1 (2003) S96-S99.
|
X. Bingpeng, L. Heshan, Z. Zhilan, et al., DNA barcoding for identification of fish species in the Taiwan Strait, PLoS One 13 (2018), e0198109.
|
Z.T. Nagy, G. Sonet, F. Glaw, et al., First large-scale DNA barcoding assessment of reptiles in the biodiversity hotspot of Madagascar, based on newly designed COI primers, PLoS One 7 (2012), e34506.
|
A. Supikamolseni, N. Ngaoburanawit, M. Sumontha, et al., Molecular barcoding of venomous snakes and species-specific multiplex PCR assay to identify snake groups for which antivenom is available in Thailand, Genet. Mol. Res. 14 (2015) 13981-13997.
|
D.S. Park, R. Foottit, E. Maw, et al., Barcoding bugs: DNA-based identification of the true bugs (Insecta: Hemiptera: Heteroptera), PLoS One 6 (2011), e18749.
|
F. Hou, L. Wen, C. Peng, et al., Identification of marine traditional Chinese medicine dried seahorses in the traditional Chinese medicine market using DNA barcoding, Mitochondrial DNA A DNA Mapp. Seq. Anal. 29 (2018) 107-112.
|
S. Cao, L. Guo, H. Luo, et al., Application of COI barcode sequence for the identification of snake medicine (Zaocys), Mitochondrial DNA A DNA Mapp. Seq. Anal. 27 (2016) 483-489.
|
J. Chen, Z. Jiang, C. Li, et al., Identification of ungulates used in a traditional Chinese medicine with DNA barcoding technology, Ecol. Evol. 5 (2015) 1818-1825.
|
J. Zhang, R. Hanner, Molecular approach to the identification of fish in the South China Sea, PLoS One 7 (2012), e30621.
|
S. Zou, Q. Li, L. Kong, et al., Comparing the usefulness of distance, monophyly and character-based DNA barcoding methods in species identification: A case study of neogastropoda, PLoS One 6 (2011), e26619.
|
C.L. Schoch, K.A. Seifert, S. Huhndorf, et al., Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi, Proc. Natl. Acad. Sci. USA 109 (2012) 6241-6246.
|
D. Vu, M. Groenewald, M. de Vries, et al., Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for Kingdom fungi and reveals thresholds for fungal species and higher taxon delimitation, Stud. Mycol. 92 (2019) 135-154.
|
X. Pang, C. Liu, L. Shi, et al., Utility of the trnH-psbA intergenic spacer region and its combinations as plant DNA barcodes: A meta-analysis, PLoS One 7 (2012), e48833.
|
C. Liu, D. Liang, T. Gao, et al., PTIGS-IdIt, a system for species identification by DNA sequences of the psbA-trnH intergenic spacer region, BMC Bioinf. 12 Suppl 13 (2011), S4.
|
A.M. Tripathi, A. Tyagi, A. Kumar, et al., The internal transcribed spacer (ITS) region and trnH-psbA [corrected] are suitable candidate loci for DNA barcoding of tropical tree species of India, PLoS One 8 (2013), e57934.
|
J. Liu, L. Shi, J. Han, et al., Identification of species in the angiosperm family Apiaceae using DNA barcodes, Mol. Ecol. Resour. 14 (2014) 1231-1238.
|
S. Xu, D. Li, J. Li, et al., Evaluation of the DNA barcodes in Dendrobium (Orchidaceae) from mainland Asia, PLoS One 10 (2015), e0115168.
|
M.E. Carew, V.J. Pettigrove, L. Metzeling, et al., Environmental monitoring using next generation sequencing: Rapid identification of macroinvertebrate bioindicator species, Front. Zool. 10 (2013), 45.
|
N. Laopichienpong, N. Muangmai, A. Supikamolseni, et al., Assessment of snake DNA barcodes based on mitochondrial COI and Cytb genes revealed multiple putative cryptic species in Thailand, Gene 594 (2016) 238-247.
|
J. Snyman, L.P. Snyman, K. Labuschagne, et al., The utilisation of CytB and COI barcodes for the identification of bloodmeals and Culicoides species (Diptera: Ceratopogonidae) reveals a variety of novel wildlife hosts in South Africa, Acta Trop. 219 (2021), 105913.
|
L.C. Panait, A.D. Mihalca, D. Modry, et al., Three new species of Cytauxzoon in European wild felids, Vet. Parasitol. 290 (2021), 109344.
|
H. Weigand, A.J. Beermann, F. Ciampor, et al., DNA barcode reference libraries for the monitoring of aquatic biota in Europe: Gap-analysis and recommendations for future work, Sci. Total Environ. 678 (2019) 499-524.
|
L. Gong, D. Zhang, X. Ding, et al., DNA barcode reference library construction and genetic diversity and structure analysis of Amomum villosum Lour. (Zingiberaceae) populations in Guangdong Province, PeerJ 9 (2021), e12325.
|
J. Liu, L. Shi, J. Song, et al., BOKP: A DNA barcode reference library for monitoring herbal drugs in the Korean pharmacopeia, Front. Pharmacol. 8 (2017), 931.
|
L. Gong, X.H. Qiu, J. Huang, et al., Constructing a DNA barcode reference library for southern herbs in China: A resource for authentication of southern Chinese medicine, PLoS One 13 (2018), e0201240.
|
S.L. Vassou, S. Nithaniyal, B. Raju, et al., Creation of reference DNA barcode library and authentication of medicinal plant raw drugs used in Ayurvedic medicine, BMC Compl. Alternative Med. 16 Suppl 1 (2016), 186.
|
B.A. Gill, P.M. Musili, S. Kurukura, et al., Plant DNA-barcode library and community phylogeny for a semi-arid East African savanna, Mol. Ecol. Resour. 19 (2019) 838-846.
|
K.A. Meiklejohn, N. Damaso, J.M. Robertson, Assessment of BOLD and GenBank-Their accuracy and reliability for the identification of biological materials, PLoS One 14 (2019), e0217084.
|
A.S. Trebitz, J.C. Hoffman, G.W. Grant, et al., Potential for DNA-based identification of Great Lakes fauna: Match and mismatch between taxa inventories and DNA barcode libraries, Sci. Rep. 5 (2015), 12162.
|
X. Li, Y. Yang, R.J. Henry, et al., Plant DNA barcoding: From gene to genome, Biol. Rev. 90 (2015) 157-166.
|
N.C. Kane, Q. Cronk, Botany without borders: Barcoding in focus, Mol. Ecol. 17 (2008) 5175-5176.
|
L. Wu, M. Wu, N. Cui, et al., Plant super-barcode: A case study on genome-based identification for closely related species of Fritillaria, Chin. Med. 16 (2021), 52.
|
Z. Zhang, Y. Zhang, M. Song, et al., Species identification of Dracaena using the complete chloroplast genome as a super-barcode, Front. Pharmacol. 10 (2019), 1441.
|
Y. Xia, Z. Hu, X. Li, et al., The complete chloroplast genome sequence of Chrysanthemum indicum, Mitochondrial DNA A DNA Mapp. Seq. Anal. 27 (2016) 4668-4669.
|
X. Chen, J. Zhou, Y. Cui, et al., Identification of Ligularia herbs using the complete chloroplast genome as a super-barcode, Front. Pharmacol. 9 (2018), 695.
|
K. Krawczyk, M. Nobis, K. Myszczynski, et al., Plastid super-barcodes as a tool for species discrimination in feather grasses (Poaceae: Stipa), Sci. Rep. 8 (2018), 1924.
|
E. Coissac, P.M. Hollingsworth, S. Lavergne, et al., From barcodes to genomes: Extending the concept of DNA barcoding, Mol. Ecol. 25 (2016) 1423-1428.
|
C.N. Fu, Z.Q. Mo, J.B. Yang, et al., Testing genome skimming for species discrimination in the large and taxonomically difficult genus Rhododendron, Mol. Ecol. Resour. 22 (2022) 404-414.
|
P.D. Hebert, M.Y. Stoeckle, T.S. Zemlak, et al., Identification of birds through DNA barcodes, PLoS Biol. 2 (2004), e312.
|
H. Luo, Z. Sun, W. Arndt, et al., Gene order phylogeny and the evolution of methanogens, PLoS One 4 (2009), e6069.
|
S. Kumar, F.M. Hahn, C.M. McMahan, et al., Comparative analysis of the complete sequence of the plastid genome of Parthenium argentatum and identification of DNA barcodes to differentiate Parthenium species and lines, BMC Plant Biol. 9 (2009), 131.
|
K. Shinozaki, M. Ohme, M. Tanaka, et al., The complete nucleotide sequence of the tobacco chloroplast genome, Plant Mol. Biol. Rep. 4 (1986) 111-148.
|
H. Tettelin, V. Masignani, M.J. Cieslewicz, et al., Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: Implications for the microbial "pan-genome", Proc. Natl. Acad. Sci. USA 102 (2005) 13950-13955.
|
J. Xu, S. Guo, X. Yin, et al., Genomic, transcriptomic, and epigenomic analysis of a medicinal snake, Bungarus multicinctus, to provides insights into the origin of Elapidae neurotoxins, Acta Pharm. Sin. B (2022). https://doi.org/10.1016/j.apsb.2022.11.015.
|
B.S. Liao, X.F. Shen, L. Xiang, et al., Allele-aware chromosome-level genome assembly of Artemisia annua reveals the correlation between ADS expansion and artemisinin yield, Mol. Plant 15 (2022) 1310-1328.
|
S.J. Sun, X.F. Shen, Y. Li, et al., Single-cell RNA sequencing provides a high-resolution roadmap for understanding the multicellular compartmentation of specialized metabolism, Native Plants 9 (2022) 179-190.
|
H. Chen, M. Guo, S. Dong, et al., A chromosome-scale genome assembly of Artemisia argyi reveals unbiased subgenome evolution and key contributions of gene duplication to volatile terpenoid diversity, Plant Commun. (2023), 100516
|
X. Su, L. Yang, D. Wang, et al., 1K Medicinal Plant Genome Database: An integrated database combining genomes and metabolites of medicinal plants, Hortic. Res. 9 (2022), uhac075.
|
P. Taberlet, E. Coissac, F. Pompanon, et al., Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding, Nucleic Acids Res. 35 (2007), e14.
|
M. Hajibabaei, J.R. de Waard, N.V. Ivanova, et al., Critical factors for assembling a high volume of DNA barcodes, Phil. Trans. R. Soc. B 360 (2005) 1959-1967.
|
Y.T. Lo, M. Li, P.C. Shaw, Identification of constituent herbs in ginseng decoctions by DNA markers, Chin. Med. 10 (2015) 1-8.
|
M. Hajibabaei, M.A. Smith, D.H. Janzen, et al., A minimalist barcode can identify a specimen whose DNA is degraded, Mol. Ecol. Notes 6 (2006) 959-964.
|
D. Yeo, A. Srivathsan, R. Meier, Longer is not always better: Optimizing barcode length for large-scale species discovery and identification, Syst. Biol. 69 (2020) 999-1015.
|
L.-L. Jiang, Y.-T. Lo, W.-T. Chen, et al., DNA authentication of animal-derived concentrated Chinese medicine granules, J. Pharm. Pharmacol. Biomed. Anal. 129 (2016) 398-404.
|
J. Wang, D. Huang, H. Ren, et al., Biomimic trained immunity-MSCs delivery microcarriers for acute liver failure regeneration, Small 18 (2022), e2200858.
|
Y. Liu, X. Wang, L. Wang, et al., A nucleotide signature for the identification of American ginseng and its products, Front. Plant Sci. 7 (2016), 319.
|
G. Wang, X. Bai, X. Chen, et al., Development of a genus-universal nucleotide signature for the identification and supervision of Ephedra-containing products, Mol. Basel Switz. 27 (2022), 2342.
|
M. Song, G.Q. Dong, Y.Q. Zhang, et al., Identification of processed Chinese medicinal materials using DNA mini-barcoding, Chin. J. Nat. Med. 15 (2017) 481-486.
|
W. Dong, H. Liu, C. Xu, et al., A chloroplast genomic strategy for designing taxon specific DNA mini-barcodes: A case study on ginsengs, BMC Genet. 15 (2014), 138.
|
X. Yu, W. Tan, H. Gao, et al., Development of a specific mini-barcode from plastome and its application for qualitative and quantitative identification of processed herbal products using DNA metabarcoding technique: A case study on Senna, Front. Pharmacol. 11 (2020), 585687.
|
I. Parveen, N. Techen, S.M. Handy, et al., The low copy nuclear gene region, granule bound starch synthase (GBSS1), as a novel mini-DNA barcode for the identification of different sage (Salvia) species, Planta Med. 88 (2022) 985-993.
|
X. Wang, Y. Liu, L. Wang, et al., A nucleotide signature for the identification of angelicae Sinensis radix (Danggui) and its products, Sci. Rep. 6 (2016), 34940.
|
X.Y. Wang, R. Xu, J. Chen, et al., Detection of cistanches herba (Rou Cong Rong) medicinal products using species-specific nucleotide signatures, Front. Plant Sci. 9 (2018), 1643.
|
Z. Gao, Y. Liu, X. Wang, et al., Derivative technology of DNA barcoding (nucleotide signature and SNP double peak methods) detects adulterants and substitution in Chinese patent medicines, Sci. Rep. 7 (2017), 5858.
|
G. Wang, Y. Liu, X. Bai, et al., Identification and poisoning diagnosis of Aconitum materials using a genus-specific nucleotide signature, Ecotoxicol. Environ. Saf. 237 (2022), 113539.
|
W. Zhang, S. Yang, H. Zhao, et al., Using the ITS2 sequence-structure as a DNA mini-barcode: A case study in authenticating the traditional medicine "Fang Feng", Biochem. Syst. Ecol. 69 (2016) 188-194.
|
D.P. Little, Authentication of Ginkgo biloba herbal dietary supplements using DNA barcoding, Genome 57 (2014) 513-516.
|
Y. Liu, X.Y. Wang, Z.T. Gao, et al., Detection of Ophiocordyceps sinensis and its common adulterates using species-specific primers, Front. Microbiol. 8 (2017), 1179.
|
Y.Y. Zhao, J.H. Zhou, Y. Yuan, et al., Mini-DNA Barcoding Molecular identification of Traditional Chinese Medicinal moschus, Modern Chinese Medicine. 9 (2019) 1186-1191.
|
Z.Y. Zhao, Species identification and Mini-Barcode Study of Coptis [master's Thesis], Beijing: China Academy of Chinese Medical Sciences, 2019.
|
H. Chen, H.Y. Wang, M.Q. He, et al., Identification of DNA miniature Barcodes of processed Manis pentadactyla and its Adulterants, Chin Med Mat. 42 (2019) 2267-2272.
|
B.S. Liao, L.L. Wang, X.Y. Wang, et al., A fast identification method of notoginseng radix etrhizoma based on molecular signature, Chin. Pharmaceut. J. 50 (2015) 1954-1959.
|
Z. Gao, Y. Liu, X. Wang, et al., DNA mini-barcoding: A derived barcoding method for herbal molecular identification, Front. Plant Sci. 10 (2019), 987.
|
S.M. Velasco-Cuervo, E. Aguirre-Ramirez, J.J. Gallo-Franco, et al., Saving DNA from museum specimens: The success of DNA mini-barcodes in haplotype reconstruction in the genus Anastrepha (Diptera: Tephritidae), J. Adv. Res. 16 (2019) 123-134.
|
I. Meusnier, G.A. Singer, J.F. Landry, et al., A universal DNA mini-barcode for biodiversity analysis, BMC Genom. 9 (2008), 214.
|
I. Parveen, N. Techen, I.A. Khan, Identification of species in the aromatic spice family Apiaceae using DNA mini-barcodes, Planta Med. 85 (2019) 139-144.
|
R.R. Xing, R.R. Hu, J.X. Han, et al., DNA barcoding and mini-barcoding in authenticating processed animal-derived food: A case study involving the Chinese market, Food Chem. 309 (2020), 125653.
|
S. Shokralla, R.S. Hellberg, S.M. Handy, et al., A DNA mini-barcoding system for authentication of processed fish products, Sci. Rep. 5 (2015), 15894.
|
R. Pandit, T. Travadi, S. Sharma, et al., DNA meta-barcoding using rbcL based mini-barcode revealed presence of unspecified plant species in Ayurvedic polyherbal formulations, Phytochem. Anal. 32 (2021) 804-810.
|
W. Jiang, L. Ren, M. Guo, et al., Detecting Schisandrae Chinensis fructus and its Chinese patent medicines with a nucleotide signature, Genes 10 (2019), 397.
|
M. Guo, W. Jiang, J. Yu, et al., Investigating the authenticity of Ophiopogonis Radix and its Chinese patent medicines by using a nucleotide signature, J. Ethnopharmacol. 261 (2020), 113134.
|
M. Munoz-Colmenero, J.L. Martinez, A. Roca, et al., NGS tools for traceability in candies as high processed food products: Ion Torrent PGM versus conventional PCR-cloning, Food Chem. 214 (2017) 631-636.
|
A. Govender, S. Singh, J. Groeneveld, et al., Experimental validation of taxon-specific mini-barcode primers for metabarcoding of zooplankton, Ecol. Appl. 32 (2022), e02469.
|
J. Dona, J. Diaz-Real, S. Mironov, et al., DNA barcoding and minibarcoding as a powerful tool for feather mite studies, Mol. Ecol. Resour. 15 (2015) 1216-1225.
|
A. Govender, J. Groeneveld, S. Singh, et al., The design and testing of mini-barcode markers in marine lobsters, PLoS One 14 (2019), e0210492.
|
F. Yang, F. Ding, H. Chen, et al., DNA barcoding for the identification and authentication of animal species in traditional medicine, Evid. Based Complementary Altern. Med. 2018 (2018), 5160254.
|
S. Chen, Z. Li, S. Zhang, et al., Emerging biotechnology applications in natural product and synthetic pharmaceutical analyses, Acta Pharm. Sin. B 12 (2022) 4075-4097.
|
K.M. Ririe, R.P. Rasmussen, C.T. Wittwer, Product differentiation by analysis of DNA melting curves during the polymerase chain reaction, Anal. Biochem. 245 (1997) 154-160.
|
G.H. Reed, C.T. Wittwer, Sensitivity and specificity of single-nucleotide polymorphism scanning by high-resolution melting analysis, Clin. Chem. 50 (2004) 1748-1754.
|
R.A. Palais, M.A. Liew, C.T. Wittwer, Quantitative heteroduplex analysis for single nucleotide polymorphism genotyping, Anal. Biochem. 346 (2005) 167-175.
|
C. Jiang, L. Cao, Y. Yuan, et al., Barcoding melting curve analysis for rapid, sensitive, and discriminating authentication of saffron (Crocus sativus L.) from its adulterants, BioMed Res. Int. 2014 (2014), 809037.
|
J. Yu, X. Wu, C. Liu, et al., Progress in the use of DNA barcodes in the identification and classification of medicinal plants, Ecotoxicol. Environ. Saf. 208 (2021), 111691.
|
C.T. Wittwer, M.G. Herrmann, A.A. Moss, et al., Continuous fluorescence monitoring of rapid cycle DNA amplification, Biotechniques 22 (1997) 130-138.
|
C.T. Wittwer, G.H. Reed, C.N. Gundry, et al., High-resolution genotyping by amplicon melting analysis using LCGreen, Clin. Chem. 49 (2003) 853-860.
|
M.G. Herrmann, J.D. Durtschi, L.K. Bromley, et al., Amplicon DNA melting analysis for mutation scanning and genotyping: cross-platform comparison of instruments and dyes, Clin. Chem. 52 (2006) 494-503.
|
W. Sun, J.J. Li, C. Xiong, et al., The potential power of bar-HRM technology in herbal medicine identification, Front. Plant Sci. 7 (2016), 367.
|
V. Mezzasalma, I. Ganopoulos, A. Galimberti, et al., Poisonous or non-poisonous plants? DNA-based tools and applications for accurate identification, Int. J. Leg. Med. 131 (2017) 1-19.
|
A. Kalivas, I. Ganopoulos, A. Xanthopoulou, et al., DNA barcode ITS2 coupled with high resolution melting (HRM) analysis for taxonomic identification of Sideritis species growing in Greece, Mol. Biol. Rep. 41 (2014) 5147-5155.
|
Y. Tong, C. Jiang, Y. Yuan, et al., Molecular identification of antelope horn by melting curve analysis, Mitochondrial DNA A DNA Mapp. Seq. Anal. 27 (2016) 3945-3951.
|
J. Hu, Z.L. Zhan, Y. Yuan, et al., HRM identification of Chinese medicinal materials Mutong, Chin. J. Chin. Mater. Med. 40 (2015) 2304-2308.
|
M. Osathanunkul, C. Suwannapoom, S. Ounjai, et al., Refining DNA barcoding coupled high resolution melting for discrimination of 12 closely related Croton species, PLoS One 10 (2015), e0138888.
|
S. Singtonat, M. Osathanunkul, Fast and reliable detection of toxic Crotalaria spectabilis Roth. in Thunbergia laurifolia Lindl. herbal products using DNA barcoding coupled with HRM analysis, BMC Compl. Alternative Med. 15 (2015), 162.
|
C. Xiong, Z.G. Hu, Y. Tu, et al., ITS2 barcoding DNA region combined with high resolution melting (HRM) analysis of Hyoscyami Semen, the mature seed of Hyoscyamus niger, Chin. J. Nat. Med. 14 (2016) 898-903.
|
L. Cao, X. Cui, J. Hu, et al., Advances in digital polymerase chain reaction (dPCR) and its emerging biomedical applications, Biosens. Bioelectron. 90 (2017) 459-474.
|
N. Yu, J. Ren, W. Huang, et al., An effective analytical droplet digital PCR approach for identification and quantification of Fur-bearing animal meat in raw and processed food, Food Chem. 355 (2021), 129525.
|
F. Scollo, L.A. Egea, A. Gentile, et al., Absolute quantification of olive oil DNA by droplet digital-PCR (ddPCR): comparison of isolation and amplification methodologies, Food Chem. 213 (2016) 388-394.
|
C. Koepfli, W. Nguitragool, N.E. Hofmann, et al., Sensitive and accurate quantification of human malaria parasites using droplet digital PCR (ddPCR), Sci. Rep. 6 (2016), 39183.
|
R. Nyaruaba, C. Li, C. Mwaliko, et al., Developing multiplex ddPCR assays for SARS-CoV-2 detection based on probe mix and amplitude based multiplexing, Expert Rev. Mol. Diagn. 21 (2021) 119-129.
|
R. Collier, K. Dasgupta, Y.P. Xing, et al., Accurate measurement of transgene copy number in crop plants using droplet digital PCR, Plant J. 90 (2017) 1014-1025.
|
X.F. Wang, T. Tang, Q.M. Miao, et al., Detection of transgenic rice line TT51-1 in processed foods using conventional PCR, real-time PCR, and droplet digital PCR, Food Control 98 (2019) 380-388.
|
X.W. Dong, D.W. Gao, J. Dong, et al., Mass ratio quantitative detection for kidney bean in lotus seed paste using duplex droplet digital PCR and chip digital PCR, Anal. Bioanal. Chem. 412 (2020) 1701-1707.
|
K. Karppinen, A. Avetisyan, A.L. Hykkerud, et al., A dPCR method for quantitative authentication of wild lingonberry (Vaccinium vitis-idaea) versus cultivated American cranberry (V. macrocarpon), Foods Basel Switz. 11 (2022), 1476.
|
C. Floren, I. Wiedemann, B. Brenig, et al., Species identification and quantification in meat and meat products using droplet digital PCR (ddPCR), Food Chem. 173 (2015) 1054-1058.
|
O. Piepenburg, C.H. Williams, D.L. Stemple, et al., DNA detection using recombination proteins, PLoS Biol. 4 (2006), e204.
|
W. Liu, H.X. Liu, L. Zhang, et al., A novel isothermal assay of Borrelia burgdorferi by recombinase polymerase amplification with lateral flow detection, Int. J. Mol. Sci. 17 (2016), 1250.
|
G.A. Posthuma-Trumpie, J. Korf, A. van Amerongen, Lateral flow (immuno)assay: its strengths, weaknesses, opportunities and threats. A literature survey, Anal. Bioanal. Chem. 393 (2009) 569-582.
|
C.C. Chao, T. Belinskaya, Z. Zhang, et al., Development of recombinase polymerase amplification assays for detection of Orientia tsutsugamushi or Rickettsia typhi, PLoS Neglected Trop. Dis. 9 (2015), e0003884.
|
Z.A. Crannell, B. Rohrman, R. Richards-Kortum, Equipment-free incubation of recombinase polymerase amplification reactions using body heat, PLoS One 9 (2014), e112146.
|
Y. Liu, X.Y. Wang, X.M. Wei, et al., Rapid authentication of Ginkgo biloba herbal products using the recombinase polymerase amplification assay, Sci. Rep. 8 (2018), 8002.
|
M.M. Zhao, B. Wang, L. Xiang, et al., A novel onsite and visual molecular technique to authenticate saffron (Crocus sativus) and its adulterants based on recombinase polymerase amplification, Food Control 100 (2019) 117-121.
|
X.S. Zheng, W.L. An, H. Yao, et al., Rapid authentication of the poisonous plant Gelsemium elegans by combining filter-paper-based DNA extraction and RPA-LFD detection, Eng. Plast. 7 (2021) 14-16.
|
Y. Mori, T. Notomi, Loop-mediated isothermal amplification (LAMP): A rapid, accurate, and cost-effective diagnostic method for infectious diseases, J. Infect. Chemother. 15 (2009) 62-69.
|
Y. Sasaki, S. Nagumo, Rapid identification of Curcuma longa and C. aromatica by LAMP, Biol. Pharm. Bull. 30 (2007) 2229-2230.
|
M. Zhao, Y. Shi, L. Wu, et al., Rapid authentication of the precious herb saffron by loop-mediated isothermal amplification (LAMP) based on internal transcribed spacer 2 (ITS2) sequence, Sci. Rep. 6 (2016), 25370.
|
L. Yang, W.R. Wu, H. Zhou, et al., Rapid identification of Dendrobium officinale using loop-Mediated isothermal Amplification (LAMP) method, chin. J. Nat. Med. 17 (2019) 337-345.
|
M. Li, Y.L. Wong, L.L. Jiang, et al., Application of novel loop-mediated isothermal amplification (LAMP) for rapid authentication of the herbal tea ingredient Hedyotis diffusa Willd., Food Chem. 141 (2013) 2522-2525.
|
G.H. Lai, J. Chao, M.K. Lin, et al., Rapid and sensitive identification of the herbal tea ingredient Taraxacum formosanum using loop-mediated isothermal amplification, Int. J. Mol. Sci. 16 (2015) 1562-1575.
|
L. Wu, B. Wang, M. Zhao, et al., Rapid identification of officinal akebiae caulis and its toxic adulterant aristolochiae manshuriensis caulis (Aristolochia manshuriensis) by loop-mediated isothermal amplification, Front. Plant Sci. 7 (2016), 887.
|
B. Zhao, C. Xiong, J. Li, et al., Species quantification in complex herbal formulas-vector control quantitative analysis as a new method, Front. Pharmacol. 11 (2020), 488193.
|
A.C. Raclariu, M. Heinrich, M.C. Ichim, et al., Benefits and limitations of DNA barcoding and metabarcoding in herbal product authentication, Phytochem. Anal. 29 (2018) 123-128.
|
G.S. Seethapathy, A.C. Raclariu-Manolica, J.A. Anmarkrud, et al., DNA metabarcoding authentication of ayurvedic herbal products on the European market raises concerns of quality and fidelity, Front. Plant Sci. 10 (2019), 68.
|
J.X. Liu, W.S. Mu, M.M. Shi, et al., The species identification in traditional herbal patent medicine, Wuhu San, based on shotgun metabarcoding, Front. Pharmacol. 12 (2021), 607200
|
X.S. Zheng, P. Zhang, B.S. Liao, et al., A comprehensive quality evaluation system for complex herbal medicine using PacBio sequencing, PCR-denaturing gradient gel electrophoresis, and several chemical approaches, Front. Plant Sci. 8 (2017), 1578.
|
T.Y. Xin, Z.C. Xu, J. Jia, et al., Biomonitoring for traditional herbal medicinal products using DNA metabarcoding and single molecule, real-time sequencing, Acta Pharm. Sin. B 8 (2018) 488-497.
|