Volume 13 Issue 4
Apr.  2023
Turn off MathJax
Article Contents
Shuang Ma, Junfeng Wu, Zhihua Liu, Rong He, Yuechao Wang, Lianqing Liu, Tianlu Wang, Wenxue Wang. Quantitative characterization of cell physiological state based on dynamical cell mechanics for drug efficacy indication[J]. Journal of Pharmaceutical Analysis, 2023, 13(4): 388-402. doi: 10.1016/j.jpha.2023.03.002
Citation: Shuang Ma, Junfeng Wu, Zhihua Liu, Rong He, Yuechao Wang, Lianqing Liu, Tianlu Wang, Wenxue Wang. Quantitative characterization of cell physiological state based on dynamical cell mechanics for drug efficacy indication[J]. Journal of Pharmaceutical Analysis, 2023, 13(4): 388-402. doi: 10.1016/j.jpha.2023.03.002

Quantitative characterization of cell physiological state based on dynamical cell mechanics for drug efficacy indication

doi: 10.1016/j.jpha.2023.03.002
Funds:

This work was supported by the National Natural Science Foundation of China (Grant Nos: U1908215, 61925307, 62003338, and 61933008), CAS Project for Young Scientists in Basic Research (Grant No: YSBR-041), Liaoning Revitalization Talents Program (Grant No: XLYC2002014), Natural Science Foundation of Liaoning Province of China (Grant No: 2020-ZLLH-47), and Joint fund of Science & Technology Department of Liaoning Province and State Key Laboratory of Robotics, China (Grant No: 2019-KF-01-01).

  • Received Date: Nov. 14, 2022
  • Accepted Date: Mar. 07, 2023
  • Rev Recd Date: Mar. 06, 2023
  • Publish Date: Mar. 13, 2023
  • Cell mechanics is essential to cell development and function, and its dynamics evolution reflects the physiological state of cells. Here, we investigate the dynamical mechanical properties of single cells under various drug conditions, and present two mathematical approaches to quantitatively characterizing the cell physiological state. It is demonstrated that the cellular mechanical properties upon the drug action increase over time and tend to saturate, and can be mathematically characterized by a linear time-invariant dynamical model. It is shown that the transition matrices of dynamical cell systems significantly improve the classification accuracies of the cells under different drug actions. Furthermore, it is revealed that there exists a positive linear correlation between the cytoskeleton density and the cellular mechanical properties, and the physiological state of a cell in terms of its cytoskeleton density can be predicted from its mechanical properties by a linear regression model. This study builds a relationship between the cellular mechanical properties and the cellular physiological state, adding information for evaluating drug efficacy.
  • loading
  • Y. Han, J. Pan, N. Liang, Y. Han, J. Pan, N. Liang, et al., A pH-sensitive polymeric micellar system based on chitosan derivative for efficient delivery of paclitaxel, Int. J. Mol. Sci. 22 (2021), 6659.
    N.T.H. Truong, T. Gargett, M.P. Brown, et al., Effects of chemotherapy agents on circulating leukocyte populations: Potential implications for the success of CAR-T cell therapies, Cancers (Basel) 13 (2021), 2225.
    Y. Xiao, X. Wang, H. Zhang, et al., FastClone is a probabilistic tool for deconvoluting tumor heterogeneity in bulk-sequencing samples, Nat. Commun.11 (2020), 4469.
    L. Tan, B. Zhu, Y. Zhang, et al., Network Pharmacology-Based identification of pharmacological mechanism of SQFZ injection in combination with Docetaxel on lung cancer, Sci. Rep. 9 (2019), 4533.
    X. Zhao, J. Fan, P. Wu, et al., Chronic chemotherapy with paclitaxel nanoparticles induced apoptosis in lung cancer in vitro and in vivo, Int. J. Nanomedicine 14 (2019) 1299-1309.
    P. Tonino, C. Abreu, Microvessel density is associated with VEGF and α-SMA expression in different regions of human gastrointestinal carcinomas, Cancers (Basel) 3 (2021) 3405-3418.
    M.A. Stockslager, S. Malinowski, M. Touat, et al., Functional drug susceptibility testing using single-cell mass predicts treatment outcome in patient-derived cancer neurosphere models, Cell Rep. 37 (2021), 109788.
    J. Wang, K. Lin, H. Hu, et al., In vitro anticancer drug sensitivity sensing through single-cell Raman spectroscopy, Biosensors (Basel) 11 (2021), 286.
    Y. Zhang, J. Xu, Y. Yu, et al., Anti-cancer drug sensitivity assay with quantitative heterogeneity testing using single-cell Raman spectroscopy, Molecules 23 (2018), 2903.
    G.K. Alderton, Anticancer drugs: Using CTCs to test drug sensitivity, Nat. Rev. Drug Discov. 13 (2014), 654.
    D. W.-H. Ho, Y.-M. Tsui, L.-K. Chan, et al., Single-cell RNA sequencing unravels the immunosuppressive landscape and tumor heterogeneity of HBV-associated hepatocellular carcinoma, Nat. Commun. 12 (2021), 3684.
    L. Huang, D. Brunell, C. Stephan, et al., Driver network as a biomarker: Systematic integration and network modeling of multi-omics data to derive driver signaling pathways for drug combination prediction, Bioinformatics 35 (2019) 3709-3717.
    M. Muraro, S. Muenst, V. Mele, et al., Ex-vivo assessment of drug response on breast cancer primary tissue with preserved microenvironments, OncoImmunology 6 (2017), e1331798.
    A. Riad, S.B. Gitto, H. Lee, et al., PARP theranostic auger emitters are cytotoxic in BRCA mutant ovarian cancer and viable tumors from ovarian cancer patients enable ex-vivo screening of tumor response, Molecules 25 (2020), 6029.
    T. Murayama, N. Gotoh, Patient-derived xenograft models of breast cancer and their application, Cells 8 (2019), 621.
    A. Mishra, S.K. Mukhopadhyay, S. Dey, Evaluation of cyclosaplin efficacy using a silk based 3D tumor model, Biomolecules 9 (2019), 123.
    H. De Belly, A. Stubb, A. Yanagida, et al., Membrane tension gates ERK-mediated regulation of pluripotent cell fate, Cell Stem Cell 28 (2021) 273-284.e6.
    L. Barbieri, H. Colin-York, K. Korobchevskaya, et al., Two-dimensional TIRF-SIM-traction force microscopy (2D TIRF-SIM-TFM), Nat. Commun. 12 (2021), 2169.
    C.L. Essmann, D. Martinez-Martinez, R. Pryor, et al., Mechanical properties measured by atomic force microscopy define health biomarkers in ageing C. elegans, Nat. Commun. 11 (2020), 1043.
    V. Panzetta, G.L. Verde, M. Pugliese, et al., Adhesion and migration response to radiation therapy of mammary epithelial and adenocarcinoma cells interacting with different stiffness substrates, Cancers (Basel) 12 (2020), 1170.
    X. Yang, H. Wang, C. Huang, et al., Zinc enhances the cellular energy supply to improve cell motility and restore impaired energetic metabolism in a toxic environment induced by OTA, Sci. Rep. 7 (2017), 14669.
    A.S. Kashani, M. Packirisamy, Cancer cells optimize elasticity for efficient migration, R. Soc. Open Sci. 7 (2020), 200747.
    M. Li, L. Liu, X. Xiao, et al., Viscoelastic properties measurement of human lymphocytes by atomic force microscopy based on magnetic beads cell isolation, IEEE Trans. Nanobioscience 15 (2016) 398-411.
    J. Lv, Y. Liu, F. Cheng, et al., Cell softness regulates tumorigenicity and stemness of cancer cells, EMBO J. 40 (2021), e106123.
    K. Ren, J. Gao, D. Han, AFM force relaxation curve reveals that the decrease of membrane tension is the essential reason for the softening of cancer cells, Front. Cell Dev. Biol. 9 (2021), 663021.
    S. Kern, I. Truebenbach, M. Hohn, et al., Combined antitumoral effects of pretubulysin and methotrexate, Pharmacol. Res. Perspect. 7 (2019), e00460.
    H. Zhu, W. Han, Y. Gan, et al., Combined modality therapy based on hybrid gold nanostars coated with temperature sensitive liposomes to overcome paclitaxel-resistance in hepatic carcinoma, Pharmaceutics 11 (2019), 683.
    S.L. Levit, C. Tang, Polymeric nanoparticle delivery of combination therapy with synergistic effects in ovarian cancer, Nanomaterials (Basel) 11 (2021), 1048.
    R.F.S. Lee, A. Chernobrovkin, D. Rutishauser, et al., Expression proteomics study to determine metallodrug targets and optimal drug combinations, Sci. Rep. 7 (2017), 1590.
    G. Del Favero, A. Kraegeloh, Integrating biophysics in toxicology, Cells 9 (2020), 1282.
    D. Dang, R.W. Xiang, B. Liu, et al., Quantifying the adhesion forces of lymphoma cells by AFM single-cell force spectroscopy, Prog. Biochem. Biophys. 46 (2019) 89-98.
    M. Li, L. Liu, N. Xi, et al., Applications of atomic force microscopy in exploring drug actions in lymphoma-targeted therapy at the nanoscale, BioNanoScience 6 (2016) 22-32.
    X. Niu, Q. Liu, Z. Xu, et al., Molecular mechanisms underlying the extreme mechanical anisotropy of the flaviviral exoribonuclease-resistant RNAs (xrRNAs), Nat. Commun. 11 (2020), 5496.
    Y. Zhang, F. Wei, Y.C. Poh, et al., Interfacing 3D magnetic twisting cytometry with confocal fluorescence microscopy to image force responses in living cells, Nat. Protoc. 12 (2017) 1437-1450.
    J. Iturri, A. Weber, A. Moreno-Cencerrado, et al., Resveratrol-induced temporal variation in the mechanical properties of MCF-7 breast cancer cells investigated by atomic force microscopy, Int. J. Mol. Sci. 20 (2019), 3275.
    Y. Liang, R.A. van der Valk, R.T. Dame, et al., Probing the mechanical stability of bridged DNA-H-NS protein complexes by single-molecule AFM pulling, Sci. Rep. 7 (2017), 15275.
    A. Pawlowska, Z. Sadowski, Effect of schwertmannite surface modification by surfactants on adhesion of acidophilic bacteria, Microorganisms 8 (2020), 1725.
    D. Leng, K. Xu, L. Qin, et al., A hyper-elastic creep approach and characterization analysis for rubber vibration systems, Polymers (Basel) 11 (2019), 988.
    B. Wang, W. Wang, Y. Wang, et al., Dynamical modeling and analysis of viscoelastic properties of single cells, Micromachines 8 (2017) 171.
    F. Yang, R. Riedel, P. del Pino, et al., Real-time, label-free monitoring of cell viability based on cell adhesion measurements with an atomic force microscope, J. Nanobiotechnology 15 (2017), 23.
    M. Balland, N. Desprat, D. Icard, et al., Power laws in microrheology experiments on living cells: Comparative analysis and modeling, Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74 (2006), 021911.
    V.M. Laurent, R. Fodil, P. Canadas, et al., Partitioning of cortical and deep cytoskeleton responses from transient magnetic bead twisting, Ann. Biomed. Eng. 31 (2003) 1263-1278.
    B. Fabry, G.N. Maksym, J.P. Butler, et al., Scaling the microrheology of living cells, Phys. Rev. Lett. 87 (2001), 148102.
    C. Sultan, D. Stamenovic, D.E. Ingber, A computational tensegrity model predicts dynamic rheological behaviors in living cells, Ann. Biomed. Eng. 32 (2004) 520-530.
    J. Hang, Y. Kang, G. Xu, et al., A hierarchical cellular structural model to unravel the universal power-law rheological behavior of living cells, Nat. Commun. 12 (2021), 6067.
    J.-T. Hang, G.-K. Xu, H. Gao, Frequency-dependent transition in power-law rheological behavior of living cells, Sci. Adv. 8 (2022), eabn6093.
    S. Ma, X. Zhang, D. Dang, et al., Dynamic characterization of single cells based on temporal cellular mechanical properties, IEEE Trans. Nanobioscience 22 (2023) 19-27.
    C.-T Chen, Linear System Theory and Design, third ed., Chap. 2, Oxford University Press, New York, 1999, pp. 11-16.
    M. Li, L. Liu, N. Xi, et al., Atomic force microscopy studies on cellular elastic and viscoelastic properties, Sci. China Life Sci. 61 (2018) 57-67.
    M. Radmacher, Studying the mechanics of cellular processes by atomic force microscopy, Methods Cell Biol. 83 (2007) 347-372.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (318) PDF downloads(25) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return