Volume 13 Issue 4
Apr.  2023
Turn off MathJax
Article Contents
Xinyu Li, Qianjie Ma, Xiangtai Zheng, Qin Chen, Xiaodong Sun. Recent applications and chiral separation development based on stationary phases in open tubular capillary electrochromatography (2019-2022)[J]. Journal of Pharmaceutical Analysis, 2023, 13(4): 323-339. doi: 10.1016/j.jpha.2023.01.003
Citation: Xinyu Li, Qianjie Ma, Xiangtai Zheng, Qin Chen, Xiaodong Sun. Recent applications and chiral separation development based on stationary phases in open tubular capillary electrochromatography (2019-2022)[J]. Journal of Pharmaceutical Analysis, 2023, 13(4): 323-339. doi: 10.1016/j.jpha.2023.01.003

Recent applications and chiral separation development based on stationary phases in open tubular capillary electrochromatography (2019-2022)

doi: 10.1016/j.jpha.2023.01.003
Funds:

This study was funded by the Project of National Natural Science Foundation of China (Grant No.: 82003705), and the Shanghai Science and Technology Innovation Foundation (Grant Nos.: 23010500200 and 23ZR1422700).

  • Received Date: Sep. 11, 2022
  • Accepted Date: Jan. 31, 2023
  • Rev Recd Date: Jan. 16, 2023
  • Publish Date: Feb. 06, 2023
  • Capillary electrochromatography (CEC) plays a significant role in chiral separation via the double separation principle, partition coefficient difference between the two phases, and electroosmotic flow-driven separation. Given the distinct properties of the inner wall stationary phase (SP), the separation ability of each SP differs from one another. Particularly, it provides large room for promising applications of open tubular capillary electrochromatography (OT-CEC). We divided the OT-CEC SPs developed over the past four years into six types: ionic liquids, nanoparticle materials, microporous materials, biomaterials, non-nanopolymers, and others, to mainly introduce their characteristics in chiral drug separation. There also added a few classic SPs that occurred within ten years as supplements to enrich the features of each SP. Additionally, we discuss their applications in metabolomics, food, cosmetics, environment, and biology as analytes in addition to chiral drugs. OT-CEC plays an increasingly significant role in chiral separation and may promote the development of capillary electrophoresis (CE) combined with other instruments in recent years, such as CE with mass spectrometry (CE/MS) and CE with ultraviolet light detector (CE/UV).
  • loading
  • L.A. Colon, T.D. Maloney, A.M. Fermier, Packing columns for capillary electrochromatography, J. Chromatogr. A 887 (2000) 43-53.
    Z. Mao, Z. Chen, Advances in capillary electro-chromatography, J. Pharm. Anal. 9 (2019) 227-237.
    L. Zhao, W. Lv, X. Niu, et al., An azine-linked covalent organic framework as stationary phase for separation of environmental endocrine disruptors by open-tubular capillary electrochromatography, J. Chromatogr. A 1615 (2020), 460722.
    J. Zhang, S. Xie, M. Zi, et al., Recent advances of application of porous molecular cages for enantioselective recognition and separation, J. Separ. Sci. 43 (2020) 134-149.
    Z. Li, Z. Mao, Z. Chen, In-situ growth of a metal organic framework composed of zinc(II), adeninate and biphenyldicarboxylate as a stationary phase for open-tubular capillary electrochromatography, Microchim. Acta 186 (2019), 53.
    W. Zhou, W. Sun, Y. Liu, et al., Ionic liquid-copolymerized monolith based porous layer open tubular column for CEC-MS analysis, Talanta 209 (2020), 120556.
    X. Yang, X. Sun, Z. Feng, et al., Open-tubular capillary electrochromatography with β-cyclodextrin-functionalized magnetic nanoparticles as stationary phase for enantioseparation of dansylated amino acids, Microchim. Acta 186 (2019), 244.
    X. Sun, C. Chen, X. Li, et al., Gold nanoparticles coated with a tetramethylammonium lactobionate ionic liquid for enhanced chiral differentiation in open tubular capillary electrochromatography: application to enantioseparation of β-blockers, Microchim. Acta 187 (2020), 170.
    Z. Jiang, J. Qu, X. Tian, et al., Sol-gel technique for the preparation of β-cyclodextrin gold nanoparticles as chiral stationary phase in open-tubular capillary electrochromatography, J. Separ. Sci. 42 (2019) 1948-1954.
    L. Zhou, J. Lun, Y. Liu, et al., In situ immobilization of sulfated-β-cyclodextrin as stationary phase for capillary electrochromatography enantioseparation, Talanta 200 (2019) 1-8.
    H. Zhang, Q. Fu, G. Zheng, et al., Modulation of electroosmotic flow in open tubular capillary electrochromatography by chitosan-assisted titanium oxide nanoparticles liquid phase deposition, Chromatographia 82 (2019) 1383-1393.
    X. Sun, J. Guo, T. Yu, et al., A novel coating method for CE capillary using carboxymethyl-β-cyclodextrin-modified magnetic microparticles as stationary for electrochromatography enantioseparation, Anal. Bioanal. Chem. 411 (2019) 1193-1202.
    X. Zhao, L. Liu, N. Li, et al., Zeolite silica nanoparticles-supported open-tubular columns for isomer and chiral separation using capillary electrochromatography coupled with amperometric detection, New J. Chem. 44 (2020) 1028-1035.
    Q. Bai, C. Zhang, Y. Zhao, et al., Evaluation of chiral separation based on bovine serum albumin-conjugated carbon nanotubes as stationary phase in capillary electrochromatography, Electrophoresis 41 (2020) 1253-1260.
    M. Ma, Y. Xi, Y. Du, et al., Maltodextrin-modified graphene oxide for improved enantiomeric separation of six basic chiral drugs by open-tubular capillary electrochromatography, Microchim. Acta 187 (2020), 55.
    X. Sun, Y. Ding, B. Niu, et al., Evaluation of a composite nanomaterial consist of gold nanoparticles and graphene-carbon nitride as capillary electrochromatography stationary phase for enantioseparation, Microchem. J. 169 (2021), 106613.
    Y. Liu, J. Li, Y. Wang, et al., Open-tubular capillary electrochromatography with Janus structured Au-Fe3O4 nanoparticles coating as stationary phase, Anal. Sci. 36 (2020) 413-418.
    X. Sun, Y. Du, S. Zhao, et al., Enantioseparation of propranolol, amlodipine and metoprolol by electrochromatography using an open tubular capillary modified with β-cyclodextrin and poly(glycidyl methacrylate) nanoparticles, Microchim. Acta 186 (2019), 128.
    L. Gao, X. Hu, S. Qin, et al., L-Cysteine modified metal-organic framework as a chiral stationary phase for enantioseparation by capillary electrochromatography, RSC Adv. 12 (2022) 6063-6075.
    X. Sun, Y. Tao, Y. Du, et al., Metal organic framework HKUST-1 modified with carboxymethyl-β-cyclodextrin for use in improved open tubular capillary electrochromatographic enantioseparation of five basic drugs, Microchim. Acta 186 (2019), 462.
    Z. Li, Z. Mao, W. Zhou, et al., γ-Cyclodextrin metal-organic framework supported by polydopamine as stationary phases for electrochromatographic enantioseparation, Talanta 218 (2020), 121160.
    W. Ding, M. Ma, Y. Du, et al., Metal organic framework ZIF-90 modified with lactobionic acid for use in improved open tubular capillary electrochromatographic enantioseparation of five basic drugs, Microchim. Acta 187 (2020), 651.
    Q. Li, Z. Li, Y. Fu, et al., Room-temperature growth of covalent organic frameworks as the stationary phase for open-tubular capillary electrochromatography, Analyst 146 (2021) 6643-6649.
    Y. Li, X. Lin, S. Qin, et al., β-Cyclodextrin-modified covalent organic framework as chiral stationary phase for the separation of amino acids and β-blockers by capillary electrochromatography, Chirality 32 (2020) 1008-1019.
    G. Wang, Y. Chen, W. Lv, et al., Enantioseparation in capillary eletrochromatography by covalent organic framework coating prepared in situ, J. Chromatogr. A 1670 (2022), 462943.
    X. Wang, X. Hu, Y. Shao, et al., Ambient temperature fabrication of a covalent organic framework from 1,3,5-triformylphloroglucinol and 1,4-phenylenediamine as a coating for use in open-tubular capillary electrochromatography of drugs and amino acids, Microchim. Acta 186 (2019), 650.
    L. Gao, X. Zhao, S. Qin, et al., A covalent organic framework for chiral capillary electrochromatography using a cyclodextrin mobile phase additive, Chirality 34 (2022) 537-549.
    X. Niu, W. Lv, Y. Sun, et al., In situ fabrication of 3D COF-300 in a capillary for separation of aromatic compounds by open-tubular capillary electrochromatography, Microchim. Acta 187 (2020), 233.
    Y. Wang, S. Zhuo, J. Hou, et al., Construction of β-cyclodextrin covalent organic framework-modified chiral stationary phase for chiral separation, ACS Appl. Mater. Interfaces 11 (2019) 48363-48369.
    R. Zong, X. Wang, H. Yin, et al., Capillary coated with three-dimensional covalent organic frameworks for separation of fluoroquinolones by open-tubular capillary electrochromatography, J. Chromatogr. A 1656 (2021), 462549.
    Y. Sun, C. Li, X. Niu, et al., Rapid and mild fabrication of protein membrane coated capillary based on supramolecular assemble for chiral separation in capillary electrochromatography, Talanta 195 (2019) 190-196.
    Z. Li, Q. Li, Y. Fu, et al., A lipase-based chiral stationary phase for direct chiral separation in capillary electrochromatography, Talanta 233 (2021), 122488.
    M. Ma, C. Chen, X. Zhu, et al., A porous layer open-tubular capillary column supported with pepsin and zeolitic imidazolate framework for enantioseparation of four basic drugs in capillary electrochromatography, J.Chromatogr. A 1637 (2021), 461866.
    C. Wang, D. Zhu, J. Zhang, et al., Homochiral iron-based γ-cyclodextrin metal-organic framework for stereoisomer separation in the open tubular capillary electrochromatography, J. Pharm. Biomed. Anal. 215 (2022), 114777.
    C. Wang, C. Chen, M. Ma, et al., In-situ grown metal organic framework synergistic system for the enantioseparation of three drugs in open tubular capillary electrochromatography, J. Separ. Sci. 45 (2022) 2708-2716.
    C. Zhang, J. Qu, X. Lv, et al., A novel open-tubular capillary electrochromatography using carboxymethyl-β-cyclodextrin functionalized gold nanoparticles as chiral stationary phase, J. Separ. Sci. 43 (2020) 946-953.
    L. Zhou, Y. Lu, G. Sun, Open tubular capillary column immobilized with sulfobutylether-β-cyclodextrin for chiral separation in capillary electrochromatography, J. Separ. Sci. 44 (2021) 2037-2045.
    L. Fang, Y. Zhao, C. Wang, et al., Preparation of a thiols β-cyclodextrin/gold nanoparticles-coated open tubular column for capillary electrochromatography enantioseparations, J. Separ. Sci. 43 (2020) 2209-2216.
    Y. Li, Y. Tang, S. Qin, et al., Preparation and characterization of a new open-tubular capillary column for enantioseparation by capillary electrochromatography, Chirality 31 (2019) 283-292.
    X. Li, Y. Li, S. Qin, et al., Preparation and enantioseparation application of urea amino-beta-cyclodextrin derivative open-tubular column, Chem. Res. Appl. 34 (2022) 1099-1103.
    J. Xing, F. Wang, H. Cong, et al., Analysis of proteins and chiral drugs based on vancomycin covalent capillary electrophoretic coating, Analyst 146 (2021) 1320-1325.
    L. Li, X. Xue, H. Zhang, et al., In-situ and one-step preparation of protein film in capillary column for open tubular capillary electrochromatography enantioseparation, Chin. Chem. Lett. 32 (2021) 2139-2142.
    L. He, M. Tang, G. Qin, et al., Separation of enantiomers by open-tubular capillary electrochromatography using (R)-1,1’-bi-2-naphthol derivatives as chiral stationary phases, Sep. Sci. Plus 5 (2022) 314-321.
    L. Zhao, J. Qiao, H. Zhang, et al., Open tubular capillary electrochromatography with block co-polymer coating for separation of β-lactam antibiotics, Chin. Chem. Lett. 30 (2019) 349-352.
    G. Sun, W. Tang, Y. Lu, et al., Growth of two-layer copolymer as the stationary phase with very high separation efficiency for separating peptides in capillary electrochromatography, Electrophoresis 42 (2021) 2087-2093.
    G. Yi, J. He, B. Ji, et al., Solvothermal-assisted in situ rapid growth of octadecylamine functionalized polydopamine-based permanent coating as stationary phase for open-tubular capillary electrochromatography, J. Chromatogr. A 1628 (2020), 461436.
    Y. Huang, G. Yi, B. Ji, et al., In situ one-pot synthesis of polydopamine/octadecylamine co-deposited coating in capillary for open-tubular capillary electrochromatography, J. Chromatogr. A 1610 (2020), 460559.
    L. Liu, J. Qiao, H. Zhang, et al., Separation of antipyretic analgesics by open tubular capillary electrochromatography with homopolymer coatings, J. Separ. Sci. 42 (2019) 3016-3022.
    F. Wang, Y. Zhang, G. Wang, et al., Synthesis of a covalent organic framework with hydrazine linkages and its application in open-tubular capillary electrochromatography, J. Chromatogr. A 1661 (2022), 462681.
    Z. Cai, X. Hu, R. Zong, et al., A graphene oxide-molybdenum disulfide composite used as stationary phase for determination of sulfonamides in open-tubular capillary electrochromatography, J. Chromatogr. A 1629 (2020), 461487.
    C. Liu, X. Zhang, H. Jing, et al., Using open-tubular capillary electrochromatography with part-coating column for binding constants determination of β2-adrenergic receptor with seven drugs, Electrophoresis 40 (2019) 289-295.
    Z. Li, Z. Mao, Z. Chen, Polydopamine-assisted immobilization of a zinc(II)-derived metal-organic cage as a stationary phase for open-tubular capillary electrochromatography, Microchim. Acta 186 (2019), 449.
    P. Chen, J. Wu, L. Zhou, et al., In situ controllable synthesis of Schiff base networks porous polymer coatings for open-tubular capillary electrochromatography, Microchim. Acta 188 (2021), 82.
    Z. Cai, X. Wang, J. An, et al., Determination of trace sulfonamides in environmental water and milk through capillary electrochromatography using PEG-MoS2 as stationary phase, Food Anal. Methods 13 (2020) 551-559.
    W. Zhou, X. Yu, Y. Liu, et al., Porous layer open-tubular column with styrene and itaconic acid-copolymerized polymer as stationary phase for capillary electrochromatography-mass spectrometry, Electrophoresis 42 (2021) 2664-2671.
    W. Sun, Y. Liu, W. Zhou, et al., In-situ growth of a spherical vinyl-functionalized covalent organic framework as stationary phase for capillary electrochromatography-mass spectrometry analysis, Talanta 230 (2021), 122330.
    L. Zhao, W. Lu, X. Niu, et al., Preparation of a two-dimensional azine-linked covalent organic framework-coated capillary and its application to the separation of nitrophenol environmental endocrine disruptors by open-tubular capillary electrochromatography, Se Pu 38 (2020) 1095-1101.
    P.W. Stege, G.L. Forlin, J.A. Gasquez, et al., Open-tubular capillary electrochromatography for the simultaneous determination of cadmium and copper in plants, J. Separ. Sci. 42 (2019) 1459-1467.
    A. Wang, K. Liu, M. Tian, et al., Open tubular capillary electrochromatography-mass spectrometry for analysis of underivatized amino acid enantiomers with a porous layer-gold nanoparticle-modified chiral column, Anal. Chem. 94 (2022) 9252-9260.
    T. Wang, L. Yang, Y. Cheng, et al., Evaluation of homochiral zeolitic imidazolate framework-8 supported open-tubular column by miniaturized capillary electrochromatography with amperometric detection, Microchim. Acta 188 (2021), 375.
    M. Wang, Y. Liu, Y. Liu, et al., MOFs and PDA-supported immobilization of BSA in open tubular affinity capillary electrochromatography: Prediction and study on drug-protein interactions, Talanta 237 (2022), 122959.
    L. Gao, X. Hu, S. Qin, et al., One-pot synthesis of a novel chiral Zr-based metal-organic framework for capillary electrochromatographic enantioseparation, Electrophoresis 43 (2022) 1161-1173.
    L. Gu, J. Guan, Z. Huang, et al., β-Cyclodextrin covalent organic framework supported by polydopamine as stationary phases for electrochromatographic enantioseparation, Electrophoresis 43 (2022) 1446-1454.
    G. Wang, W. Lv, C. Pan, et al., Synthesis of a novel chiral DA-TD covalent organic framework for open-tubular capillary electrochromatography enantioseparation, Chem. Commun. 58 (2022) 403-406.
    X. Sui, J. Guan, X. Li, et al., Preparation of a polydopamine/β-cyclodextrin coated open tubular capillary electrochromatography column and application for enantioseparation of five proton pump inhibitors, J. Separ. Sci. 44 (2021) 3295-3304.
    J. Flieger, J. Feder-Kubis, M. Tatarczak-Michalewska, Chiral ionic liquids: structural diversity, properties and applications in selected separation techniques, Int. J. Mol. Sci. 21 (2020), 4253.
    Q. Zhang, S. Xue, A. Li, et al., Functional materials in chiral capillary electrophoresis, Coord. Chem. Rev. 445 (2021), 214108.
    I.J. Stavrou, L. Moore Jr, V.E. Fernand, et al., Facile preparation of polysaccharide-coated capillaries using a room temperature ionic liquid for chiral separations, Electrophoresis 34 (2013) 1334-1338.
    R. Liu, S. Cheddah, S. Liu, et al., A porous layer open-tubular capillary column with immobilized pH gradient (PLOT-IPG) for isoelectric focusing of amino acids and proteins, Anal. Chim. Acta 1048 (2019) 204-211.
    S.F. Sandra, C. Natalia, C.P. Maria, et al., Use of choline chloride-D-sorbitol deep eutectic solvent as additive in cyclodextrin-electrokinetic chromatography for the enantiomeric separation of lacosamide, Microchem. J. 160 (2021) 105669.
    V. Adam, M. Vaculovicova, CE and nanomaterials - part II: nanomaterials in CE, Electrophoresis 38 (2017) 2405-2430.
    J.E. Blume, W.C. Manning, G. Troiano, et al., Rapid, deep and precise profiling of the plasma proteome with multi-nanoparticle protein corona, Nat. Commun. 11 (2020), 3662.
    Y. Zhang, W. Wang, X. Ma, et al., Polydopamine assisted fabrication of titanium oxide nanoparticles modified column for proteins separation by capillary electrochromatography, Anal. Biochem. 512 (2016) 103-109.
    C. Pan, W. Wang, X. Chen, In situ rapid preparation of homochiral metal-organic framework coated column for open tubular capillary electrochromatography, J. Chromatogr. A 1427 (2016) 125-133.
    L. Zhou, B. Zhang, S. Li, et al., Enantioselective open-tubular capillary electrochromatography using a β-cyclodextrin-gold nanoparticles-polydopamine coating as a stationary phase, New J. Chem. 42 (2018) 17250-17258.
    D. Wang, X. Song, Y. Duan, et al., Preparation and characterization of a polystyrene/bovine serum albumin nanoparticle-coated capillary for chiral separation using open-tubular capillary electrochromatography, Electrophoresis 34 (2013) 1339-1342.
    M. Li, X. Liu, F. Jiang, et al., Enantioselective open-tubular capillary electrochromatography using cyclodextrin-modified gold nanoparticles as stationary phase, J. Chromatogr. A 1218 (2011) 3725-3729.
    P. Rezanka, K. Navratilova, P. Zvatora, et al., Cyclodextrin modified gold nanoparticles-based open-tubular capillary electrochromatographic separations of polyaromatic hydrocarbons, J. Nanoparticle Res. 13 (2011) 5947-5957.
    W. Wang, X. Xiao, J. Chen, et al., Carboxyl modified magnetic nanoparticles coated open tubular column for capillary electrochromatographic separation of biomolecules, J. Chromatogr. A 1411 (2015) 92-100.
    B. Lin, T. Li, Y. Zhao, et al., Preparation of a TiO2 nanoparticle-deposited capillary column by liquid phase deposition and its application in phosphopeptide analysis, J. Chromatogr. A 1192 (2008) 95-102.
    Q. Qu, Y. Liu, W. Shi, et al., Tunable thick porous silica coating fabricated by multilayer-by-multilayer bonding of silica nanoparticles for open-tubular capillary chromatographic separation, J. Chromatogr. A 1399 (2015) 25-31.
    Y. Zhao, S. Zhao, J. Huang, et al., Quantum dot-enhanced chemiluminescence detection for simultaneous determination of dopamine and epinephrine by capillary electrophoresis, Talanta 85 (2011) 2650-2654.
    J.M. Jimenez-Soto, Y. Moliner-Martinez, S. Cardenas, et al., Evaluation of the performance of single-walled carbon nanohorns in capillary electrophoresis, Electrophoresis 31 (2010) 1681-1688.
    J. Chen, T. Lu, Y. Lin, Multi-walled carbon nanotube composites with polyacrylate prepared for open-tubular capillary electrochromatography, Electrophoresis 31 (2010) 3217-3226.
    J. Chen, K.H. Hsieh, Polyacrylamide grafted on multi-walled carbon nanotubes for open-tubular capillary electrochromatography: comparison with silica hydride and polyacrylate phase matrices, Electrophoresis 31 (2010) 3937-3948.
    X. Liu, X. Liu, X. Liu, et al., Graphene oxide and reduced graphene oxide as novel stationary phases via electrostatic assembly for open-tubular capillary electrochromatography, Electrophoresis 34 (2013) 1869-1876.
    N. Ye, J. Li, Determination of dopamine, epinephrine, and norepinephrine by open-tubular capillary electrochromatography using graphene oxide molecularly imprinted polymers as the stationary phase, J. Separ. Sci. 37 (2014) 2239-2247.
    R. Liang, X. Meng, C. Liu, et al., Enantiomeric separation by open-tubular capillary electrochromatography using bovine-serum-albumin-conjugated graphene oxide-magnetic nanocomposites as stationary phase, Microfluid. Nanofluidics 16 (2014) 195-206.
    R. Liang, C. Liu, X. Meng, et al., A novel open-tubular capillary electrochromatography using β-cyclodextrin functionalized graphene oxide-magnetic nanocomposites as tunable stationary phase, J. Chromatogr. A 1266 (2012) 95-102.
    J. Dong, Y. Liu, Y. Cui, Artificial metal-peptide assemblies: bioinspired assembly of peptides and metals through space and across length scales, J. Am. Chem. Soc. 143 (2021) 17316-17336.
    X. Yu, W. Zhou, Z. Chen, In situ immobilization of layered double hydroxides as stationary phase for capillary electrochromatography, J. Chromatogr. A 1530 (2017) 219-225.
    Y. Inomata, T. Sawada, M. Fujita, Metal-peptide torus knots from flexible short peptides, Chem 6 (2020) 294-303.
    T. Sawada, A. Matsumoto, M. Fujita, Coordination-driven folding and assembly of a short peptide into a protein-like two-nanometer-sized channel, Angewandte Chemie Int. Ed. 53 (2014) 7228-7232.
    T. Bao, P. Tang, D. Kong, et al., Polydopamine-supported immobilization of covalent-organic framework-5 in capillary as stationary phase for electrochromatographic separation, J. Chromatogr. A 1445 (2016) 140-148.
    S. Zhang, Y. Zheng, H. An, et al., Covalent organic frameworks with chirality enriched by biomolecules for efficient chiral separation, Angewandte Chemie Int. Ed. 57 (2018) 16754-16759.
    J. Zhang, P. Zhu, S. Xie, et al., Homochiral porous organic cage used as stationary phase for open tubular capillary electrochromatography, Anal. Chim. Acta 999 (2018) 169-175.
    A. Waheed, N. Baig, N. Ullah, et al., Removal of hazardous dyes, toxic metal ions and organic pollutants from wastewater by using porous hyper-cross-linked polymeric materials: a review of recent advances, J. Environ. Manag. 287 (2021), 112360.
    H. Liu, X. Li, L. Huang, et al., An open tubular capillary electrochromatography column with porous inner surface for protein separation, Anal. Biochem. 442 (2013) 186-188.
    V.E. Potolitsyna, L.A. Kartsova, E.A. Bessonova, Synthesis and study of the properties of PLOT columns based on new dendritic polymers for the separation of proteins by capillary electrochromatography, J. Anal. Chem. 68 (2013) 981-985.
    R.B. Yu, J.P. Quirino, Chiral separation using cyclodextrins as mobile phase additives in open-tubular liquid chromatography with a pseudophase coating, J. Separ. Sci. 45 (2022) 1195-1201.
    J. Hu, L. Yin, L. Jia, Chitosan-silica hybrid-coated open tubular column for hydrophilic interaction capillary electrochromatography, J. Separ. Sci. 34 (2011) 565-573.
    J. Chen, K.H. Hsieh, Nanochitosan crosslinked with polyacrylamide as the chiral stationary phase for open-tubular capillary electrochromatography, Electrophoresis 32 (2011) 398-407.
    S. Dong, Y. Sun, X. Zhang, et al., Nanocellulose crystals derivative-silica hybrid Sol open tubular capillary column for enantioseparation, Carbohydr. Polym. 165 (2017) 359-367.
    Q. Fu, K. Zhang, D. Gao, et al., Escherichia coli adhesive coating as a chiral stationary phase for open tubular capillary electrochromatography enantioseparation, Anal. Chim. Acta 969 (2017) 63-71.
    H. Matsunaga, Y. Sadakane, J. Haginaka, Separation of basic drug enantiomers by capillary electrophoresis using chicken α1-acid glycoprotein: insight into chiral recognition mechanism, Electrophoresis 24 (2003) 2442-2447.
    S.A. Zaidi, S.M. Lee, W.J. Cheong, Open tubular capillary columns with basic templates made by the generalized preparation protocol in capillary electrochromatography chiral separation and template structural effects on chiral separation capability, J. Chromatogr. A 1218 (2011) 1291-1299.
    A. Lobato, E.A. Pereira, L.M. Goncalves, Combining capillary electromigration with molecular imprinting techniques towards an optimal separation and determination, Talanta 221 (2021), 121546.
    Q. Zhao, J. Zhou, L. Zhang, et al., Coatings of molecularly imprinted polymers based on polyhedral oligomeric silsesquioxane for open tubular capillary electrochromatography, Talanta 152 (2016) 277-282.
    L. Cheng, K. Huang, H. Cui, et al., Coiled molecularly imprinted polymer layer open-tubular capillary tube for detection of parabens in personal care and cosmetic products, Sci. Total Environ. 706 (2020), 135961.
    F. Ali, W.J. Cheong, Open tubular capillary electrochromatography with an N-phenylacrylamide-styrene copolymer-based stationary phase for the separation of anomers of glucose and structural isomers of maltotriose, J. Separ. Sci. 38 (2015) 1763-1770.
    Y.L. Hsieh, T.H. Chen, C.Y. Liu, Capillary electrochromatographic separation of proteins on a column coated with titanium dioxide nanoparticles, Electrophoresis 27 (2006) 4288-4294.
    M. Hamer, A. Yone, I. Rezzano, Gold nanoparticle-coated capillaries for protein and peptide analysis on open-tubular capillary electrochromatography, Electrophoresis 33 (2012) 334-339.
    C.Y. Liu, T.H. Chen, T.K. Misra, A macrocyclic polyamine as an anion receptor in the capillary electrochromatographic separation of carbohydrates, J. Chromatogr. A 1154 (2007) 407-415.
    R. Liang, X. Wang, C. Liu, et al., Facile preparation of protein stationary phase based on polydopamine/graphene oxide platform for chip-based open tubular capillary electrochromatography enantioseparation, J. Chromatogr. A 1323 (2014) 135-142.
    F. Wang, Q. Zhang, C. Li, et al., Evaluation of affinity interaction between small molecules and platelets by open tubular affinity capillary electrochromatography, Electrophoresis 37 (2016) 736-743.
    J. Svobodova, I. Miksik, Open-tubular capillary electrochromatographic application of a Sol-gel matrix with chilli peppers, garlic, or synthetic additives, J. Separ. Sci. 43 (2020) 3691-3701.
    K. Fukushima, S. Harada, A. Takeuchi, et al., Association between dyslipidemia and plasma levels of branched-chain amino acids in the Japanese population without diabetes mellitus, J. Clin. Lipidol. 13 (2019) 932-939.e2.
    F.P. Gomes, J.R. Yates III, Recent trends of capillary electrophoresis-mass spectrometry in proteomics research, Mass Spectrom. Rev. 38 (2019) 445-460.
    W. Zhang, R. Ramautar, CE-MS for metabolomics: developments and applications in the period 2018-2020, Electrophoresis 42 (2021) 381-401.
    K.D. Duncan, I. Lanekoff, Spatially defined surface sampling capillary electrophoresis mass spectrometry, Anal. Chem. 91 (2019) 7819-7827.
    L. Ying, D. Wang, H. Yang, et al., Synthesis of boronate-decorated polyethyleneimine-grafted porous layer open tubular capillaries for enrichment of polyphenols in fruit juices, J. Chromatogr. A 1544 (2018) 23-32.
    M.T. Matyska, J.J. Pesek, L. Yang, Screening method for determining the presence of N-nitrosodiethanolamine in cosmetics by open-tubular capillary electrochromatography, J. Chromatogr. A 887 (2000) 497-503.
    L. D’Ulivo, Y. Feng, A novel open tubular capillary electrochromatographic method for differentiating the DNA interaction affinity of environmental contaminants, PLoS One 11 (2016), e0153081.
    Y. Liu, J. Hu, Y. Li, et al., Microwave assisted synthesis of metal-organic framework MIL-101 nanocrystals as sorbent and pseudostationary phase in capillary electrophoresis for the separation of anthraquinones in environmental water samples, Electrophoresis 38 (2017) 2521-2529.
    W. Zhou, W. Zhang, Y. Liu, et al., Polydopamine-functionalized poly(ether ether ketone) tube for capillary electrophoresis-mass spectrometry, Anal. Chim. Acta 987 (2017) 64-71.
    T. Kawai, N. Ota, K. Okada, et al., Ultrasensitive single cell metabolomics by capillary electrophoresis-mass spectrometry with a thin-walled tapered emitter and large-volume dual sample preconcentration, Anal. Chem. 91 (2019) 10564-10572.
    A. Maruyama, K. Kami, K. Sasaki, et al., Extraction of aqueous metabolites from cultured adherent cells for metabolomic analysis by capillary electrophoresis-mass spectrometry, J. Vis. Exp. (2019), e59551.
    R. Ramautar, G.W. Somsen, G.J. de Jong, CE-MS for metabolomics: developments and applications in the period 2016-2018, Electrophoresis 40 (2019) 165-179.
    L. Nyssen, M. Fillet, E. Cavalier, et al., Highly sensitive and selective separation of intact parathyroid hormone and variants by sheathless CE-ESI-MS/MS, Electrophoresis 40 (2019) 1550-1557.
    W. Zhang, K. Segers, D. Mangelings, et al., Assessing the suitability of capillary electrophoresis-mass spectrometry for biomarker discovery in plasma-based metabolomics, Electrophoresis 40 (2019) 2309-2320.
    J. Sastre Torano, R. Ramautar, G. de Jong, Advances in capillary electrophoresis for the life sciences, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 1118-1119 (2019) 116-136.
    A. Latosinska, J. Siwy, H. Mischak, et al., Peptidomics and proteomics based on CE-MS as a robust tool in clinical application: the past, the present, and the future, Electrophoresis 40 (2019) 2294-2308.
    S. Lee, S.J. Kim, E. Bang, et al., Chiral separation of intact amino acids by capillary electrophoresis-mass spectrometry employing a partial filling technique with a crown ether carboxylic acid, J. Chromatogr. A 1586 (2019) 128-138.
    M. Shanmuganathan, P. Britz-McKibbin, New advances for newborn screening of inborn errors of metabolism by capillary electrophoresis-mass spectrometry (CE-MS), Methods Mol. Biol. 1972 (2019) 139-163.
    Y. Yu, S. Zhu, F. Yuan, et al., Ultrasensitive and simultaneous determination of RNA modified nucleotides by sheathless interfaced capillary electrophoresis-tandem mass spectrometry, Chem. Commun. 55 (2019) 7595-7598.
    H.Y. Huang, C. Lin, S.H. Jiang, et al., Capillary electrochromatography-mass spectrometry determination of melamine and related triazine by-products using poly(divinyl benzene-alkene-vinylbenzyl trimethylammonium chloride) monolithic stationary phases, Anal. Chim. Acta 719 (2012) 96-103.
    L. Pont, G. Marin, M. Vergara-Barberan, et al., Polymeric monolithic microcartridges with gold nanoparticles for the analysis of protein biomarkers by on-line solid-phase extraction capillary electrophoresis-mass spectrometry, J. Chromatogr. A 1622 (2020), 461097.
    J.K. Wu, C.S. Yang, Y.S. Wu, et al., Continuous affinity-gradient nano-stationary phase served as a column for reversed-phase electrochromatography and matrix carrier in time-of-flight mass spectrometry for protein analysis, Anal. Chim. Acta 889 (2015) 166-171.
    Z. Chen, B. Boggess, H.C. Chang, Open-tubular capillary electrochromatography-mass spectrometry with sheathless nanoflow electrospray ionization for analysis of amino acids and peptides, J. Mass Spectrom. 42 (2007) 244-253.
    C. Gstottner, S. Nicolardi, M. Haberger, et al., Intact and subunit-specific analysis of bispecific antibodies by sheathless CE-MS, Anal. Chim. Acta 1134 (2020) 18-27.
    J.J. Pesek, M.T. Matyska, V. Salgotra, Retention of proteins and metalloproteins in open tubular capillary electrochromatography with etched chemically modified columns, Electrophoresis 29 (2008) 3842-3849.
    M. Meixner, M. Pattky, C. Huhn, Novel approach for the synthesis of a neutral and covalently bound capillary coating for capillary electrophoresis-mass spectrometry made from highly polar and pH-persistent N-acryloylamido ethoxyethanol, Anal. Bioanal. Chem. 412 (2020) 561-575.
    J. Cheng, G.B. Morin, D.D.Y. Chen, Bottom-up proteomics of envelope proteins extracted from spinach chloroplast via high organic content CE-MS, Electrophoresis 41 (2020) 370-378.
    A. Beutner, T. Herl, F.M. Matysik, Selectivity enhancement in capillary electrophoresis by means of two-dimensional separation or dual detection concepts, Anal. Chim. Acta 1057 (2019) 18-35.
    S. Neuberger, K. Jooss, C. Ressel, et al., Quantification of ascorbic acid and acetylsalicylic acid in effervescent tablets by CZE-UV and identification of related degradation products by heart-cut CZE-CZE-MS, Anal. Bioanal. Chem. 408 (2016) 8701-8712.
    H. Feng, M. Su, F.N. Rifai, et al., Parallel analysis and orthogonal identification of N-glycans with different capillary electrophoresis mechanisms, Anal. Chim. Acta 953 (2017) 79-86.
    P. Tang, Z. Chen, Capillary electrochromatography using knitted aromatic polymer as the stationary phase for the separation of small biomolecules and drugs, Talanta 178 (2018) 650-655.
    C. Aydogan, A. Denizli, Chiral separation-based ligand exchange by open-tubular capillary electrochromatography, Anal. Biochem. 447 (2014) 55-57.
    Z. Wei, L. Mu, Y. Huang, et al., Low crosslinking imprinted coatings based on liquid crystal for capillary electrochromatography, J. Chromatogr. A 1237 (2012) 115-121.
    L. Qi, J. Qiao, Advances in stimuli-responsive polymeric coatings for open-tubular capillary electrochromatography, J. Chromatogr. A 1670 (2022), 462957.
    D. Kong, Z. Chen, Open-tubular capillary electrochromatography using carboxylatopillar[5]arene as stationary phase, Electrophoresis 39 (2018) 363-369.
    H. Guo, Y. Sun, X. Niu, et al., The preparation of poly-levodopa coated capillary column for capillary electrochromatography enantioseparation, J. Chromatogr. A 1578 (2018) 91-98.
    K. Faserl, A.J. Chetwynd, I. Lynch, et al., Corona isolation method matters: capillary electrophoresis mass spectrometry based comparison of protein Corona compositions following on-particle versus In-solution or in-gel digestion, Nanomaterials 9 (2019), 898.
    C. Pontillo, S. Filip, D.M. Borras, et al., CE-MS-based proteomics in biomarker discovery and clinical application, Proteonomics Clin. Appl. 9 (2015) 322-334.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (366) PDF downloads(47) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return