Citation: | Xiangtai Zheng, Qi Zhang, Qianjie Ma, Xinyu Li, Liang Zhao, Xiaodong Sun. A chiral metal-organic framework {(HQA)(ZnCl2)(2.5H2O)}n for the enantioseparation of chiral amino acids and drugs[J]. Journal of Pharmaceutical Analysis, 2023, 13(4): 421-429. doi: 10.1016/j.jpha.2023.03.003 |
L. Li, X. Xue, H. Zhang, et al., In-situ and one-step preparation of protein film in capillary column for open tubular capillary electrochromatography enantioseparation, Chin. Chem. Lett. 32 (2021) 2139-2142.
|
S. Zhuo, X. Wang, L. Li, et al., Chiral carboxyl-functionalized covalent organic framework for enantioselective adsorption of amino acids, ACS Appl. Mater. Interfaces 13 (2021) 31059-31065.
|
Y. Liu, A. Tian, X. Wang, et al., Fabrication of chiral amino acid ionic liquid modified magnetic multifunctional nanospheres for centrifugal chiral chromatography separation of racemates, J. Chromatogr. A 1400 (2015) 40-46.
|
X. Qiu, J. Ke, W. Chen, et al., β-cyclodextrin-ionic liquid functionalized chiral composite membrane for enantioseparation of drugs and molecular simulation, J. Membr. Sci. 660 (2022), 120870.
|
D. Jonckheere, J.A. Steele, B. Claes, et al., Adsorption and separation of aromatic amino acids from aqueous solutions using metal-organic frameworks, ACS Appl. Mater. Interfaces 9 (2017) 30064-30073.
|
Y.-W. Zhao, Y. Wang, X.-M. Zhang, Homochiral MOF as circular dichroism sensor for enantioselective recognition on nature and chirality of unmodified amino acids, ACS Appl. Mater. Interfaces 9 (2017) 20991-20999.
|
U. Woiwode, R.J. Reischl, S. Buckenmaier, et al., Imaging peptide and protein chirality via amino acid analysis by chiral x chiral two-dimensional correlation liquid chromatography, Anal. Chem. 90 (2018) 7963-7971.
|
A. Wang, K. Liu, M. Tian, et al., Open tubular capillary electrochromatography-mass spectrometry for analysis of underivatized amino acid enantiomers with a porous layer-gold nanoparticle-modified chiral column, Anal. Chem. 94 (2022) 9252-9260.
|
C. Motta, A. Matos, A. Soares, et al., Amino acid profile of foods from the Portuguese Total Diet Pilot Study, J. Food Compos. Anal. 92 (2020) 103545.
|
L. Gao, P. Xu, J. Ren, A sensitive and economical method for simultaneous determination of d/l-amino acids profile in foods by HPLC-UV: Application in fermented and unfermented foods discrimination, Food Chem. 410 (2023), 135382.
|
M. Holecek, Branched-chain amino acids in health and disease: Metabolism, alterations in blood plasma, and as supplements, Nutr. Metab. (Lond) 15 (2018), 33.
|
J.D. Sharer, I. De Biase, D. Matern, et al., Laboratory analysis of amino acids, 2018 revision: A technical standard of the American College of Medical Genetics and Genomics (ACMG), Genet. Med. 20 (2018) 1499-1507.
|
C. Lu, Y.-W. Feng, Y. He, et al., Foods for aromatic amino acid metabolism disorder: A review of current status, challenges and opportunities, Food Rev. Int. 2022.
|
G. Genchi, An overview on D-amino acids, Amino Acids 49 (2017) 1521-1533.
|
H. Wolosker, E. Dumin, L. Balan, et al., D-amino acids in the brain: D-serine in neurotransmission and neurodegeneration, FEBS J. 275 (2008) 3514-3526.
|
H. Mirzaei, J.A. Suarez, V.D. Longo, Protein and amino acid restriction, aging and disease: From yeast to humans, Trends Endocrinol. Metab. 25 (2014) 558-566.
|
S. Du, Y. Wang, N. Alatrash, et al., Altered profiles and metabolism of L- and D-amino acids in cultured human breast cancer cells vs. non-tumorigenic human breast epithelial cells, J. Pharm. Biomed. Anal. 164 (2019) 421-429.
|
B. Li, H.-M. Wen, W. Zhou, et al., Porous metal-organic frameworks for gas storage and separation: What, how, and why? J. Phys. Chem. Lett. 5 (2014) 3468-3479.
|
X. Yang, Q. Xu, Bimetallic metal-organic frameworks for gas storage and separation, Cryst. Growth Des. 17 (2017) 1450-1455.
|
D. Farrusseng, S. Aguado, C. Pinel, Metal-organic frameworks: Opportunities for catalysis, Angew. Chem. Int. Ed. Engl. 48 (2009) 7502-7213.
|
M. Zhao, S. Ou, C.-D. Wu, Porous metal-organic frameworks for heterogeneous biomimetic catalysis, Acc. Chem. Res. 47 (2014) 1199-1207.
|
J. Della Rocca, D. Liu, W. Lin, Nanoscale metal-organic frameworks for biomedical imaging and drug delivery, Acc. Chem. Res. 44 (2011) 957-968.
|
S. Rojas, P.S. Wheatley, E. Quartapelle-Procopio, et al., Metal-organic frameworks as potential multi-carriers of drugs, CrystEngComm 15 (2013) 9364-9367.
|
C. Wang, D. Zhu, J. Zhang, et al., Homochiral iron-based γ-cyclodextrin metal-organic framework for stereoisomer separation in the open tubular capillary electrochromatography, J. Pharm. Biomed. Anal. 215 (2022), 114777.
|
X. Sun, B. Niu, Q. Zhang, et al., MIL-53-based homochiral metal-organic framework as a stationary phase for open-tubular capillary electrochromatography, J. Pharm. Anal. 12 (2022) 509-516.
|
Z.-X. Fei, M. Zhang, J.-H. Zhang, et al., Chiral metal-organic framework used as stationary phases for capillary electrochromatography, Anal. Chim. Acta 830 (2014) 49-55.
|
R.-G. Xiong, X.-Z. You, B.F. Abrahams, et al., Enantioseparation of racemic organic molecules by a zeolite analogue, Angew. Chem. Int. Ed. Engl. 40 (2001) 4422-4425.
|
Y.-Z. Tang, X.-F. Huang, Y.-M. Song, et al., Homochiral 1D zinc-quitenine coordination polymer with a high dielectric constant, Inorg. Chem. 45 (2006) 4868-4870.
|
R. Rebane, M.-L. Oldekop, K. Herodes, Comparison of amino acid derivatization reagents for LC-ESI-MS analysis. Introducing a novel phosphazene-based derivatization reagent, J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 904 (2012) 99-106.
|
X. Sun, Y. Ding, B. Niu, et al., Evaluation of a composite nanomaterial consist of gold nanoparticles and graphene-carbon nitride as capillary electrochromatography stationary phase for enantioseparation, Microchem. J. 169 (2021), 106613.
|
K. Sun, L. Li, X. Yu, et al., Functionalization of mixed ligand metal-organic frameworks as the transport vehicles for drugs, J. Colloid Interface Sci. 486 (2017) 128-135.
|
A. Jabbari-Gargari, J. Moghaddas, H. Hamishehkar, et al., Carboxylic acid decorated silica aerogel nanostructure as drug delivery carrier, Microporous Mesoporous Mater. 323 (2021), 111220.
|
M.N. Nimbalkar, B.R. Bhat, Simultaneous adsorption of methylene blue and heavy metals from water using Zr-MOF having free carboxylic group, J. Environ. Chem. Eng. 9 (2021) 106216.
|
A. Chinthamreddy, S. Koppula, S. Kuruva, et al., Biopolymer-PAA and surfactant-CTAB assistant solvothermal synthesis of Zn-based MOFs: Design, characterization for removal of toxic dyes, copper and their biological activities, Inorg. Chem. Commun. 133 (2021), 108928.
|
M. Lammerhofer, W. Lindner, Quinine and quinidine derivatives as chiral selectors I. Brush type chiral stationary phases for high-performance liquid chromatography based on cinchonan carbamates and their application as chiral anion exchangers, J. Chromatogr. A. 741 (1996) 33-48.
|
X. Lu, M. Chen, J. Yang, et al., Surface-up construction of quinine bridged functional cyclodextrin for single-column versatile enantioseparation, J. Chromatogr. A. 1664 (2022), 462786.
|
G. Yi, B. Ji, J. Du, et al., Enhanced enantioseparation performance in cyclodextrin-electrokinetic chromatography using quinine modified polydopamine coated capillary column, Microchem. J. 167 (2021), 106315.
|
J. Horak, M. Lammerhofer, Stereoselective separation of underivatized and 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate derivatized amino acids using zwitterionic quinine and quinidine type stationary phases by liquid chromatography-high resolution mass spectrometry, J. Chromatogr. A 1596 (2019) 69-78.
|
X. Xiong, W.R. Baeyens, H.Y. Aboul-Enein, et al., Impact of amines as co-modifiers on the enantioseparation of various amino acid derivatives on a tert-butyl carbamoylated quinine-based chiral stationary phase, Talanta 71 (2007) 573-581.
|
L. Fang, Y. Zhao, C. Wang, et al., Preparation of a thiols β-cyclodextrin/gold nanoparticles-coated open tubular column for capillary electrochromatography enantioseparations, J. Sep. Sci. 43 (2020) 2209-2216.
|
X. Yang, X. Sun, Z. Feng, et al., Open-tubular capillary electrochromatography with β-cyclodextrin-functionalized magnetic nanoparticles as stationary phase for enantioseparation of dansylated amino acids, Mikrochim. Acta 186 (2019), 244.
|
X. Gao, R. Mo, Y. Ji, Preparation and characterization of tentacle-type polymer stationary phase modified with graphene oxide for open-tubular capillary electrochromatography, J. Chromatogr. A. 1400 (2015) 19-26.
|
J.-H. Zhang, P.-J. Zhu, S.-M. Xie, et al., Homochiral porous organic cage used as stationary phase for open tubular capillary electrochromatography, Anal. Chim. Acta. 999 (2018) 169-175.
|