Volume 13 Issue 4
Apr.  2023
Turn off MathJax
Article Contents
Duanping Sun, Ying Ma, Maoqiang Wu, Zuanguang Chen, Luyong Zhang, Jing Lu. Recent progress in aptamer-based microfluidics for the detection of circulating tumor cells and extracellular vesicles[J]. Journal of Pharmaceutical Analysis, 2023, 13(4): 340-354. doi: 10.1016/j.jpha.2023.03.001
Citation: Duanping Sun, Ying Ma, Maoqiang Wu, Zuanguang Chen, Luyong Zhang, Jing Lu. Recent progress in aptamer-based microfluidics for the detection of circulating tumor cells and extracellular vesicles[J]. Journal of Pharmaceutical Analysis, 2023, 13(4): 340-354. doi: 10.1016/j.jpha.2023.03.001

Recent progress in aptamer-based microfluidics for the detection of circulating tumor cells and extracellular vesicles

doi: 10.1016/j.jpha.2023.03.001
Funds:

This work was supported by the National Natural Science Foundation of China (Grant Nos.: 82003710 and 82173808), the Natural Science Foundation of Guangdong Province (Grant Nos.: 2020A1515010075 and 2021B1515020100), the Project of Educational Commission of Guangdong Province (Grant No.: 2021ZDZX2012), the Guangzhou Basic and Applied Basic Research Project (Grant No.: 2023A04J1163), the National Key Clinical Specialty Construction Project (Clinical Pharmacy), and High-Level Clinical Key Specialty (Clinical Pharmacy) in Guangdong Province, China.

  • Received Date: Oct. 28, 2022
  • Accepted Date: Mar. 01, 2023
  • Rev Recd Date: Feb. 14, 2023
  • Publish Date: Mar. 07, 2023
  • Liquid biopsy is a technology that exhibits potential to detect cancer early, monitor therapies, and predict cancer prognosis due to its unique characteristics, including noninvasive sampling and real-time analysis. Circulating tumor cells (CTCs) and extracellular vesicles (EVs) are two important components of circulating targets, carrying substantial disease-related molecular information and playing a key role in liquid biopsy. Aptamers are single-stranded oligonucleotides with superior affinity and specificity, and they can bind to targets by folding into unique tertiary structures. Aptamer-based microfluidic platforms offer new ways to enhance the purity and capture efficiency of CTCs and EVs by combining the advantages of microfluidic chips as isolation platforms and aptamers as recognition tools. In this review, we first briefly introduce some new strategies for aptamer discovery based on traditional and aptamer-based microfluidic approaches. Then, we subsequently summarize the progress of aptamer-based microfluidics for CTC and EV detection. Finally, we offer an outlook on the future directional challenges of aptamer-based microfluidics for circulating targets in clinical applications.
  • loading
  • F. Bray, J. Ferlay, I. Soerjomataram, et al., Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA Cancer J. Clin. 68 (2018) 394-424.
    Y. Sumida, A. Nakajima, Y. Itoh, Limitations of liver biopsy and non-invasive diagnostic tests for the diagnosis of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis, World J. Gastroenterol. 20 (2014) 475-485.
    W. Li, H. Wang, Z. Zhao, et al., Emerging nanotechnologies for liquid biopsy: The detection of circulating tumor cells and extracellular vesicles, Adv. Mater. 31 (2019), 1805344.
    W.J. Frable, Fine-needle aspiration biopsy: A review, Hum. Pathol. 14 (1983) 9-28.
    E. Munzone, F. Nole, A. Goldhirsch, et al., Changes of HER2 status in circulating tumor cells compared with the primary tumor during treatment for advanced breast cancer, Clin. Breast Cancer 10 (2010) 392-397.
    V. Guarneri, S. Giovannelli, G. Ficarra, et al., Comparison of HER-2 and hormone receptor expression in primary breast cancers and asynchronous paired metastases: Impact on patient management, Oncologist 13 (2008) 838-844.
    E. Crowley, F. Di Nicolantonio, F. Loupakis, et al., Liquid biopsy: Monitoring cancer-genetics in the blood, Nat. Rev. Clin. Oncol. 10 (2013) 472-484.
    A. Di Meo, J. Bartlett, Y. Cheng, et al., Liquid biopsy: A step forward towards precision medicine in urologic malignancies, Mol. Cancer 16 (2017), 80.
    L. Wu, Y. Wang, L. Zhu, et al., Aptamer-based liquid biopsy, ACS Appl. Bio Mater. 3 (2020) 2743-2764.
    G. Chen, A.C. Huang, W. Zhang, et al., Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response, Nature 560 (2018) 382-386.
    S. Nagrath, L.V. Sequist, S. Maheswaran, et al., Isolation of rare circulating tumor cells in cancer patients by microchip technology, Nature 450 (2007) 1235-1239.
    F. Chemi, D.G. Rothwell, N. McGranahan, et al., Pulmonary venous circulating tumor cell dissemination before tumor resection and disease relapse, Nat. Med. 25 (2019) 1534-1539.
    S. Maheswaran, L.V. Sequist, S. Nagrath, et al., Detection of mutations in EGFR in circulating lung-cancer cells, N. Engl. J. Med. 359 (2008) 366-377.
    L.D. Mellby, A.P. Nyberg, J.S. Johansen, et al., Serum biomarker signature-based liquid biopsy for diagnosis of early-stage pancreatic cancer, J. Clin. Oncol. 36 (2018) 2887-2894.
    W. Zhang, W. Xia, Z. Lv, et al., Liquid biopsy for cancer: Circulating tumor cells, circulating free DNA or exosomes? Cell. Physiol. Biochem. 41 (2017) 755-768.
    L. Wu, Y. Wang, X. Xu, et al., Aptamer-based detection of circulating targets for precision medicine, Chem. Rev. 121 (2021) 12035-12105.
    F. Tian, C. Liu, L. Lin, et al., Microfluidic analysis of circulating tumor cells and tumor-derived extracellular vesicles, Trends Analyt. Chem. 117 (2019) 128-145.
    C. Alix-Panabieres, K. Pantel, Circulating tumor cells: Liquid biopsy of cancer, Clin. Chem. 59 (2013) 110-118.
    I. Baccelli, A. Schneeweiss, S. Riethdorf, et al., Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay, Nat. Biotechnol. 31 (2013) 539-544.
    K. Boriachek, M.N. Islam, A. Moller, et al., Biological functions and current advances in isolation and detection strategies for exosome nanovesicles, Small 14 (2018), 1702153.
    W. Wang, J. Luo, S. Wang, Recent progress in isolation and detection of extracellular vesicles for cancer diagnostics, Adv. Healthcare Mater. 7 (2018), 1800484.
    K.M. Kim, K. Abdelmohsen, M. Mustapic, et al., RNA in extracellular vesicles, Wiley Interdiscip. Rev. RNA 8 (2017), e1413.
    A. Thind, C. Wilson, Exosomal miRNAs as cancer biomarkers and therapeutic targets, J. Extracell. Vesicles 5 (2016), 31292.
    B. Lin, Y. Lei, J. Wang, et al., Microfluidic-based exosome analysis for liquid biopsy, Small Methods 5 (2021), 2001131.
    H. Shao, J. Chung, L. Balaj, et al., Protein typing of circulating microvesicles allows real-time monitoring of glioblastoma therapy, Nat. Med. 18 (2012) 1835-1840.
    R. Kalluri, The biology and function of exosomes in cancer, J. Clin. Invest. 126 (2016) 1208-1215.
    C. Liu, J. Zhao, F. Tian, et al., Low-cost thermophoretic profiling of extracellular-vesicle surface proteins for the early detection and classification of cancers, Nat. Biomed. Eng. 3 (2019) 183-193.
    R. Zhang, B. Le, W. Xu, et al., Magnetic squashing” of circulating tumor cells on plasmonic substrates for ultrasensitive NIR fluorescence detection, Small Methods 3 (2019), 1800474.
    D. Sun, J. Lu, L. Zhang, et al., Aptamer-based electrochemical cytosensors for tumor cell detection in cancer diagnosis: A review, Anal. Chim. Acta 1082 (2019) 1-17.
    C. Liu, Q. Feng, J. Sun, Lipid nanovesicles by microfluidics: Manipulation, synthesis, and drug delivery, Adv. Mater. 31 (2019), 1804788.
    S. Lin, Z. Yu, D. Chen, et al., Progress in microfluidics-based exosome separation and detection technologies for diagnostic applications, Small 16 (2020), e1903916.
    G. Li, W. Tang, F. Yang, Cancer liquid biopsy using integrated microfluidic exosome analysis platforms, Biotechnol. J. 15 (2020), 1900225.
    J.M. Jackson, M.A. Witek, J.W. Kamande, et al., Materials and microfluidics: Enabling the efficient isolation and analysis of circulating tumour cells, Chem. Soc. Rev. 46 (2017) 4245-4280.
    W. Qian, Y. Zhang, W. Chen, Capturing cancer: Emerging microfluidic technologies for the capture and characterization of circulating tumor cells, Small 11 (2015) 3850-3872.
    J.H. Myung, S. Hong, Microfluidic devices to enrich and isolate circulating tumor cells, Lab Chip 15 (2015) 4500-4511.
    Y. Zhao, D. Xu, W. Tan, Aptamer-functionalized nano/micro-materials for clinical diagnosis: Isolation, release and bioanalysis of circulating tumor cells, Integr. Biol. 9 (2017) 188-205.
    Z.T.F. Yu, K.M. Aw Yong, J. Fu, Microfluidic blood cell sorting: Now and beyond, Small 10 (2014) 1687-1703.
    N. Cheng, D. Du, X. Wang, et al., Recent advances in biosensors for detecting cancer-derived exosomes, Trends Biotechnol. 37 (2019) 1236-1254.
    Y. Song, T. Tian, Y. Shi, et al., Enrichment and single-cell analysis of circulating tumor cells, Chem. Sci. 8 (2017) 1736-1751.
    H. Ma, J. Liu, M.M. Ali, et al., Nucleic acid aptamers in cancer research, diagnosis and therapy, Chem. Soc. Rev. 44 (2015) 1240-1256.
    X. Fang, W. Tan, Aptamers generated from cell-SELEX for molecular medicine: A chemical biology approach, Acc. Chem. Res. 43 (2010) 48-57.
    C. Tuerk, L. Gold, Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase, Science 249 (1990) 505-510.
    A.D. Ellington, J.W. Szostak, In vitro selection of RNA molecules that bind specific ligands, Nature 346 (1990) 818-822.
    Z. Tang, D. Shangguan, K. Wang, et al., Selection of aptamers for molecular recognition and characterization of cancer cells, Anal. Chem. 79 (2007) 4900-4907.
    P. Mallikaratchy, Z. Tang, S. Kwame, et al., Aptamer directly evolved from live cells recognizes membrane bound immunoglobin heavy mu chain in Burkitt’s lymphoma cells, Mol. Cell. Proteomics 6 (2007) 2230-2238.
    D. Shangguan, Y. Li, Z. Tang, et al., Aptamers evolved from live cells as effective molecular probes for cancer study, Proc. Natl. Acad. Sci. U S A 103 (2006) 11838-11843.
    M. Huang, J. Song, P. Huang, et al., Molecular crowding evolution for enabling discovery of enthalpy-driven aptamers for robust biomedical applications, Anal. Chem. 91 (2019) 10879-10886.
    C. Shen, S. Liu, X. Li, et al., Electrochemical detection of circulating tumor cells based on DNA generated electrochemical current and rolling circle amplification, Anal. Chem. 91 (2019) 11614-11619.
    W. Shen, K. Guo, G.B. Adkins, et al., A single extracellular vesicle (EV) flow cytometry approach to reveal EV heterogeneity, Angew. Chem. Int. Ed. Engl. 57 (2018) 15675-15680.
    L. Wu, L. Zhu, M. Huang, et al., Aptamer-based microfluidics for isolation, release and analysis of circulating tumor cells, Trends Analyt. Chem. 117 (2019) 69-77.
    D.D. Dickey, P.H. Giangrande, Oligonucleotide aptamers: A next-generation technology for the capture and detection of circulating tumor cells, Methods 97 (2016) 94-103.
    E.M. Hassan, W.G. Willmore, M.C. DeRosa, Aptamers: Promising tools for the detection of circulating tumor cells, Nucleic Acid Ther. 26 (2016) 335-347.
    Y. Duan, C. Zhang, Y. Wang, et al., Research progress of whole-cell-SELEX selection and the application of cell-targeting aptamer, Mol. Biol. Rep. 49 (2022) 7979-7993.
    J. Yang, M.T. Bowser, Capillary electrophoresis-SELEX selection of catalytic DNA aptamers for a small-molecule porphyrin target, Anal. Chem. 85 (2013) 1525-1530.
    Z. Luo, H. Zhou, H. Jiang, et al., Development of a fraction collection approach in capillary electrophoresis SELEX for aptamer selection, Analyst 140 (2015) 2664-2670.
    K.-M. Song, E. Jeong, W. Jeon, et al., Aptasensor for ampicillin using gold nanoparticle based dual fluorescence-colorimetric methods, Anal. Bioanal. Chem. 402 (2012) 2153-2161.
    J. Chen, J. Liu, J. Wang, et al., Fluorescent biosensor based on FRET and catalytic hairpin assembly for sensitive detection of polysialic acid by using a new screened DNA aptamer, Talanta 242 (2022), 123282.
    L.Y. Hung, C.H. Wang, K.F. Hsu, et al., An on-chip Cell-SELEX process for automatic selection of high-affinity aptamers specific to different histologically classified ovarian cancer cells, Lab Chip 14 (2014) 4017-4028.
    S. Hong, Y. Wan, M. Tang, et al., Multifunctional screening platform for the highly efficient discovery of aptamers with high affinity and specificity, Anal. Chem. 89 (2017) 6535-6542.
    S. Ni, Z. Zhuo, Y. Pan, et al., Recent progress in aptamer discoveries and modifications for therapeutic applications, ACS Appl. Mater. Interfaces 13 (2021) 9500-9519.
    O. Aminova, M.D. Disney, A microarray-based method to perform nucleic acid selections, Methods Mol. Biol. 669 (2010) 209-224.
    Y. Zhu, P. Chandra, C. Ban, et al., Electrochemical evaluation of binding affinity for aptamer selection using the microarray chip, Electroanalysis 24 (2012) 1057-1064.
    X. Liu, H. Li, W. Jia, et al., Selection of aptamers based on a protein microarray integrated with a microfluidic chip, Lab Chip 17 (2017) 178-185.
    J. Glokler, T. Schutze, Z. Konthur, Automation in the high-throughput selection of random combinatorial libraries - Different approaches for select applications, Molecules 15 (2010) 2478-2490.
    N. Ogawa, M.D. Biggin, High-throughput SELEX determination of DNA sequences bound by transcription factors in vitro, Methods Mol. Biol. 786 (2012) 51-63.
    L.A. Fraser, A.B. Kinghorn, M.S.L. Tang, et al., Oligonucleotide functionalised microbeads: Indispensable tools for high-throughput aptamer selection, Molecules 20 (2015) 21298-21312.
    M.R. Dunn, R.M. Jimenez, J.C. Chaput, Analysis of aptamer discovery and technology, Nat. Rev. Chem. 1 (2017), 0076.
    J. Zhang, Y. Huang, M. Sun, et al., Recent advances in aptamer-based liquid biopsy, ACS Appl. Bio Mater. 5 (2022) 1954-1979.
    M.R. Gotrik, T.A. Feagin, A.T. Csordas, et al., Advancements in aptamer discovery technologies, Acc. Chem. Res. 49 (2016) 1903-1910.
    J.A. Ludwig, J.N. Weinstein, Biomarkers in cancer staging, prognosis and treatment selection, Nat. Rev. Cancer 5 (2005) 845-856.
    M. Yu, S. Stott, M. Toner, et al., Circulating tumor cells: Approaches to isolation and characterization, J. Cell Biol. 192 (2011) 373-382.
    C. Alix-Panabieres, K. Pantel, Clinical applications of circulating tumor cells and circulating tumor DNA as liquid biopsy, Cancer Discov. 6 (2016) 479-491.
    J.E. Hardingham, P.J. Hewett, R.E. Sage, et al., Molecular detection of blood-borne epithelial cells in colorectal cancer patients and in patients with benign bowel disease, Int. J. Cancer 89 (2000) 8-13.
    M. Cristofanilli, K.R. Broglio, V. Guarneri, et al., Circulating tumor cells in metastatic breast cancer: Biologic staging beyond tumor burden, Clin. Breast Cancer 7 (2007) 34-42.
    R. Nadal, A. Fernandez, P. Sanchez-Rovira, et al., Biomarkers characterization of circulating tumour cells in breast cancer patients, Breast Cancer Res. 14 (2012), R71.
    S.H. Kim, H. Ito, M. Kozuka, et al., Cancer marker-free enrichment and direct mutation detection in rare cancer cells by combining multi-property isolation and microfluidic concentration, Lab Chip 19 (2019) 757-766.
    L. Zhang, L. Zou, Y. Ma, et al., Multifaceted modifications for a cell size-based circulating tumor cell scope technique hold the prospect for large-scale application in general populations, Cell Biol. Int. 45 (2021) 345-357.
    Z. Dong, C. Tang, L. Zhao, et al., A microwell-assisted multiaptamer immunomagnetic platform for capture and genetic analysis of circulating tumor cells, Adv. Healthcare Mater. 7 (2018), 1801231.
    N. Sun, J. Wang, L. Ji, et al., A cellular compatible chitosan nanoparticle surface for isolation and in situ culture of rare number CTCs, Small 11 (2015) 5444-5451.
    B. Dou, L. Xu, B. Jiang, et al., Aptamer-functionalized and gold nanoparticle array-decorated magnetic graphene nanosheets enable multiplexed and sensitive electrochemical detection of rare circulating tumor cells in whole blood, Anal. Chem. 91 (2019) 10792-10799.
    Y. Xiao, L. Lin, M. Shen, et al., Design of DNA aptamer-functionalized magnetic short nanofibers for efficient capture and release of circulating tumor cells, Bioconjugate Chem. 31 (2020) 130-138.
    Y. Song, B. Lin, T. Tian, et al., Recent progress in microfluidics-based biosensing, Anal. Chem. 91 (2019) 388-404.
    J.A. Phillips, Y. Xu, Z. Xia, et al., Enrichment of cancer cells using aptamers immobilized on a microfluidic channel, Anal. Chem. 81 (2009) 1033-1039.
    Y. Xu, J.A. Phillips, J. Yan, et al., Aptamer-based microfluidic device for enrichment, sorting, and detection of multiple cancer cells, Anal. Chem. 81 (2009) 7436-7442.
    W. Sheng, T. Chen, R. Kamath, et al., Aptamer-enabled efficient isolation of cancer cells from whole blood using a microfluidic device, Anal. Chem. 84 (2012) 4199-4206.
    J. Zhu, J. Shang, Y. Jia, et al., Spatially selective release of aptamer-captured cells by temperature mediation, IET Nanobiotechnol. 8 (2014) 2-9.
    N.V. Nguyen, C.-P. Jen, Selective detection of human lung adenocarcinoma cells based on the aptamer-conjugated self-assembled monolayer of gold nanoparticles, Micromachines (Basel) 10 (2019), 195.
    F. Zhang, L. Wu, W. Nie, et al., Biomimetic microfluidic system for fast and specific detection of circulating tumor cells, Anal. Chem. 91 (2019) 15726-15731.
    L. Cao, L. Cheng, Z. Zhang, et al., Visual and high-throughput detection of cancer cells using a graphene oxide-based FRET aptasensing microfluidic chip, Lab Chip 12 (2012) 4864-4869.
    Y.-H. Chen, A.K. Pulikkathodi, Y.-D. Ma, et al., A microfluidic platform integrated with field-effect transistors for enumeration of circulating tumor cells, Lab Chip 19 (2019) 618-625.
    M.F. Abate, S. Jia, M.G. Ahmed, et al., Visual quantitative detection of circulating tumor cells with single-cell sensitivity using a portable microfluidic device, Small 15 (2019), 1804890.
    S.J. Reinholt, H.G. Craighead, Microfluidic device for aptamer-based cancer cell capture and genetic mutation detection, Anal. Chem. 90 (2018) 2601-2608.
    C. Xu, M. Tang, J. Feng, et al., A liquid biopsy-guided drug release system for cancer theranostics: Integrating rapid circulating tumor cell detection and precision tumor therapy, Lab Chip 20 (2020) 1418-1425.
    W. Sheng, T. Chen, W. Tan, et al., Multivalent DNA nanospheres for enhanced capture of cancer cells in microfluidic devices, ACS Nano 7 (2013) 7067-7076.
    W. Zhao, C.H. Cui, S. Bose, et al., Bioinspired multivalent DNA network for capture and release of cells, Proc. Natl. Acad. Sci. U S A 109 (2012) 19626-19631.
    Y. Song, Y. Shi, M. Huang, et al., Bioinspired engineering of a multivalent aptamer-functionalized nanointerface to enhance the capture and release of circulating tumor cells, Angew. Chem. Int. Ed. Engl. 58 (2019) 2236-2240.
    J. Zhang, B. Lin, L. Wu, et al., DNA nanolithography enables a highly ordered recognition interface in a microfluidic chip for the efficient capture and release of circulating tumor cells, Angew. Chem. Int. Ed. Engl. 59 (2020) 14115-14119.
    J. Peng, Y. Liu, R. Su, et al., DNA-programmed orientation-ordered multivalent microfluidic interface for liquid biopsy, Anal. Chem. 94 (2022) 8766-8773.
    C. Wang, Y. Xu, S. Li, et al., Designer tetrahedral DNA framework-based microfluidic technology for multivalent capture and release of circulating tumor cells, Mater. Today Bio 16 (2022), 100346.
    N.G. Maremanda, K. Roy, R.K. Kanwar, et al., Quick chip assay using locked nucleic acid modified epithelial cell adhesion molecule and nucleolin aptamers for the capture of circulating tumor cells, Biomicrofluidics 9 (2015), 054110.
    L. Zhao, C. Tang, L. Xu, et al., Enhanced and differential capture of circulating tumor cells from lung cancer patients by microfluidic assays using aptamer cocktail, Small 12 (2016) 1072-1081.
    Y. Zhang, Z. Wang, L. Wu, et al., Combining multiplex SERS nanovectors and multivariate analysis for in situ profiling of circulating tumor cell phenotype using a microfluidic chip, Small 14 (2018), 1704433.
    R. Gao, C. Zhan, C. Wu, et al., Simultaneous single-cell phenotype analysis of hepatocellular carcinoma CTCs using a SERS-aptamer based microfluidic chip, Lab Chip 21 (2021) 3888-3898.
    Z. Wu, Y. Pan, Z. Wang, et al., A PLGA nanofiber microfluidic device for highly efficient isolation and release of different phenotypic circulating tumor cells based on dual aptamers, J. Mater. Chem. B 9 (2021) 2212-2220.
    X. Zhang, X. Wei, X. Men, et al., Dual-multivalent-aptamer-conjugated nanoprobes for superefficient discerning of single circulating tumor cells in a microfluidic chip with inductively coupled plasma mass spectrometry detection, ACS Appl. Mater. Interfaces 13 (2021) 43668-43675.
    Y. Liu, Z. Lin, Z. Zheng, et al., Accurate isolation of circulating tumor cells via a heterovalent DNA framework recognition element-functionalized microfluidic chip, ACS Sens. 7 (2022) 666-673.
    Z. Han, F. Wan, J. Deng, et al., Ultrasensitive detection of mRNA in extracellular vesicles using DNA tetrahedron-based thermophoretic assay, Nano Today 38 (2021), 101203.
    F. Tian, C. Liu, J. Deng, et al., Microfluidic separation, detection, and engineering of extracellular vesicles for cancer diagnostics and drug delivery, Acc. Mater. Res. 3 (2022) 498-510.
    C. Harding, J. Heuser, P. Stahl, Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes, J. Cell Biol. 97 (1983) 329-339.
    B.T. Pan, K. Teng, C. Wu, et al., Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes, J. Cell Biol. 101 (1985) 942-948.
    Y. Belotti, C.T. Lim, Microfluidics for liquid biopsies: Recent advances, current challenges, and future directions, Anal. Chem. 93 (2021) 4727-4738.
    A.A. Patil, W.J. Rhee, Exosomes: Biogenesis, composition, functions, and their role in pre-metastatic niche formation, Biotechnol. Bioprocess Eng. 24 (2019) 689-701.
    M. Tschuschke, I. Kocherova, A. Bryja, et al., Inclusion biogenesis, methods of isolation and clinical application of human cellular exosomes, J. Clin. Med. 9 (2020), 436.
    Y. Sato-Kuwabara, S.A. Melo, F.A. Soares, et al., The fusion of two worlds: Non-coding RNAs and extracellular vesicles - diagnostic and therapeutic implications (Review), Int. J. Oncol. 46 (2015) 17-27.
    H. Xu, C. Liao, P. Zuo, et al., Magnetic-based microfluidic device for on-chip isolation and detection of tumor-derived exosomes, Anal. Chem. 90 (2018) 13451-13458.
    C. Liu, J. Zhao, F. Tian, et al., λ-DNA- and aptamer-mediated sorting and analysis of extracellular vesicles, J. Am. Chem. Soc. 141 (2019) 3817-3821.
    Q. Zhou, A. Rahimian, K. Son, et al., Development of an aptasensor for electrochemical detection of exosomes, Methods 97 (2016) 88-93.
    L. Kashefi-Kheyrabadi, J. Kim, S. Chakravarty, et al., Detachable microfluidic device implemented with electrochemical aptasensor (DeMEA) for sequential analysis of cancerous exosomes, Biosens. Bioelectron. 169 (2020), 112622.
    X. Dong, J. Chi, L. Zheng, et al., Efficient isolation and sensitive quantification of extracellular vesicles based on an integrated ExoID-Chip using photonic crystals, Lab Chip 19 (2019) 2897-2904.
    Y. Ren, K. Ge, D. Sun, et al., Rapid enrichment and sensitive detection of extracellular vesicles through measuring the phospholipids and transmembrane protein in a microfluidic chip, Biosens. Bioelectron. 199 (2022), 113870.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (565) PDF downloads(44) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return