Volume 13 Issue 2
Mar.  2023
Turn off MathJax
Article Contents
Zexuan Hong, Jun Cao, Dandan Liu, Maozhu Liu, Mengyuan Chen, Fanning Zeng, Zaisheng Qin, Jigang Wang, Tao Tao. Celastrol targeting Nedd4 reduces Nrf2-mediated oxidative stress in astrocytes after ischemic stroke[J]. Journal of Pharmaceutical Analysis, 2023, 13(2): 156-169. doi: 10.1016/j.jpha.2022.12.002
Citation: Zexuan Hong, Jun Cao, Dandan Liu, Maozhu Liu, Mengyuan Chen, Fanning Zeng, Zaisheng Qin, Jigang Wang, Tao Tao. Celastrol targeting Nedd4 reduces Nrf2-mediated oxidative stress in astrocytes after ischemic stroke[J]. Journal of Pharmaceutical Analysis, 2023, 13(2): 156-169. doi: 10.1016/j.jpha.2022.12.002

Celastrol targeting Nedd4 reduces Nrf2-mediated oxidative stress in astrocytes after ischemic stroke

doi: 10.1016/j.jpha.2022.12.002
Funds:

This work was funded by the National Natural Science Foundation of China (Grant No.: 81973305), the Science and Technology Planning Project of Guangzhou, China (Grant No.: 201904010487), the Natural Science Foundation of Guangdong Province, China (Grant No.: 2021A1515010897), and the Discipline Construction Fund of Central People’s Hospital of Zhanjiang (Grant Nos.: 2020A01 and 2020A02).

  • Received Date: Jun. 21, 2022
  • Accepted Date: Dec. 30, 2022
  • Rev Recd Date: Dec. 13, 2022
  • Publish Date: Mar. 07, 2023
  • Stroke is the second leading cause of death worldwide, and oxidative stress plays a crucial role. Celastrol exhibits strong antioxidant properties in several diseases; however, whether it can affect oxidation in cerebral ischemic-reperfusion injury (CIRI) remains unclear. This study aimed to determine whether celastrol could reduce oxidative damage during CIRI and to elucidate the underlying mechanisms. Here, we found that celastrol attenuated oxidative injury in CIRI by upregulating nuclear factor E2-related factor 2 (Nrf2). Using alkynyl-tagged celastrol and liquid chromatography-tandem mass spectrometry, we showed that celastrol directly bound to neuronally expressed developmentally downregulated 4 (Nedd4) and then released Nrf2 from Nedd4 in astrocytes. Nedd4 promoted the degradation of Nrf2 through K48-linked ubiquitination and thus contributed to astrocytic reactive oxygen species production in CIRI, which was significantly blocked by celastrol. Furthermore, by inhibiting oxidative stress and astrocyte activation, celastrol effectively rescued neurons from axon damage and apoptosis. Our study uncovered Nedd4 as a direct target of celastrol, and that celastrol exerts an antioxidative effect on astrocytes by inhibiting the interaction between Nedd4 and Nrf2 and reducing Nrf2 degradation in CIRI.
  • loading
  • GBD 2019 Stroke Collaborators, Global, regional, and national burden of stroke and its risk factors, 1990-2019: A systematic analysis for the Global Burden of Disease Study 2019, Lancet Neurol. 20 (2021) 795-820
    D. Kuriakose, Z. Xiao, Pathophysiology and treatment of stroke: present status and future perspectives, Int. J. Mol. Sci. 21 (2020), 7609
    M.-S. Sun, H. Jin, X. Sun, et al., Free radical damage in ischemia-reperfusion injury: An obstacle in acute ischemic stroke after revascularization therapy, Oxid. Med. Cell. Longev. 2018 (2018), 3804979
    K. Lin, Z. Zhang, Z. Zhang, et al., Oleanolic acid alleviates cerebral ischemia/reperfusion injury via regulation of the gsk-3β/HO-1 signaling pathway, Pharmaceuticals 15 (2021), 1
    R. Dringen, Metabolism and functions of glutathione in brain, Prog. Neurobiol. 62 (2000) 649-671
    R. Mao, N. Zong, Y. Hu, et al., Neuronal death mechanisms and therapeutic strategy in ischemic stroke, Neurosci. Bull. 38 (2022) 1229-1247
    Y. Gursoy-Ozdemir, A. Can, T. Dalkara, Reperfusion-induced oxidative/nitrative injury to neurovascular unit after focal cerebral ischemia, Stroke 35 (2004) 1449-1453
    S. Xu, J. Lu, A. Shao, et al., Glial cells: Role of the immune response in ischemic stroke, Front. Immunol. 11 (2020), 294
    H. Chen, H. Yoshioka, G.S. Kim, et al., Oxidative stress in ischemic brain damage: mechanisms of cell death and potential molecular targets for neuroprotection, Antioxidants Redox Signal. 14 (2011) 1505-1517
    P. Li, R.A. Stetler, R.K. Leak, et al., Oxidative stress and DNA damage after cerebral ischemia: Potential therapeutic targets to repair the genome and improve stroke recovery, Neuropharmacology 134 (2018) 208-217
    R. He, Y. Jiang, Y. Shi, et al., Curcumin-laden exosomes target ischemic brain tissue and alleviate cerebral ischemia-reperfusion injury by inhibiting ROS-mediated mitochondrial apoptosis, Mater. Sci. Eng. C Mater. Biol. Appl. 117 (2020), 111314
    H. Xu, J. Shen, J. Xiao, et al., Neuroprotective effect of cajaninstilbene acid against cerebral ischemia and reperfusion damages by activating AMPK/Nrf2 pathway, J. Adv. Res. 34 (2021) 199-210
    S. Orellana-Urzua, I. Rojas, L. Libano, et al., Pathophysiology of ischemic stroke: Role of oxidative stress, Curr. Pharmaceut. Des. 26 (2020) 4246-4260
    R. Kannaiyan, M.K. Shanmugam, G. Sethi, Molecular targets of celastrol derived from Thunder of God Vine: Potential role in the treatment of inflammatory disorders and cancer, Cancer Lett. 303 (2011) 9-20
    Y. Lu, Y. Liu, J. Zhou, et al., Biosynthesis, total synthesis, structural modifications, bioactivity, and mechanism of action of the quinone-methide triterpenoid celastrol, Med. Res. Rev. 41 (2021) 1022-1060
    ClinicalTrials.gov, A Sub-chronic Evaluation of the Safety of Celastrol in Human Subjects. https://beta.clinicaltrials.gov/study/NCT05494112?distance=50&cond=celastrol&rank=2. (Accessed 25 September 2022)
    ClinicalTrials.gov, Effect of Different Ingestion Doses of Celastrol on Human Sperm Motility. https://clinicaltrials.gov/ct2/show/NCT05413226?cond=celastrol&draw=2. (Accessed 25 September 2022)
    M. Li, X. Liu, Y. He, et al., Celastrol attenuates angiotensin II mediated human umbilical vein endothelial cells damage through activation of Nrf2/ERK1/2/Nox2 signal pathway, Eur. J. Pharmacol. 797 (2017) 124-133
    A.C. Allison, R. Cacabelos, V.R. Lombardi, et al., Celastrol, a potent antioxidant and anti-inflammatory drug, as a possible treatment for Alzheimer's disease, Prog. Neuro-Psychopharmacol. Biol. Psychiatry 25 (2001) 1341-1357
    B.S. Choi, H. Kim, H.J. Lee, et al., Celastrol from 'Thunder God Vine' protects SH-SY5Y cells through the preservation of mitochondrial function and inhibition of p38 MAPK in a rotenone model of Parkinson's disease, Neurochem. Res. 39 (2014) 84-96
    C. Cleren, N.Y. Calingasan, J. Chen, et al., Celastrol protects against MPTP-and 3-nitropropionic acid-induced neurotoxicity, J. Neurochem. 94 (2005) 995-1004
    M. Jiang, X. Liu, D. Zhang, et al., Celastrol treatment protects against acute ischemic stroke-induced brain injury by promoting an IL-33/ST2 axis-mediated microglia/macrophage M2 polarization, J. Neuroinflammation 15 (2018), 78
    D.-D. Liu, P. Luo, L. Gu, et al., Celastrol exerts a neuroprotective effect by directly binding to HMGB1 protein in cerebral ischemia-reperfusion, J. Neuroinflammation 18 (2021), 174
    J. Cao, L. Dong, J. Luo, et al., Supplemental N-3 polyunsaturated fatty acids limit A1-specific astrocyte polarization via attenuating mitochondrial dysfunction in ischemic stroke in mice, Oxid. Med. Cell. Longev. 2021 (2021), 5524705
    R. Verma, C.G. Cronin, J. Hudobenko, et al., Deletion of the P2X4 receptor is neuroprotective acutely, but induces a depressive phenotype during recovery from ischemic stroke, Brain Behav. Immun. 66 (2017) 302-312
    D. Liu, M. Zhang, X. Rong, et al., Potassium 2-(1-hydroxypentyl)-benzoate attenuates neuronal apoptosis in neuron-astrocyte co-culture system through neurotrophy and neuroinflammation pathway, Acta Pharm. Sin. B 7 (2017) 554-563
    B. Zhou, Y.-X. Zuo, R.-T. Jiang, Astrocyte morphology: Diversity, plasticity, and role in neurological diseases, CNS Neurosci. Ther. 25 (2019) 665-673
    M.V. Sofroniew, Astrocyte reactivity: subtypes, states, and functions in CNS innate immunity, Trends Immunol. 41 (2020) 758-770
    S. Jiang, C. Deng, J. Lv, et al., Nrf2 weaves an elaborate network of neuroprotection against stroke, Mol. Neurobiol. 54 (2017) 1440-1455
    T.W. Kensler, N. Wakabayashi, S. Biswal, Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway, Annu. Rev. Pharmacol. Toxicol. 47 (2007) 89-116
    J. Gao, Y. Zhang, X. Liu, et al., Triptolide: pharmacological spectrum, biosynthesis, chemical synthesis and derivatives, Theranostics 11 (2021) 7199-7221
    J. Li, J. Hao, Treatment of neurodegenerative diseases with bioactive components of Tripterygium wilfordii, Am. J. Chin. Med. 47 (2019) 769-785
    T.W. Corson, C.M. Crews, Molecular understanding and modern application of traditional medicines: triumphs and trials, Cell 130 (2007) 769-774
    M. De Angelis, S.C. Schriever, E. Kyriakou, et al., Detection and quantification of the anti-obesity drug celastrol in murine liver and brain, Neurochem. Int. 136 (2020), 104713
    M. Chen, M. Liu, Y. Luo, et al., Celastrol protects against cerebral ischemia/reperfusion injury in mice by inhibiting glycolysis through targeting HIF-1β/PDK1 axis, Oxid. Med. Cell. Longev. 2022 (2022), 7420507
    C. Wang, H. Wan, M. Li, et al., Celastrol attenuates ischemia/reperfusion-mediated memory dysfunction by downregulating AK005401/MAP3K12, Phytomedicine 82 (2021), 153441
    Z. Liu, M. Chopp, Astrocytes, therapeutic targets for neuroprotection and neurorestoration in ischemic stroke, Prog. Neurobiol. 144 (2016) 103-120
    I. Lopez-Fabuel, J. Le Douce, A. Logan, et al., Complex I assembly into supercomplexes determines differential mitochondrial ROS production in neurons and astrocytes, Proc. Natl. Acad. Sci. U. S. A. 113 (2016) 13063-13068
    N.A. Boase, S. Kumar, NEDD4: The founding member of a family of ubiquitin-protein ligases, Gene 557 (2015) 113-122
    S. Kumar, K.F. Harvey, M. Kinoshita, et al., cDNA cloning, expression analysis, and mapping of the mouse Nedd4 gene, Genomics 40 (1997) 435-443
    X. Ding, J. Jo, C.Y. Wang, et al., The Daam2-VHL-Nedd4 axis governs developmental and regenerative oligodendrocyte differentiation, Genes Dev. 34 (2020) 1177-1189
    H.E. Hsia, R. Kumar, R. Luca, et al., Ubiquitin E3 ligase Nedd4-1 acts as a downstream target of PI3K/PTEN-mTORC1 signaling to promote neurite growth, Proc. Natl. Acad. Sci. U. S. A. 111 (2014) 13205-13210
    J. Drinjakovic, H. Jung, D.S. Campbell, et al., E3 ligase Nedd4 promotes axon branching by downregulating PTEN, Neuron 65 (2010) 341-357
    Y.D. Kwak, B. Wang, J.J. Li, et al., Upregulation of the E3 ligase NEDD4-1 by oxidative stress degrades IGF-1 receptor protein in neurodegeneration, J. Neurosci. 32 (2012) 10971-10981
    J. Lackovic, J. Howitt, J.K. Callaway, et al., Differential regulation of Nedd4 ubiquitin ligases and their adaptor protein Ndfip1 in a rat model of ischemic stroke, Exp. Neurol. 235 (2012) 326-335
    S. Haouari, P. Vourc'h, M. Jeanne, et al., The roles of NEDD4 subfamily of HECT E3 ubiquitin ligases in neurodevelopment and neurodegeneration, Int. J. Mol. Sci. 23 (2022), 3882
    L. Gao, H.-J. Wang, C. Tian, et al., Skeletal muscle Nrf2 contributes to exercise-evoked systemic antioxidant defense via extracellular vesicular communication, Exerc. Sport Sci. Rev. 49 (2021) 213-222
    B.J. Saeedi, K.H. Liu, J.A. Owens, et al., Gut-resident Lactobacilli activate hepatic Nrf2 and protect against oxidative liver injury, Cell Metabol. 31 (2020) 956-968
    L. Kong, J. Deng, X. Zhou, et al., Sitagliptin activates the p62-Keap1-Nrf2 signalling pathway to alleviate oxidative stress and excessive autophagy in severe acute pancreatitis-related acute lung injury, Cell Death Dis.12 (2021), 928
    A. Saunders, E.Z. Macosko, A. Wysoker, et al., Molecular diversity and specializations among the cells of the adult mouse brain, Cell 174 (2018) 1015-1030.e16
    S.M. Boas, K.L. Joyce, R.M. Cowell, The NRF2-dependent transcriptional regulation of antioxidant defense pathways: relevance for cell type-specific vulnerability to neurodegeneration and therapeutic intervention, Antioxidants 11 (2021), 8
    T. Nakayama, K. Okimura, J. Shen, et al., Seasonal changes in NRF2 antioxidant pathway regulates winter depression-like behavior, Proc. Natl. Acad. Sci. U. S. A. 117 (2020) 9594-9603
    C. Zhang, M. Zhao, B. Wang, et al., The Nrf2-NLRP3-caspase-1 axis mediates the neuroprotective effects of Celastrol in Parkinson's disease, Redox Biol. 47 (2021),102134
    W. Gong, Z. Chen, Y. Zou, et al., CKIP-1 affects the polyubiquitination of Nrf2 and Keap1 via mediating Smurf1 to resist HG-induced renal fibrosis in GMCs and diabetic mice kidneys, Free Radic. Biol. Med. 115 (2018) 338-350
    D.J. McIntosh, T.S. Walters, I.J. Arinze, et al., Arkadia (RING finger protein 111) mediates sumoylation-dependent stabilization of Nrf2 through K48-linked ubiquitination, Cell. Physiol. Biochem. 46 (2018) 418-430
    K. Hochrainer, Protein modifications with ubiquitin as response to cerebral ischemia-reperfusion injury, Transl. Stroke Res. 9 (2018) 157-173
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (463) PDF downloads(69) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return