Volume 13 Issue 4
Apr.  2023
Turn off MathJax
Article Contents
Weilin Zeng, Yingqiu Song, Runze Wang, Rong He, Tianlu Wang. Neutrophil elastase: From mechanisms to therapeutic potential[J]. Journal of Pharmaceutical Analysis, 2023, 13(4): 355-366. doi: 10.1016/j.jpha.2022.12.003
Citation: Weilin Zeng, Yingqiu Song, Runze Wang, Rong He, Tianlu Wang. Neutrophil elastase: From mechanisms to therapeutic potential[J]. Journal of Pharmaceutical Analysis, 2023, 13(4): 355-366. doi: 10.1016/j.jpha.2022.12.003

Neutrophil elastase: From mechanisms to therapeutic potential

doi: 10.1016/j.jpha.2022.12.003
Funds:

This work has been supported by the Liaoning Province Natural Science Foundation (Grant Nos.: 2020-ZLLH-47, 2020-MS-065, 2021-YGJC-02, and 2017225054). Figures in the paper were drawn using Figdraw, and we sincerely thank the free drawing support provided by the Figdraw platform (www.fgdraw.com). We also would like to thank Editage (www.editage.cn) for English language editing.

  • Received Date: Aug. 23, 2022
  • Accepted Date: Dec. 31, 2022
  • Rev Recd Date: Nov. 30, 2022
  • Publish Date: Jan. 07, 2023
  • Neutrophil elastase (NE), a major protease in the primary granules of neutrophils, is involved in microbicidal activity. NE is an important factor promoting inflammation, has bactericidal effects, and shortens the inflammatory process. NE also regulates tumor growth by promoting metastasis and tumor microenvironment remodeling. However, NE plays a role in killing tumors under certain conditions and promotes other diseases such as pulmonary ventilation dysfunction. Additionally, it plays a complex role in various physiological processes and mediates several diseases. Sivelestat, a specific NE inhibitor, has strong potential for clinical application, particularly in the treatment of coronavirus disease 2019 (COVID-19). This review discusses the pathophysiological processes associated with NE and the potential clinical applications of sivelestat.
  • loading
  • J.A. Voynow, M. Shinbashi, Neutrophil elastase and chronic lung disease, Biomolecules 11 (2021), 1065.
    C. Cui, K. Chakraborty, X. Tang et al., Neutrophil elastase selectively kills cancer cells and attenuates tumorigenesis, Cell 184 (2021) 3163-3177.e21.
    L. Sorokin, The impact of the extracellular matrix on inflammation, Nat. Rev. Immunol. 10 (2010) 712-723.
    A. Sahebnasagh, F. Saghafi, M. Safdari, et al., Neutrophil elastase inhibitor (sivelestat) may be a promising therapeutic option for management of acute lung injury/acute respiratory distress syndrome or disseminated intravascular coagulation in COVID-19, J. Clin. Pharm. Ther. 45 (2020) 1515-1519.
    T. Sun, H. Zhang, Chinese experts’ consensus on clinical application of Sivelestat Sodium, Chin. Res. Hosp. 9(2022) 9-13.
    R. Medzhitov, The spectrum of inflammatory responses, Science 374 (2021) 1070-1075.
    Y. Shao, J. Saredy, W.Y. Yang, et al., Vascular endothelial cells and innate immunity, Arterioscler. Thromb. Vasc. Biol. 40 (2020) e138-e152.
    J.S. Pober, W.C. Sessa, Evolving functions of endothelial cells in inflammation, Nat. Rev. Immunol. 7 (2007) 803-815.
    C. Schauer, C. Janko, L.E. Munoz, et al., Aggregated neutrophil extracellular traps limit inflammation by degrading cytokines and chemokines, Nat. Med. 20 (2014) 511-517.
    P.X. Liew, P. Kubes, The neutrophil’s role during health and disease, Physiol. Rev. 99 (2019) 1223-1248.
    S.J. Galli, N. Gaudenzio, M. Tsai, Mast cells in inflammation and disease: Recent progress and ongoing concerns, Annu. Rev. Immunol. 38 (2020) 49-77.
    D. Wu, A. Cline-Smith, E. Shashkova, et al., T-cell mediated inflammation in postmenopausal osteoporosis, Front. Immunol. 12 (2021), 687551.
    D.I. Gabrilovich, S. Nagaraj, Myeloid-derived suppressor cells as regulators of the immune system, Nat. Rev. Immunol. 9 (2009) 162-174.
    C. Yao, S. Narumiya, Prostaglandin-cytokine crosstalk in chronic inflammation, Br. J. Pharmacol. 176 (2019) 337-354.
    C.T. Robb, M. Goepp, A.G. Rossi, et al., Non-steroidal anti-inflammatory drugs, prostaglandins, and COVID-19, Br. J. Pharmacol. 177 (2020) 4899-4920.
    J. Iype, M. Fux, Basophils orchestrating eosinophils' chemotaxis and function in allergic inflammation, Cells 10 (2021), 895.
    G. Doring, The role of neutrophil elastase in chronic inflammation, Am. J. Respir. Crit. Care. Med. 150 (1994) S114-S117.
    V. Papayannopoulos, Neutrophil extracellular traps in immunity and disease, Nat. Rev. Immunol. 18 (2018) 134-147.
    C. Rosales, Neutrophils at the crossroads of innate and adaptive immunity, J. Leukoc. Biol. 108 (2020) 377-396.
    A.B. Kummarapurugu, S. Zheng, J. Ma, et al., Neutrophil elastase triggers the release of macrophage extracellular traps: Relevance to cystic fibrosis, Am. J. Respir. Cell Mol. Biol. 66 (2022) 76-85.
    S.J. Thulborn, V. Mistry, C.E. Brightling, et al., Neutrophil elastase as a biomarker for bacterial infection in COPD, Respir. Res. 20 (2019), 170.
    A.J. Dicker, M.L. Crichton, E.G. Pumphrey, et al., Neutrophil extracellular traps are associated with disease severity and microbiota diversity in patients with chronic obstructive pulmonary disease, J. Allergy Clin. Immunol. 141 (2018) 117-127.
    P. Strnad, N.G. McElvaney, D.A. Lomas, Alpha1-antitrypsin deficiency, N. Engl. J. Med. 382 (2020) 1443-1455.
    B. Thebaud, K.N. Goss, M. Laughon, et al., Bronchopulmonary dysplasia, Nat. Rev. Dis. Primers 5 (2019), 78.
    J.T. Benjamin, E.J. Plosa, J.M. Sucre, et al., Neutrophilic inflammation during lung development disrupts elastin assembly and predisposes adult mice to COPD, J. Clin. Invest. 131 (2021), e139481.
    M.B. Hilscher, T. Sehrawat, J.P. Arab, et al., Mechanical stretch increases expression of CXCL1 in liver sinusoidal endothelial cells to recruit neutrophils, generate sinusoidal microthombi, and promote portal hypertension, Gastroenterology 157 (2019) 193-209.e9.
    S. Rafii, J.M. Butler, B. Ding, Angiocrine functions of organ-specific endothelial cells, Nature 529 (2016) 316-325.
    N.C. Gauthier, P. Roca-Cusachs, Mechanosensing at integrin-mediated cell-matrix adhesions: From molecular to integrated mechanisms, Curr. Opin. Cell Biol. 50 (2018) 20-26.
    H. Cuervo, C.M. Nielsen, D.A. Simonetto, et al., Endothelial Notch signaling is essential to prevent hepatic vascular malformations in mice, Hepatology 64 (2016) 1302-1316.
    A.L. Correia, J.C. Guimaraes, P.A. Auf der Maur, et al., Hepatic stellate cells suppress NK cell-sustained breast cancer dormancy, Nature 594 (2021) 566-571.
    M. Vismara, C. Reduzzi, M.G. Daidone, et al., Circulating tumor cells (CTCs) heterogeneity in metastatic breast cancer: Different approaches for different needs, Adv. Exp. Med. Biol. 1220 (2020) 81-91.
    A.R. Nobre, E. Risson, D.K. Singh, et al., Bone marrow NG2+/Nestin+ mesenchymal stem cells drive DTC dormancy via TGFβ2, Nat. Cancer 2 (2021) 327-339.
    B.L. Pierce, R. Ballard-Barbash, L. Bernstein, et al., Elevated biomarkers of inflammation are associated with reduced survival among breast cancer patients, J. Clin. Oncol. 27 (2009) 3437-3444.
    J.P. Pierce, R.E. Patterson, C.M. Senger, et al., Lifetime cigarette smoking and breast cancer prognosis in the after breast cancer pooling project, J. Natl. Cancer Inst. 106 (2014), djt359.
    A.H. Wu, S.L. Gomez, C. Vigen, et al., The California Breast Cancer Survivorship Consortium (CBCSC): Prognostic factors associated with racial/ethnic differences in breast cancer survival, Cancer Causes Control 24 (2013) 1821-1836.
    S. Murin, K.E. Pinkerton, N.E. Hubbard, et al., The effect of cigarette smoke exposure on pulmonary metastatic disease in a murine model of metastatic breast cancer, Chest 125 (2004) 1467-1471.
    J.M. De Cock, T. Shibue, A. Dongre, et al., Inflammation triggers Zeb1-dependent escape from tumor latency, Cancer Res. 76 (2016) 6778-6784.
    J. Cools-Lartigue, J. Spicer, B. McDonald, et al., Neutrophil extracellular traps sequester circulating tumor cells and promote metastasis, J. Clin. Invest. 123 (2013) 3446-3458.
    S. Tohme, H.O. Yazdani, A.B. Al-Khafaji, et al., Neutrophil extracellular traps promote the development and progression of liver metastases after surgical stress, Cancer Res. 76 (2016) 1367-1380.
    J. Albrengues, M.A. Shields, D. Ng, et al., Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice, Science 361 (2018), eaao4227.
    I. del Barco Barrantes, C. Stephan-Otto Attolini, K. Slobodnyuk, et al., Regulation of mammary luminal cell fate and tumorigenesis by p38α, Stem Cell Rep. 10 (2018) 257-271.
    E.F. Wagner, A.R. Nebreda, Signal integration by JNK and p38 MAPK pathways in cancer development, Nat. Rev. Cancer 9 (2009) 537-549.
    T. Zarubin, J. Han, Activation and signaling of the p38 MAP kinase pathway, Cell Res. 15 (2005) 11-18.
    M. Matsushita, T. Nakamura, H. Moriizumi, et al., Stress-responsive MTK1 SAPKKK serves as a redox sensor that mediates delayed and sustained activation of SAPKs by oxidative stress, Sci. Adv. 6 (2020), eaay9778.
    C. Gomez-Aleza, B. Nguyen, G. Yoldi, et al., Inhibition of RANK signaling in breast cancer induces an anti-tumor immune response orchestrated by CD8+ T cells, Nat. Commun. 11 (2020), 6335.
    N. Singh, D. Baby, J.P. Rajguru, et al., Inflammation and cancer, Ann. Afr. Med. 18 (2019) 121-126.
    M.A. Giese, L.E. Hind, A. Huttenlocher, Neutrophil plasticity in the tumor microenvironment, Blood 133 (2019) 2159-2167.
    H. Huang, H. Zhang, A.E. Onuma, et al., Neutrophil elastase and neutrophil extracellular traps in the tumor microenvironment, Adv. Exp. Med. Biol. 1263 (2020) 13-23.
    K.H. Susek, M. Karvouni, E. Alici, et al., The role of CXC chemokine receptors 1-4 on immune cells in the tumor microenvironment, Front. Immunol. 9 (2018), 2159.
    S. Jaillon, A. Ponzetta, D. di Mitri, et al., Neutrophil diversity and plasticity in tumour progression and therapy, Nat. Rev. Cancer 20 (2020) 485-503.
    K. Rawat, S. Syeda, A. Shrivastava, Neutrophil-derived Granule cargoes: Paving the way for tumor growth and progression, Cancer Metastasis Rev. 40 (2021) 221-244.
    A.M. Houghton, D.M. Rzymkiewicz, H. Ji, et al., Neutrophil elastase-mediated degradation of IRS-1 accelerates lung tumor growth, Nat. Med. 16 (2010) 219-223.
    H. Munir, J.O. Jones, T. Janowitz, et al., Stromal-driven and Amyloid β-dependent induction of neutrophil extracellular traps modulates tumor growth, Nat. Commun. 12 (2021), 683.
    Y. Suhail, M.P. Cain, K. Vanaja, et al., Systems biology of cancer metastasis, Cell Syst. 9 (2019) 109-127.
    C.E. Martin, K. List, Cell surface-anchored serine proteases in cancer progression and metastasis, Cancer Metastasis Rev. 38 (2019) 357-387.
    C. Kerros, S.C. Tripathi, D. Zha, et al., Neuropilin-1 mediates neutrophil elastase uptake and cross-presentation in breast cancer cells, J. Biol. Chem. 292 (2017) 10295-10305.
    A. Gobel, S. Dell'Endice, N. Jaschke, et al., The role of inflammation in breast and prostate cancer metastasis to bone, Int. J. Mol. Sci. 22 (2021), 5078.
    T. Sato, S. Takahashi, T. Mizumoto, et al., Neutrophil elastase and cancer, Surg. Oncol. 15 (2006) 217-222.
    I. Lerman, S.R. Hammes, Neutrophil elastase in the tumor microenvironment, Steroids 133 (2018) 96-101.
    I. Lerman, M.L. Garcia-Hernandez, J. Rangel-Moreno, et al., Infiltrating myeloid cells exert protumorigenic actions via neutrophil elastase, Mol. Cancer Res. 15 (2017) 1138-1152.
    J.A. Caruso, S. Akli, L. Pageon, et al., The serine protease inhibitor elafin maintains normal growth control by opposing the mitogenic effects of neutrophil elastase, Oncogene 34 (2015) 3556-3567.
    Y. Wada, K. Yoshida, J. Hihara, et al., Sivelestat, a specific neutrophil elastase inhibitor, suppresses the growth of gastric carcinoma cells by preventing the release of transforming growth factor-alpha, Cancer Sci. 97 (2006) 1037-1043.
    U. Meyer-Hoffert, J. Wingertszahn, O. Wiedow, Human leukocyte elastase induces keratinocyte proliferation by epidermal growth factor receptor activation, J. Invest. Dermatol. 123 (2004) 338-345.
    Y. Wada, K. Yoshida, Y. Tsutani, et al., Neutrophil elastase induces cell proliferation and migration by the release of TGF-alpha, PDGF and VEGF in esophageal cell lines, Oncol. Rep. 17 (2007) 161-167.
    C. Rogalski, U. Meyer-Hoffert, E. Proksch, et al., Human leukocyte elastase induces keratinocyte proliferation in vitro and in vivo, J. Invest. Dermatol. 118 (2002) 49-54.
    S. Fan, Y. Xu, X. Li, et al., Opposite angiogenic outcome of curcumin against ischemia and Lewis lung cancer models: In silico, in vitro and in vivo studies, Biochim. Biophys. Acta BBA Mol. Basis Dis. 1842 (2014) 1742-1754.
    Y. Xiaokaiti, H. Wu, Y. Chen, et al., EGCG reverses human neutrophil elastase-induced migration in A549 cells by directly binding to HNE and by regulating α1-AT, Sci. Rep. 5 (2015), 11494.
    L. Aldabbous, V. Abdul-Salam, T. McKinnon, et al., Neutrophil extracellular traps promote angiogenesis: Evidence from vascular pathology in pulmonary hypertension, Arterioscler. Thromb. Vasc. Biol. 36 (2016) 2078-2087.
    L. Gong, A.M. Cumpian, M.S. Caetano, et al., Promoting effect of neutrophils on lung tumorigenesis is mediated by CXCR2 and neutrophil elastase, Mol. Cancer 12 (2013), 154.
    E.M. Bekes, B. Schweighofer, T.A. Kupriyanova, et al., Tumor-recruited neutrophils and neutrophil TIMP-free MMP-9 regulate coordinately the levels of tumor angiogenesis and efficiency of malignant cell intravasation, Am. J. Pathol. 179 (2011) 1455-1470.
    E.I. Deryugina, E. Zajac, A. Juncker-Jensen, et al., Tissue-infiltrating neutrophils constitute the major in vivo source of angiogenesis-inducing MMP-9 in the tumor microenvironment, Neoplasia 16 (2014) 771-788.
    B. Hurt, R. Schulick, B. Edil, et al., Cancer-promoting mechanisms of tumor-associated neutrophils, Am. J. Surg. 214 (2017) 938-944.
    S. Ai, X. Cheng, A. Inoue, et al., Angiogenic activity of bFGF and VEGF suppressed by proteolytic cleavage by neutrophil elastase, Biochem. Biophys. Res. Commun. 364 (2007) 395-401.
    Y. Huang, W. Zhang, F. Yu, et al., The cellular and molecular mechanism of radiation-induced lung injury, Med. Sci. Monit. 23 (2017) 3446-3450.
    E. Blais, B. Pichon, A. Mampuya, et al., Lung dose constraints for normo-fractionated radiotherapy and for stereotactic body radiation therapy, Cancer Radiother. 21 (2017) 584-596.
    V. Jain, A.T. Berman, Radiation pneumonitis: Old problem, new tricks, Cancers 10 (2018), 222.
    L. Kasmann, A. Dietrich, C.A. Staab-Weijnitz, et al., Radiation-induced lung toxicity - cellular and molecular mechanisms of pathogenesis, management, and literature review, Radiat. Oncol. 15 (2020), 214.
    S. Hashimoto, Y. Okayama, N. Shime, et al., Neutrophil elastase activity in acute lung injury and respiratory distress syndrome, Respirology 13 (2008) 581-584.
    S.E. Williams, T.I. Brown, A. Roghanian, et al., SLPI and elafin: One glove, many fingers, Clin. Sci. (Lond) 110 (2006) 21-35.
    P.A. Henriksen, The potential of neutrophil elastase inhibitors as anti-inflammatory therapies, Curr. Opin. Hematol. 21 (2014) 23-28.
    T.S. Wilkinson, A. Conway Morris, K. Kefala, et al., Ventilator-associated pneumonia is characterized by excessive release of neutrophil proteases in the lung, Chest 142 (2012) 1425-1432.
    N. Yoshikawa, T. Inomata, Y. Okada, et al., Sivelestat sodium hydrate reduces radiation-induced lung injury in mice by inhibiting neutrophil elastase, Mol. Med. Rep. 7 (2013) 1091-1095.
    S. Bagchi, R. Yuan, E.G. Engleman, Immune checkpoint inhibitors for the treatment of cancer: Clinical impact and mechanisms of response and resistance, Annu. Rev. Pathol. 16 (2021) 223-249.
    S.C. Wei, C.R. Duffy, J.P. Allison, Fundamental mechanisms of immune checkpoint blockade therapy, Cancer Discov. 8 (2018) 1069-1086.
    D.Y. Wang, J.E. Salem, J.V. Cohen, et al., Fatal toxic effects associated with immune checkpoint inhibitors: A systematic review and meta-analysis, JAMA Oncol. 4 (2018) 1721-1728.
    M. Nishino, A. Giobbie-Hurder, H. Hatabu, et al., Incidence of programmed cell death 1 inhibitor-related pneumonitis in patients with advanced cancer: A systematic review and meta-analysis, JAMA Oncol. 2 (2016) 1607-1616.
    X. Zhai, J. Zhang, Y. Tian, et al., The mechanism and risk factors for immune checkpoint inhibitor pneumonitis in non-small cell lung cancer patients, Cancer Biol. Med. 17 (2020) 599-611.
    S. McComb, A. Thiriot, B. Akache, et al., Introduction to the immune system, Methods Mol. Biol. 2024 (2019) 1-24.
    J. Sagiv, J. Michaeli, S. Assi, et al., Phenotypic diversity and plasticity in circulating neutrophil subpopulations in cancer, Cell Rep. 10 (2015) 562-573.
    J. Yan, G. Kloecker, C. Fleming, et al., Human polymorphonuclear neutrophils specifically recognize and kill cancerous cells, OncoImmunology 3 (2014), e950163.
    S.B. Coffelt, M.D. Wellenstein, K.E. de Visser, Neutrophils in cancer: Neutral no more, Nat. Rev. Cancer 16 (2016) 431-446.
    E.B. Eruslanov, S. Singhal, S.M. Albelda, Mouse versus human neutrophils in cancer: A major knowledge gap, Trends Cancer 3 (2017) 149-160.
    P. Kruger, M. Saffarzadeh, A.N. Weber, et al., Neutrophils: Between host defence, immune modulation, and tissue injury, PLoS Pathog. 11 (2015), e1004651.
    S. Xiong, L. Dong, L. Cheng, Neutrophils in cancer carcinogenesis and metastasis, J. Hematol. Oncol. 14 (2021), 173.
    L. Chen, S.M. Park, A.V. Tumanov, et al., CD95 promotes tumour growth, Nature 465 (2010) 492-496.
    H. Ji, R. Zhao, S. Matalon, et al., Elevated plasmin(ogen) as a common risk factor for COVID-19 susceptibility, Physiol. Rev. 100 (2020) 1065-1075.
    R. Zhang, X. Wang, L. Ni, et al., COVID-19: Melatonin as a potential adjuvant treatment, Life Sci. 250 (2020), 117583.
    Q. Ye, B. Wang, J. Mao, The pathogenesis and treatment of the “Cytokine storm” in COVID-19, J. Infect. 80 (2020) 607-613.
    R.E. Kast, Dapsone as treatment adjunct in ARDS, Exp. Lung Res. 46 (2020) 157-161.
    B. Shanmugaraj, K. Siriwattananon, K. Wangkanont, et al., Perspectives on monoclonal antibody therapy as potential therapeutic intervention for Coronavirus disease-19 (COVID-19), Asian Pac. J. Allergy Immunol. 38 (2020) 10-18.
    S. Belouzard, I. Madu, G.R. Whittaker, Elastase-mediated activation of the severe acute respiratory syndrome coronavirus spike protein at discrete sites within the S2 domain, J. Biol. Chem. 285 (2010) 22758-22763.
    F. Graham, Daily briefing: A protein on the surface of the coronavirus might explain why it is so contagious, Nature, 2020. https://www.nature.com/articles/d41586-020-00705-1.
    Z. Xu, L. Shi, Y. Wang, et al., Pathological findings of COVID-19 associated with acute respiratory distress syndrome, Lancet Respir. Med. 8 (2020) 420-422.
    M.M.A. Mohamed, I.A. El-Shimy, M.A. Hadi, Neutrophil Elastase Inhibitors: A potential prophylactic treatment option for SARS-CoV-2-induced respiratory complications? Crit. Care 24 (2020), 311.
    M. Hayakawa, K. Katabami, T. Wada, et al., Sivelestat (selective neutrophil elastase inhibitor) improves the mortality rate of sepsis associated with both acute respiratory distress syndrome and disseminated intravascular coagulation patients, Shock 33 (2010) 14-18.
    T. Kido, K. Muramatsu, K. Yatera, et al., Efficacy of early sivelestat administration on acute lung injury and acute respiratory distress syndrome, Respirology 22 (2017) 708-713.
    F.J. Martinez, H.R. Collard, A. Pardo, et al., Idiopathic pulmonary fibrosis, Nat. Rev. Dis. Primers 3 (2017), 17074.
    W.D. Travis, U. Costabel, D.M. Hansell, et al., An official American Thoracic Society/European Respiratory Society statement: Update of the international multidisciplinary classification of the idiopathic interstitial pneumonias, Am. J. Respir. Crit. Care. Med. 188 (2013) 733-748.
    T.E. King, A. Pardo, M. Selman, Idiopathic pulmonary fibrosis, Lancet 378 (2011) 1949-1961.
    A. Takemasa, Y. Ishii, T. Fukuda, A neutrophil elastase inhibitor prevents bleomycin-induced pulmonary fibrosis in mice, Eur. Respir. J. 40 (2012) 1475-1482.
    C. Brightling, N. Greening, Airway inflammation in COPD: Progress to precision medicine, Eur. Respir. J. 54 (2019), 1900651.
    S.D. Lucas, E. Costa, R.C. Guedes, et al., Targeting COPD: Advances on low-molecular-weight inhibitors of human neutrophil elastase, Med. Res. Rev. 33 (2013) E73-E101.
    M.A. Cuesta, N. van der Wielen, J. Straatman, et al., Video-assisted thoracoscopic esophagectomy: Keynote lecture, Gen. Thorac. Cardiovasc. Surg. 64 (2016) 380-385.
    T. Iba, A. Kidokoro, M. Fukunaga, et al., Pretreatment of sivelestat sodium hydrate improves the lung microcirculation and alveolar damage in lipopolysaccharide-induced acute lung inflammation in hamsters, Shock 26 (2006) 95-98.
    Y. Kawahara, I. Ninomiya, T. Fujimura, et al., Prospective randomized controlled study on the effects of perioperative administration of a neutrophil elastase inhibitor to patients undergoing video-assisted thoracoscopic surgery for thoracic esophageal cancer, Dis. Esophagus 23 (2010) 329-339.
    K. Matsuzaki, Y. Hiramatsu, S. Homma, et al., Sivelestat reduces inflammatory mediators and preserves neutrophil deformability during simulated extracorporeal circulation, Ann. Thorac. Surg. 80 (2005) 611-617.
    S. Tsujii, T. Okabayashi, S. Mai, et al., The effect of the neutrophil elastase inhibitor sivelestat on early injury after liver resection, World J. Surg. 36 (2012) 1122-1127.
    G. Valabrega, F. Montemurro, M. Aglietta, Trastuzumab: Mechanism of action, resistance and future perspectives in HER2-overexpressing breast cancer, Ann. Oncol. 18 (2007) 977-984.
    J. Padayachee, A. Daniels, A. Balgobind, et al., HER-2/neu and MYC gene silencing in breast cancer: Therapeutic potential and advancement in nonviral nanocarrier systems, Nanomedicine (Lond) 15 (2020) 1437-1452.
    M. Nawa, S. Osada, K. Morimitsu, et al., Growth effect of neutrophil elastase on breast cancer: Favorable action of sivelestat and application to anti-HER2 therapy, Anticancer Res. 32 (2012) 13-19.
    S. Saitoh, A. Kosugi, S. Noda, et al., Modulation of TCR-mediated signaling pathway by thymic shared antigen-1 (TSA-1)/stem cell antigen-2 (Sca-2), J. Immunol. 155 (1995) 5574-5581.
    S. Pfaender, K.B. Mar, E. Michailidis, et al., LY6E impairs coronavirus fusion and confers immune control of viral disease, Nat. Microbiol. 5 (2020) 1330-1339.
    S. Nandi, H. Roy, A. Gummadi, et al., Exploring spike protein as potential target of novel coronavirus and to inhibit the viability utilizing natural agents, Curr. Drug Targets 22 (2021) 2006-2020.
    R. Dey, A. Samadder, S. Nandi, Selected phytochemicals to combat lungs injury: Natural care, Comb. Chem. High Throughput Screen. 25 (2022) 2398-2412.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (632) PDF downloads(53) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return