Volume 13 Issue 8
Aug.  2023
Turn off MathJax
Article Contents
Jingwei Zheng, Haijian Wu, Xiaoyu Wang, Guoqiang Zhang, Jia'nan Lu, Weilin Xu, Shenbin Xu, Yuanjian Fang, Anke Zhang, Anwen Shao, Sheng Chen, Zhen Zhao, Jianmin Zhang, Jun Yu. Temporal dynamics of microglia-astrocyte interaction in neuroprotective glial scar formation after intracerebral hemorrhage[J]. Journal of Pharmaceutical Analysis, 2023, 13(8): 862-879. doi: 10.1016/j.jpha.2023.02.007
Citation: Jingwei Zheng, Haijian Wu, Xiaoyu Wang, Guoqiang Zhang, Jia'nan Lu, Weilin Xu, Shenbin Xu, Yuanjian Fang, Anke Zhang, Anwen Shao, Sheng Chen, Zhen Zhao, Jianmin Zhang, Jun Yu. Temporal dynamics of microglia-astrocyte interaction in neuroprotective glial scar formation after intracerebral hemorrhage[J]. Journal of Pharmaceutical Analysis, 2023, 13(8): 862-879. doi: 10.1016/j.jpha.2023.02.007

Temporal dynamics of microglia-astrocyte interaction in neuroprotective glial scar formation after intracerebral hemorrhage

doi: 10.1016/j.jpha.2023.02.007
Funds:

This study was supported by the National Natural Science Foundation of China (Grant Nos.: 82071287 and 81870916), the National Natural Science Foundation of China (Grant No.: 81971097), the Basic Public Interests Research Plan of Zhejiang Province, China (Grant No.: GF18H090006), the National Natural Science Foundation of China (Grant No.: 81701214), the National Natural Science Foundation of China (Grant No.: 82001299), and the Natural Science Foundation of Zhejiang Province, China (Grant No.: TGD23C040017).

  • Received Date: Oct. 08, 2022
  • Rev Recd Date: Feb. 02, 2023
  • The role of glial scar after intracerebral hemorrhage (ICH) remains unclear. This study aimed to investigate whether microglia-astrocyte interaction affects glial scar formation and explore the specific function of glial scar. We used a pharmacologic approach to induce microglial depletion during different ICH stages and examine how ablating microglia affects astrocytic scar formation. Spatial transcriptomics (ST) analysis was performed to explore the potential ligand-receptor pair in the modulation of microglia-astrocyte interaction and to verify the functional changes of astrocytic scars at different periods. During the early stage, sustained microglial depletion induced disorganized astrocytic scar, enhanced neutrophil infiltration, and impaired tissue repair. ST analysis indicated that microglia-derived insulin like growth factor 1 (IGF1) modulated astrocytic scar formation via mechanistic target of rapamycin (mTOR) signaling activation. Moreover, repopulating microglia (RM) more strongly activated mTOR signaling, facilitating a more protective scar formation. The combination of IGF1 and osteopontin (OPN) was necessary and sufficient for RM function, rather than IGF1 or OPN alone. At the chronic stage of ICH, the overall net effect of astrocytic scar changed from protective to destructive and delayed microglial depletion could partly reverse this. The vital insight gleaned from our data is that sustained microglial depletion may not be a reasonable treatment strategy for early-stage ICH. Inversely, early-stage IGF1/OPN treatment combined with late-stage PLX3397 treatment is a promising therapeutic strategy. This prompts us to consider the complex temporal dynamics and overall net effect of microglia and astrocytes, and develop elaborate treatment strategies at precise time points after ICH.
  • loading
  • M.V. Sofroniew, Astrocyte reactivity: Subtypes, states, and functions in CNS innate immunity, Trends Immunol. 41 (2020) 758-770.
    J.L. Zamanian, L. Xu, L.C. Foo, et al., Genomic analysis of reactive astrogliosis, J. Neurosci. 32 (2012) 6391-6410.
    I.B. Wanner, M.A. Anderson, B. Song, et al., Glial scar borders are formed by newly proliferated, elongated astrocytes that interact to corral inflammatory and fibrotic cells via STAT3-dependent mechanisms after spinal cord injury, J. Neurosci. 33 (2013) 12870-12886.
    E.J. Bradbury, E.R. Burnside, Moving beyond the glial scar for spinal cord repair, Nat. Commun. 10 (2019), 3879.
    V. Rothhammer, F.J. Quintana, Control of autoimmune CNS inflammation by astrocytes, Semin. Immunopathol. 37 (2015) 625-638.
    S.A. Liddelow, K.A. Guttenplan, L.E. Clarke, et al., Neurotoxic reactive astrocytes are induced by activated microglia, Nature 541 (2017) 481-487.
    P. Hasel, I.V.L. Rose, J.S. Sadick, et al., Neuroinflammatory astrocyte subtypes in the mouse brain, Nat. Neurosci. 24 (2021) 1475-1487.
    R.F. Keep, Y. Hua, G. Xi, Intracerebral haemorrhage: Mechanisms of injury and therapeutic targets, Lancet Neurol. 11 (2012) 720-731.
    X. Shi, L. Luo, J. Wang, et al., Stroke subtype-dependent synapse elimination by reactive gliosis in mice, Nat. Commun. 12 (2021), 6943.
    S.A. Liddelow, B.A. Barres, Reactive astrocytes: Production, function, and therapeutic potential, Immunity 46 (2017) 957-967.
    J. Zheng, Z. Sun, F. Liang, et al., AdipoRon attenuates neuroinflammation after intracerebral hemorrhage through AdipoR1-AMPK pathway, Neuroscience 412 (2019) 116-130.
    M. Xue, V.W. Yong, Neuroinflammation in intracerebral haemorrhage: Immunotherapies with potential for translation, Lancet Neurol. 19 (2020) 1023-1032.
    S.A. Liddelow, S.E. Marsh, B. Stevens, Microglia and astrocytes in disease: Dynamic Duo or partners in crime? Trends Immunol. 41 (2020) 820-835.
    Y. Shinozaki, K. Shibata, K. Yoshida, et al., Transformation of astrocytes to a neuroprotective phenotype by microglia via P2Y1 receptor downregulation, Cell Rep. 19 (2017) 1151-1164.
    J. Zheng, J. Lu, S. Mei, et al., Ceria nanoparticles ameliorate white matter injury after intracerebral hemorrhage: Microglia-astrocyte involvement in remyelination, J. Neuroinflammation 18 (2021), 43.
    E.F. Willis, K.P.A. MacDonald, Q.H. Nguyen, et al., Repopulating microglia promote brain repair in an IL-6-dependent manner, Cell 180 (2020) 833-846.e16.
    N. Habib, C. McCabe, S. Medina, et al., Disease-associated astrocytes in Alzheimer’s disease and aging, Nat. Neurosci. 23 (2020) 701-706.
    H.N. Noristani, J.C. Sabourin, H. Boukhaddaoui, et al., Spinal cord injury induces astroglial conversion towards neuronal lineage, Mol. Neurodegener. 11 (2016), 68.
    H.N. Noristani, Y.N. Gerber, J.C. Sabourin, et al., RNA-seq analysis of microglia reveals time-dependent activation of specific genetic programs following spinal cord injury, Front. Mol. Neurosci. 10 (2017), 90.
    J.F. Navarro, J. Sjostrand, F. Salmen, et al., ST Pipeline: An automated pipeline for spatial mapping of unique transcripts, Bioinformatics 33 (2017) 2591-2593.
    M. Efremova, M. Vento-Tormo, S.A. Teichmann, et al., CellPhoneDB: Inferring cell-cell communication from combined expression of multi-subunit ligand-receptor complexes, Nat. Protoc. 15 (2020) 1484-1506.
    R. Wu, W. Guo, X. Qiu, et al., Comprehensive analysis of spatial architecture in primary liver cancer, Sci. Adv. 7 (2021), eabg3750.
    D. Pham, X. Tan, J. Xu, et al., StLearn: Integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues, bioRxiv. 2020. https://www.biorxiv.org/content/10.1101/2020.05.31.125658v1.
    M.R.P. Elmore, A.R. Najafi, M.A. Koike, et al., Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain, Neuron 82 (2014) 380-397.
    Q. Zhang, W. Zhu, F. Xu, et al., The interleukin-4/PPARγ signaling axis promotes oligodendrocyte differentiation and remyelination after brain injury, PLoS Biol. 17 (2019), e3000330.
    X. Xu, A. Zhang, Y. Zhu, et al., MFG-E8 reverses microglial-induced neurotoxic astrocyte (A1) via NF-κB and PI3K-Akt pathways, J. Cell. Physiol. 234 (2019) 904-914.
    M. Lombardi, R. Parolisi, F. Scaroni, et al., Detrimental and protective action of microglial extracellular vesicles on myelin lesions: Astrocyte involvement in remyelination failure, Acta Neuropathol. 138 (2019) 987-1012.
    C. Rodriguez, T. Sobrino, J. Agulla, et al., Neovascularization and functional recovery after intracerebral hemorrhage is conditioned by the Tp53 Arg72Pro single-nucleotide polymorphism, Cell Death Differ. 24 (2017) 144-154.
    C. Zeng, F. Pan, L.A. Jones, et al., Evaluation of 5-ethynyl-2’-deoxyuridine staining as a sensitive and reliable method for studying cell proliferation in the adult nervous system, Brain Res. 1319 (2010) 21-32.
    K.L. Adams, V. Gallo, The diversity and disparity of the glial scar, Nat. Neurosci. 21 (2018) 9-15.
    B.P. Heithoff, K.K. George, A.N. Phares, et al., Astrocytes are necessary for blood-brain barrier maintenance in the adult mouse brain, Glia 69 (2021) 436-472.
    J. Frik, J. Merl-Pham, N. Plesnila, et al., Cross-talk between monocyte invasion and astrocyte proliferation regulates scarring in brain injury, EMBO Rep. 19 (2018), e45294.
    M.A. Anderson, J.E. Burda, Y. Ren, et al., Astrocyte scar formation aids central nervous system axon regeneration, Nature 532 (2016) 195-200.
    M. Hara, K. Kobayakawa, Y. Ohkawa, et al., Interaction of reactive astrocytes with type I collagen induces astrocytic scar formation through the integrin-N-cadherin pathway after spinal cord injury, Nat. Med. 23 (2017) 818-828.
    K. Kierdorf, T. Masuda, M.J.C. Jordao, et al., Macrophages at CNS interfaces: Ontogeny and function in health and disease, Nat. Rev. Neurosci. 20 (2019) 547-562.
    A. Yim, C. Smith, A.M. Brown, Osteopontin/secreted phosphoprotein-1 harnesses glial-, immune-, and neuronal cell ligand-receptor interactions to sense and regulate acute and chronic neuroinflammation, Immunol. Rev. 311 (2022) 224-233.
    J.A. Ellison, J.J. Velier, P. Spera, et al., Osteopontin and its integrin receptor αvβ3 are upregulated during formation of the glial scar after focal stroke, Stroke 29 (1998) 1698-1706.
    A.M. Fernandez, I. Torres-Aleman, The many faces of insulin-like peptide signalling in the brain, Nat. Rev. Neurosci. 13 (2012) 225-239.
    P. Chen, W. Wang, R. Liu, et al., Olfactory sensory experience regulates gliomagenesis via neuronal IGF1, Nature 606 (2022) 550-556.
    V. Skihar, C. Silva, A. Chojnacki, et al., Promoting oligodendrogenesis and myelin repair using the multiple sclerosis medication glatiramer acetate, Proc. Natl. Acad. Sci. U S A 106 (2009) 17992-17997.
    J.O. Lipton, M. Sahin, The neurology of mTOR, Neuron 84 (2014) 275-291.
    K. Switon, K. Kotulska, A. Janusz-Kaminska, et al., Molecular neurobiology of mTOR, Neuroscience 341 (2017) 112-153.
    G. Szalay, B. Martinecz, N. Lenart, et al., Microglia protect against brain injury and their selective elimination dysregulates neuronal network activity after stroke, Nat. Commun. 7 (2016), 11499.
    W.N. Jin, S.X. Shi, Z. Li, et al., Depletion of microglia exacerbates postischemic inflammation and brain injury, J. Cereb. Blood Flow Metab. 37 (2017) 2224-2236.
    V. Bellver-Landete, F. Bretheau, B. Mailhot, et al., Microglia are an essential component of the neuroprotective scar that forms after spinal cord injury, Nat. Commun. 10 (2019), 518.
    Y.N. Gerber, G.P. Saint-Martin, C.M. Bringuier, et al., CSF1R inhibition reduces microglia proliferation, promotes tissue preservation and improves motor recovery after spinal cord injury, Front. Cell. Neurosci. 12 (2018), 368.
    M. Li, Z. Li, H. Ren, et al., Colony stimulating factor 1 receptor inhibition eliminates microglia and attenuates brain injury after intracerebral hemorrhage, J. Cereb. Blood Flow Metab. 37 (2017) 2383-2395.
    H. Konishi, T. Okamoto, Y. Hara, et al., Astrocytic phagocytosis is a compensatory mechanism for microglial dysfunction, EMBO J. 39 (2020), e104464.
    Z.G. Zhang, L. Zhang, Q. Jiang, et al., VEGF enhances angiogenesis and promotes blood-brain barrier leakage in the ischemic brain, J. Clin. Invest. 106 (2000) 829-838.
    B. Yalcin, M. Monje, Microenvironmental interactions of oligodendroglial cells, Dev. Cell. 56 (2021) 1821-1832.
    H.Y.F. Yong, K.S. Rawji, S. Ghorbani, et al., The benefits of neuroinflammation for the repair of the injured central nervous system, Cell. Mol. Immunol. 16 (2019) 540-546.
    V.E. Miron, Microglia-driven regulation of oligodendrocyte lineage cells, myelination, and remyelination, J. Leukoc. Biol. 101 (2017) 1103-1108.
    G. Poulen, E. Aloy, C.M. Bringuier, et al., Inhibiting microglia proliferation after spinal cord injury improves recovery in mice and nonhuman primates, Theranostics 11 (2021) 8640-8659.
    G. Poulen, S. Bartolami, H.N. Noristani, et al., Unlike brief inhibition of microglia proliferation after spinal cord injury, long-term treatment does not improve motor recovery, Brain Sci. 11 (2021), 1643.
    Z. Li, Y. Song, T. He, et al., M2 microglial small extracellular vesicles reduce glial scar formation via the miR-124/STAT3 pathway after ischemic stroke in mice, Theranostics 11 (2021) 1232-1248.
    W.J. Alilain, K.P. Horn, H. Hu, et al., Functional regeneration of respiratory pathways after spinal cord injury, Nature 475 (2011) 196-200.
    L. Kang, H. Yu, X. Yang, et al., Neutrophil extracellular traps released by neutrophils impair revascularization and vascular remodeling after stroke, Nat. Commun. 11 (2020), 2488.
    J.E. Burda, M.V. Sofroniew, Reactive gliosis and the multicellular response to CNS damage and disease, Neuron 81 (2014) 229-248.
    J. Silver, The glial scar is more than just astrocytes, Exp. Neurol. 286 (2016) 147-149.
    Z. Liu, M. Chopp, Astrocytes, therapeutic targets for neuroprotection and neurorestoration in ischemic stroke, Prog. Neurobiol. 144 (2016) 103-120.
    Y. Liu, X. Wang, W. Li, et al., A sensitized IGF1 treatment restores corticospinal axon-dependent functions, Neuron 95 (2017) 817-833.e4.
    M.A. Anderson, T.M. O’Shea, J.E. Burda, et al., Required growth facilitators propel axon regeneration across complete spinal cord injury, Nature 561 (2018) 396-400.
    R.J. Henry, R.M. Ritzel, J.P. Barrett, et al., Microglial depletion with CSF1R inhibitor during chronic phase of experimental traumatic brain injury reduces neurodegeneration and neurological deficits, J. Neurosci. 40 (2020) 2960-2974.
    Y. Li, R.M. Ritzel, N. Khan, et al., Delayed microglial depletion after spinal cord injury reduces chronic inflammation and neurodegeneration in the brain and improves neurological recovery in male mice, Theranostics 10 (2020) 11376-11403.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (455) PDF downloads(65) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return