Volume 13 Issue 2
Mar.  2023
Turn off MathJax
Article Contents
Zhihao Liu, Xiaozhi Liu, Li Liu, Ying Wang, Jie Zheng, Lan Li, Sheng Li, Han Zhang, Jingyu Ni, Chuanrui Ma, Xiumei Gao, Xiyun Bian, Guanwei Fan. SUMO1 regulates post-infarct cardiac repair based on cellular heterogeneity[J]. Journal of Pharmaceutical Analysis, 2023, 13(2): 170-186. doi: 10.1016/j.jpha.2022.11.010
Citation: Zhihao Liu, Xiaozhi Liu, Li Liu, Ying Wang, Jie Zheng, Lan Li, Sheng Li, Han Zhang, Jingyu Ni, Chuanrui Ma, Xiumei Gao, Xiyun Bian, Guanwei Fan. SUMO1 regulates post-infarct cardiac repair based on cellular heterogeneity[J]. Journal of Pharmaceutical Analysis, 2023, 13(2): 170-186. doi: 10.1016/j.jpha.2022.11.010

SUMO1 regulates post-infarct cardiac repair based on cellular heterogeneity

doi: 10.1016/j.jpha.2022.11.010
Funds:

The authors gratefully acknowledge Xiaohui Fan, PhD (Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, China) for assisting with snRNA-seq experiments. The authors thank Wei Yang, PhD (Duke University Medical Center, USA) for providing SUMO1-/- mice. This study was supported by the Innovation Team and Talents Cultivation Program of National Administration of Traditional Chinese Medicine (Grant No.: ZYYCXTD-D-202207), the National Natural Science Foundation of China (Grant Nos.: 82270304, 81774050, and 81901526), the Tianjin Special Project of New Generation Artificial Intelligence Technology (Project No.: 18ZXZNSY00260), and the Ministry of Education of People's Republic of China “Program for Innovative Research Team in University” (Project No.: IRT_16R54).

  • Received Date: Jul. 14, 2022
  • Accepted Date: Nov. 27, 2022
  • Rev Recd Date: Nov. 19, 2022
  • Publish Date: Mar. 07, 2023
  • Small ubiquitin-related modifier (SUMOylation) is a dynamic post-translational modification that maintains cardiac function and can protect against a hypertrophic response to cardiac pressure overload. However, the function of SUMOylation after myocardial infarction (MI) and the molecular details of heart cell responses to SUMO1 deficiency have not been determined. In this study, we demonstrated that SUMO1 protein was inconsistently abundant in different cell types and heart regions after MI. However, SUMO1 knockout significantly exacerbated systolic dysfunction and infarct size after myocardial injury. Single-nucleus RNA sequencing revealed the differential role of SUMO1 in regulating heart cells. Among cardiomyocytes, SUMO1 deletion increased the Nppa+ Nppb+ Ankrd1+ cardiomyocyte subcluster proportion after MI. In addition, the conversion of fibroblasts to myofibroblasts subclusters was inhibited in SUMO1 knockout mice. Importantly, SUMO1 loss promoted proliferation of endothelial cell subsets with the ability to reconstitute neovascularization and expressed angiogenesis-related genes. Computational analysis of ligand/receptor interactions suggested putative pathways that mediate cardiomyocytes to endothelial cell communication in the myocardium. Mice preinjected with cardiomyocyte-specific AAV-SUMO1, but not the endothelial cell-specific form, and exhibited ameliorated cardiac remodeling following MI. Collectively, our results identified the role of SUMO1 in cardiomyocytes, fibroblasts, and endothelial cells after MI. These findings provide new insights into SUMO1 involvement in the pathogenesis of MI and reveal novel therapeutic targets.
  • loading
  • J.C. Kaski, F. Crea, B.J. Gersh, et al., Reappraisal of ischemic heart disease, Circulation 138 (2018) 1463-1480
    S.D. Prabhu, N.G. Frangogiannis, The biological basis for cardiac repair after myocardial infarction: from inflammation to fibrosis, Circ. Res. 119 (2016) 91-112
    X. Wu, M.R. Reboll, M. Korf-Klingebiel, et al., Angiogenesis after acute myocardial infarction, Cardiovasc. Res. 117 (2021) 1257-1273
    N.G. Frangogiannis, The extracellular matrix in myocardial injury, repair, and remodeling, J. Clin. Invest. 127 (2017) 1600-1612
    H. Chang, E.T.H. Yeh, SUMO: from bench to bedside, Physiol. Rev. 100 (2020) 1599-1619
    J.R. Gareau, C.D. Lima, The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition, Nat. Rev. Mol. Cell Biol. 11 (2010) 861-871
    A. Flotho, F. Melchior, Sumoylation: a regulatory protein modification in health and disease, Annu. Rev. Biochem. 82 (2013) 357-385
    X Zhao, SUMO-mediated regulation of nuclear functions and signaling processes, Mol. Cell 71 (2018) 409-418
    J. Keiten-Schmitz, K. Wagner, T. Piller, et al., The nuclear SUMO-targeted ubiquitin quality control network regulates the dynamics of cytoplasmic stress granules, Mol. Cell 79 (2020) 54-67.e7
    M. Litvinukova, C. Talavera-Lopez, H. Maatz, et al., Cells of the adult human heart, Nature 588 (2020) 466-472
    L. Wang, P. Yu, B. Zhou, et al., Single-cell reconstruction of the adult human heart during heart failure and recovery reveals the cellular landscape underlying cardiac function, Nat. Cell Biol. 22 (2020) 108-119
    L. Mendler, T. Braun, S. Muller, The ubiquitin-like SUMO system and heart function: from development to disease, Circ. Res. 118 (2016) 132-144
    C. Kho, A. Lee, D. Jeong, et al., SUMO1-dependent modulation of SERCA2a in heart failure, Nature 477 (2011) 601-605
    J.G. Oh, S. Watanabe, A. Lee, et al., miR-146a suppresses SUMO1 expression and induces cardiac dysfunction in maladaptive hypertrophy, Circ. Res. 123 (2018) 673-685
    K.A. McCrink, J. Maning, A. Vu, et al., B-Arrestin2 improves post-myocardial infarction heart failure via sarco(endo)plasmic reticulum Ca2+-ATPase-dependent positive inotropy in cardiomyocytes, Hypertension 70 (2017) 972-981
    L. Tilemann, A. Lee, K. Ishikawa, et al., SUMO-1 gene transfer improves cardiac function in a large-animal model of heart failure, Sci. Transl. Med. 5 (2013) 211ra159
    M.K. Gupta, J. Robbins, Making the connections: autophagy and post-translational modifications in cardiomyocytes, Autophagy 12 (2016) 2252-2253
    E. Evdokimov, P. Sharma, S.J. Lockett, et al., Loss of SUMO1 in mice affects RanGAP1 localization and formation of PML nuclear bodies, but is not lethal as it can be compensated by SUMO2 or SUMO3, J. Cell Sci. 121 (2008) 4106-4113
    K. Jin, S. Gao, P. Yang, et al., Single-cell RNA sequencing reveals the temporal diversity and dynamics of cardiac immunity after myocardial infarction, Small Methods 6 (2022), e2100752
    A. Butler, P. Hoffman, P. Smibert, et al., Integrating single-cell transcriptomic data across different conditions, technologies, and species, Nat. Biotechnol. 36 (2018) 411-420
    A.T.L. Lun, S. Riesenfeld, T. Andrews, et al., EmptyDrops: distinguishing cells from empty droplets in droplet-based single-cell RNA sequencing data, Genome Biol. 20 (2019), 63
    C.S. McGinnis, L.M. Murrow, Z.J. Gartner, DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors, Cell Syst. 8 (2019) 329-337.e4
    I. Korsunsky, N. Millard, J. Fan, et al., Fast, sensitive and accurate integration of single-cell data with Harmony, Nat. Methods 16 (2019) 1289-1296
    B. Liu, C. Li, Z. Li, et al., An entropy-based metric for assessing the purity of single cell populations Nat. Commun. 11 (2020), 3155
    X Guo, Y. Zhang, L. Zheng, et al., Global characterization of T cells in non-small-cell lung cancer by single-cell sequencing, Nat. Med. 24 (2018) 978-985
    C. Trapnell, D. Cacchiarelli, J. Grimsby, et al., The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells, Nat. Biotechnol. 32 (2014) 381-386
    G.S. Gulati, S.S. Sikandar, D.J. Wesche, et al., Single-cell transcriptional diversity is a hallmark of developmental potential, Science 367 (2020) 405-411
    J. Griss, G. Viteri, K. Sidiropoulos, et al., ReactomeGSA -efficient multi-omics comparative pathway analysis, Mol. Cell. Proteomics 19 (2020) 2115-2125
    T. Yokota, J. McCourt, F. Ma, et al., Type V collagen in scar tissue regulates the size of scar after heart injury, Cell 182 (2020) 545-562.e23
    Z. Wang, M. Cui, A.M. Shah, et al., Cell-type-specific gene regulatory networks underlying murine neonatal heart regeneration at single-cell resolution, Cell Rep. 33 (2020), 108472
    A. Francisco, T.R. Figueira, R.FCastilho Mitochondrial NAD(P)+ transhydrogenase: from molecular features to physiology and disease, Antioxid. Redox Signal. 36 (2022) 864-884
    J. Man, K. van Duijvenboden, P. Krijger, et al., Genetic dissection of a super enhancer controlling the nppa-nppb cluster in the heart, Circ. Res. 128 (2021) 115-129
    C. Kuppe, R.O. Ramirez Flores, Z. Li, et al., Spatial multi-omic map of human myocardial infarction, Nature 608 (2022) 766-767
    N. Hama, H. Itoh, G. Shirakami, et al., Rapid ventricular induction of brain natriuretic peptide gene expression in experimental acute myocardial infarction, Circulation 92 (1995) 1558-1564
    A.J. Rubin, K.R. Parker, A.T. Satpathy, et al., Coupled single-cell CRISPR screening and epigenomic profiling reveals causal gene regulatory networks, Cell 176 (2019) 361-376.e17
    D. Hilfiker-Kleiner, A. Hilfiker, M. Castellazzi, et al., JunD attenuates phenylephrine-mediated cardiomyocyte hypertrophy by negatively regulating AP-1 transcriptional activity, Cardiovasc. Res. 71 (2006) 108-117
    M.D. Tallquist, Cardiac fibroblast diversity, Annu. Rev. Physiol. 82 (2020) 63-78
    G. Nikoloudaki, P. Snider, O. Simmons, et al., Periostin and matrix stiffness combine to regulate myofibroblast differentiation and fibronectin synthesis during palatal healing, Matrix Biol. 94 (2020) 31-56
    L. Chen, C. Chou, M.A. Knepper, Targeted single-cell RNA-seq identifies minority cell types of kidney distal nephron, J. Am. Soc. Nephrol. 32 (2021) 886-896
    J. Tang, H. Zhang, L. He, et al., Genetic fate mapping defines the vascular potential of endocardial cells in the adult heart, Circ. Res. 122 (2018) 984-993
    A.D. Bradshaw, E.H. Sage, SPARC, a matricellular protein that functions in cellular differentiation and tissue response to injury, J. Clin. Invest. 107 (2001) 1049-1054
    M.A.C. Depuydt, K.H.M. Prange, L. Slenders, et al., Microanatomy of the human atherosclerotic plaque by single-cell transcriptomics, Circ. Res. 127 (2020) 1437-1455
    D.G. Jackson, Hyaluronan in the lymphatics: the key role of the hyaluronan receptor LYVE-1 in leucocyte trafficking, Matrix Biol. 78-79 (2019) 219-235
    Y. Wang, M. Nakayama, M.E. Pitulescu, et al., Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis, Nature 465 (2010) 483-486
    L. Zhang, A. Jambusaria, Z. Hong, et al., SOX17 regulates conversion of human fibroblasts into endothelial cells and erythroblasts by dedifferentiation into CD34+ progenitor cells, Circulation 135 (2017) 2505-2523
    D. Chen, N. Sun, X. Chen, et al., Endothelium-derived semaphorin 3G attenuates ischemic retinopathy by coordinating β-catenin-dependent vascular remodeling, J. Clin. Invest. 131 (2021) 135296
    A.P. Voigt, K. Mulfaul, N.K. Mullin, et al., Single-cell transcriptomics of the human retinal pigment epithelium and choroid in health and macular degeneration, Proc. Natl. Acad. Sci. USA 116 (2019) 24100-24107
    Z. Jiang, Z. Lu, S. Kou, et al., Overexpression of Kdr in adult endocardium induces endocardial neovascularization and improves heart function after myocardial infarction, Cell Res. 31 (2021) 485-487
    T. Martins-Marques, D.J. Hausenloy, J.P.G. Sluijter, et al., Intercellular communication in the heart: therapeutic opportunities for cardiac ischemia, Trends Mol. Med. 27 (2021) 248-262
    L. Napione, S. Pavan, A. Veglio, et al., Unraveling the influence of endothelial cell density on VEGF-A signaling, Blood 119 (2012) 5599-5607
    L. Zeng, Q. Xiao, M. Chen, et al., Vascular endothelial cell growth-activated XBP1 splicing in endothelial cells is crucial for angiogenesis, Circulation 127 (2013) 1712-1722
    A. Lee, D. Jeong, S. Mitsuyama, et al., The role of SUMO-1 in cardiac oxidative stress and hypertrophy, Antioxid Redox Signal 21 (2014) 1986-2001
    X. Bian, J. Xu, H. Zhao, et al., Zinc-induced SUMOylation of dynamin-related protein 1 protects the heart against ischemia-reperfusion injury, Oxid. Med. Cell. Longev. 2019 (2019), 1232146
    A. Ruiz-Villalba, J.P. Romero, S.C. Hernandez, et al., Single-cell RNA sequencing analysis reveals a crucial role for CTHRC1 (collagen triple helix repeat containing 1) cardiac fibroblasts after myocardial infarction, Circulation 142 (2020) 1831-1847
    L.S. Tombor, D. John, S.F. Glaser, et al., Single cell sequencing reveals endothelial plasticity with transient mesenchymal activation after myocardial infarction, Nat. Commun. 12 (2021), 681
    N.G. Frangogiannis, Cardiac fibrosis: cell biological mechanisms, molecular pathways and therapeutic opportunities, Mol. Aspect. Med. 65 (2019) 70-99
    J.S. Kang, E.F. Saunier, R.J. Akhurst, et al., The type I TGF-beta receptor is covalently modified and regulated by sumoylation, Nat. Cell Biol. 10 (2008) 654-664
    Y. Katsuno, R. Derynck, Epithelial plasticity, epithelial-mesenchymal transition, and the TGF-β family, Dev. Cell 56 (2021) 726-746
    H.J. Zhou, Z. Xu, Z. Wang, et al., SUMOylation of VEGFR2 regulates its intracellular trafficking and pathological angiogenesis, Nat. Commun. 9 (2018), 3303
    F. Qiu, C. Dong, Y. Liu, et al., Pharmacological inhibition of SUMO-1 with ginkgolic acid alleviates cardiac fibrosis induced by myocardial infarction in mice, Toxicol. Appl. Pharmacol. 345 (2018) 1-9
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (395) PDF downloads(52) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return