Citation: | Lu Wang, Dandan Jiang, Lei Hua, Chuang Chen, Dongming Li, Weiguo Wang, Yiqian Xu, Qimu Yang, Haiyang Li, Song Leng. Breath-by-breath measurement of exhaled ammonia by acetone-modifier positive photoionization ion mobility spectrometry via online dilution and purging sampling[J]. Journal of Pharmaceutical Analysis, 2023, 13(4): 412-420. doi: 10.1016/j.jpha.2023.02.008 |
F.M. Schmidt, O. Vaittinen, M. Metsala, et al., Ammonia in breath and emitted from skin, J. Breath Res. 7 (2013), 017109.
|
I. Kurtz, Renal tubular acidosis: H(+)/base and ammonia transport abnormalities and clinical syndromes, Adv. Chronic Kidney Dis. 25 (2018) 334−350.
|
H.D. Zacharias, A.P. Zacharias, L.L. Gluud, et al., Pharmacotherapies that specifically target ammonia for the prevention and treatment of hepatic encephalopathy in adults with cirrhosis, Cochrane Database Syst. Rev. 6 (2019), CD012334.
|
A. Jindal, R.K. Jagdish, Sarcopenia: Ammonia metabolism and hepatic encephalopathy, Clin. Mol. Hepatol. 25 (2019) 270−279.
|
M.J. Chan, Y.J. Li, C.C. Wu, et al., Breath ammonia is a useful biomarker predicting kidney function in chronic kidney disease patients, Biomedicines. 8 (2020), 468.
|
F. Imbert-Bismut, P.E. Payet, J. Alfaisal, et al., Transportation and handling of blood samples prior to ammonia measurement in the real life of a large university hospital, Clin Chim Acta. 510 (2020) 522−530.
|
T.L. Mathew, P. Pownraj, S. Abdulla, et al., Technologies for clinical diagnosis using expired human breath analysis, Diagnostics. 5 (2015) 27−60.
|
J. Ishida, T. Oikawa, C. Nakagawa, et al., Real-time breath ammonia measurement using a novel cuprous bromide sensor device in patients with chronic liver disease: a feasibility and pilot study, J. Breath Res. 15 (2021), 026010.
|
L.G. Silva, S.C.E. Bueno, M.G. da Silva, et al., Photoacoustic detection of ammonia exhaled by individuals with chronic kidney disease, Lasers Med. Sci. 37 (2022) 983−991.
|
Z.H. Endre, J.W. Pickering, M.K. Storer, et al., Breath ammonia and trimethylamine allow real-time monitoring of haemodialysis efficacy, Physiol. Meas. 32 (2011) 115−130.
|
D.J. Kearney, T. Hubbard, D. Putnam, Breath ammonia measurement in Helicobacter pylori infection, Dig. Dis. Sci. 47 (2002) 2523−2530.
|
I. Bayrakli, A. Turkmen, M. Cem Kockar, Feasibility study of using breath ammonia analysis based on off-axis cavity-enhanced absorption spectroscopy with external cavity diode laser for noninvasive real-time diagnosis of helicobacter pylori, Appl. Spectrosc. 70 (2016) 1269−1277.
|
A. Amano, Y. Yoshida, T. Oho, et al., Monitoring ammonia to assess halitosis, Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 94 (2002) 692−696.
|
I. Mogilnicka, P. Bogucki, M. Ufnal, Microbiota and malodor-etiology and management, Int. J. Mol. Sci. 21 (2020), 2886.
|
Z. Luo, Z. Tan, X. Long, Application of near-infrared optical feedback cavity enhanced absorption spectroscopy (OF-CEAS) to the detection of ammonia in exhaled human breath, Sensors (Basel). 19 (2019), 3686.
|
S.F. Solga, M.L. Mudalel, L.A. Spacek, et al., Fast and accurate exhaled breath ammonia measurement, J. Vis. Exp. 88 (2014), 51658.
|
A.H. Neerincx, J. Mandon, J. van Ingen, et al., Real-time monitoring of hydrogen cyanide (HCN) and ammonia (NH(3)) emitted by Pseudomonas aeruginosa, J. Breath Res. 9 (2015), 027102.
|
B. Li, C. Feng, H. Wu, et al., Calibration-free mid-infrared exhaled breath sensor based on BF-QEPAS for real-time ammonia measurements at ppb level, Sens. Actuators, B. 358 (2022), 131510.
|
J. Wang, W. Zhang, L. Li, et al., Breath ammonia detection based on tunable fiber laser photoacoustic spectroscopy, Appl. Phys. B. 103 (2011) 263−269.
|
S. Bevc, E. Mohorko, M. Kolar, et al., Measurement of breath ammonia for detection of patients with chronic kidney disease, Clin. Nephrol. 88 (2017) 14−17.
|
Y. Ogimoto, R. Selyanchyn, N. Takahara, et al., Detection of ammonia in human breath using quartz crystal microbalance sensors with functionalized mesoporous SiO2 nanoparticle films, Sens. Actuators, B. 215 (2015) 428−436.
|
G. Song, D. Jiang, J. Wu, et al., An ultrasensitive fluorescent breath ammonia sensor for noninvasive diagnosis of chronic kidney disease and helicobacter pylori infection, Chem. Eng. J. 440 (2022), 135979.
|
L. Gao, X. Yang, Y. Shu, et al., Ionic liquid-based slab optical waveguide sensor for the detection of ammonia in human breath, J. Colloid Interface Sci. 512 (2018) 819−825.
|
R. Gao, X. Ma, L. Liu, et al., In-situ deposition of POMA/ZnO nanorods array film by vapor phase polymerization for detection of trace ammonia in human exhaled breath at room temperature, Anal. Chim. Acta. 1199 (2022), 339563.
|
G. Slingers, R. Goossens, H. Janssens, et al., Real-time selected ion flow tube mass spectrometry to assess short- and long-term variability in oral and nasal breath, J. Breath Res. 14 (2020), 036006.
|
T. Wang, A. Pysanenko, K. Dryahina, et al., Analysis of breath, exhaled via the mouth and nose, and the air in the oral cavity, J. Breath Res. 2 (2008), 037013.
|
M. Li, W. Huang, H. Chen, et al., Dopant assisted photoionization ion mobility spectrometry for on-site specific and sensitive determination of atmospheric ammonia, Sens. Actuators, B. 330 (2021), 129365.
|
C.D. Chouinard, M.S. Wei, C.R. Beekman, et al., Ion mobility in clinical analysis: current progress and future perspectives, Clin. Chem. 62 (2016) 124−133.
|
E. Jazan, M. Tabrizchi, Kinetic study of proton-bound dimer formation using ion mobility spectrometry, Chem. Phys. 355 (2009) 37−42.
|
E. Jazan, H. Mirzaei, Direct analysis of human breath ammonia using corona discharge ion mobility spectrometry, J. Pharm. Biomed. Anal. 88 (2014) 315−320.
|
W. Huang, W. Wang, C. Chen, et al., Long-term sub second-response monitoring of gaseous ammonia in ambient air by positive inhaling ion mobility spectrometry, Talanta. 175 (2017) 522−527.
|
Q. Zhou, E. Li, Z. Wang, et al., Time-resolved dynamic dilution introduction for ion mobility spectrometry and its application in end-tidal propofol monitoring, J. Breath Res. 9 (2015), 016002.
|
T.J. Kauppila, T. Kuuranne, E.C. Meurer, et al., Atmospheric pressure photoionization mass spectrometry. Ionization mechanism and the effect of solvent on the ionization of naphthalenes, Anal. Chem. 74 (2002) 5470−5479.
|
H. Borsdorf, P. Fiedler, T. Mayer, The effect of humidity on gas sensing with ion mobility spectrometry, Sens. Actuators, B. 218 (2015) 184−190.
|
D. Jiang, X. Wang, C. Chen, et al., Dopant-assisted photoionization positive ion mobility spectrometry coupled with time-resolved purge introduction for online quantitative monitoring of intraoperative end-tidal propofol, Anal. Chim. Acta. 1032 (2018) 83−90.
|
D. Jiang, C. Chen, X. Wang, et al., Online monitoring of end-tidal propofol in balanced anesthesia by anisole assisted positive photoionization ion mobility spectrometer, Talanta. 211 (2020), 120712.
|
C. Turner, P. Spanel, D. Smith, A longitudinal study of ammonia, acetone and propanol in the exhaled breath of 30 subjects using selected ion flow tube mass spectrometry, SIFT-MS, Physiol. Meas. 27 (2006) 321−337.
|
R. Maeso-Diaz, M. Ortega-Ribera, A. Fernandez-Iglesias, et al., Effects of aging on liver microcirculatory function and sinusoidal phenotype, Aging Cell. 17 (2018), e12829.
|
C. Lopez-Otin, M.A. Blasco, L. Partridge, et al., The hallmarks of aging, Cell. 153 (2013) 1194−1217.
|
R.J. Glassock, A.D. Rule, Aging and the kidneys: anatomy, physiology and consequences for defining chronic kidney disease, Nephron. 134 (2016) 25−29.
|
B.O. Eriksen, M.L. Lochen, K.A. Arntzen, et al., Subclinical cardiovascular disease is associated with a high glomerular filtration rate in the nondiabetic general population, Kidney Int. 86 (2014) 146−153.
|