Volume 13 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
Xiang Gu, Yu Hua, Jie Yu, Ludi Yang, Shengfang Ge, Renbing Jia, Peiwei Chai, Ai Zhuang, Xianqun Fan. Epigenetic drug library screening reveals targeting DOT1L abrogates NAD+ synthesis by reprogramming H3K79 methylation in uveal melanoma[J]. Journal of Pharmaceutical Analysis, 2023, 13(1): 24-38. doi: 10.1016/j.jpha.2022.11.008
Citation: Xiang Gu, Yu Hua, Jie Yu, Ludi Yang, Shengfang Ge, Renbing Jia, Peiwei Chai, Ai Zhuang, Xianqun Fan. Epigenetic drug library screening reveals targeting DOT1L abrogates NAD+ synthesis by reprogramming H3K79 methylation in uveal melanoma[J]. Journal of Pharmaceutical Analysis, 2023, 13(1): 24-38. doi: 10.1016/j.jpha.2022.11.008

Epigenetic drug library screening reveals targeting DOT1L abrogates NAD+ synthesis by reprogramming H3K79 methylation in uveal melanoma

doi: 10.1016/j.jpha.2022.11.008
Funds:

This work was supported by grants from Shanghai Key Clinical Specialty, Shanghai Eye Disease Research Center (Grant No.: 2022ZZ01003 to Xianqun Fan), the National Key Research and Development Plan (Grant No.: 2018YFC1106100 to Xianqun Fan), the National Natural Science Foundation of China (Grant Nos.: 12275178 to Shengfang Ge and 82103240 to Peiwei Chai), Innovative Research Team of High-level Local Universities in Shanghai (Grant Nos.: SHSMU- ZDCX20210902 to Renbing Jia and SHSMU-ZDCX20210900 to Xianqun Fan), the Science and Technology Commission of Shanghai (Grant No.: 19JC1410200 to Xianqun Fan), and Cross-disciplinary Research Fund of Shanghai Ninth People's Hospital, Shanghai Jiao Tong university School of Medicine (Grant No.: JYJC202210 to Ai Zhuang).

  • Received Date: Jul. 15, 2022
  • Accepted Date: Nov. 22, 2022
  • Rev Recd Date: Nov. 16, 2022
  • Publish Date: Nov. 28, 2022
  • Uveal melanoma (UM) is the most frequent and life-threatening ocular malignancy in adults. Aberrant histone methylation contributes to the abnormal transcriptome during oncogenesis. However, a comprehensive understanding of histone methylation patterns and their therapeutic potential in UM remains enigmatic. Herein, using a systematic epi-drug screening and a high-throughput transcriptome profiling of histone methylation modifiers, we observed that disruptor of telomeric silencing-1-like (DOT1L), a methyltransferase of histone H3 lysine 79 (H3K79), was activated in UM, especially in the high-risk group. Concordantly, a systematic epi-drug library screening revealed that DOT1L inhibitors exhibited salient tumor-selective inhibitory effects on UM cells, both in vitro and in vivo. Combining Cleavage Under Targets and Tagmentation (CUT&Tag), RNA sequencing (RNA-seq), and bioinformatics analysis, we identified that DOT1L facilitated H3K79 methylation of nicotinate phosphoribosyltransferase (NAPRT) and epigenetically activated its expression. Importantly, NAPRT served as an oncogenic accelerator by enhancing nicotinamide adenine dinucleotide (NAD+) synthesis. Therapeutically, DOT1L inhibition epigenetically silenced NAPRT expression through the diminishment of dimethylation of H3K79 (H3K79me2) in the NAPRT promoter, thereby inhibiting the malignant behaviors of UM. Conclusively, our findings delineated an integrated picture of the histone methylation landscape in UM and unveiled a novel DOT1L/NAPRT oncogenic mechanism that bridges transcriptional addiction and metabolic reprogramming.
  • loading
  • D. Hanahan, Hallmarks of Cancer: New Dimensions, Cancer Discov. 12 (2022) 31-46
    J. C. Black, C. Van Rechem, J. R. Whetstine, Histone lysine methylation dynamics: establishment, regulation, and biological impact, Mol. Cell. 48 (2012) 491-507
    M. Esteller, Cancer epigenomics: DNA methylomes and histone-modification maps, Nat. Rev. Genet. 8 (2007) 286-298
    G. G. Wang, L. Cai, M. P. Pasillas, et al., NUP98-NSD1 links H3K36 methylation to Hox-A gene activation and leukaemogenesis, Nat. Cell Biol. 9 (2007) 804-812
    E. Metzger, M. Wissmann, N. Yin, et al., LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription, Nature. 437 (2005) 436-439
    E. Kujala, T. Makitie, T. Kivela, Very long-term prognosis of patients with malignant uveal melanoma, Invest Ophthalmol. Vis. Sci. 44 (2003) 4651-4659
    L. Khoja, E. G. Atenafu, S. Suciu, et al., Meta-analysis in metastatic uveal melanoma to determine progression free and overall survival benchmarks: an international rare cancers initiative (IRCI) ocular melanoma study, Ann. Oncol. 30 (2019) 1370-1380
    A. G. Robertson, J. Shih, C. Yau, et al., Integrative Analysis Identifies Four Molecular and Clinical Subsets in Uveal Melanoma, Cancer Cell. 32 (2017) 204-220
    P. Chai, R. Jia, Y. Li, et al., Regulation of epigenetic homeostasis in uveal melanoma and retinoblastoma, Prog. Retin. Eye Res. (2021), 101030
    T. M. Holling, M. W. Bergevoet, L. Wilson, et al., A role for EZH2 in silencing of IFN-gamma inducible MHC2TA transcription in uveal melanoma, J. Immunol. 179 (2007) 5317-5325
    B. Jin, P. Zhang, H. Zou, et al., Verification of EZH2 as a druggable target in metastatic uveal melanoma, Mol. Cancer. 19 (2020), 52
    L. M. LaFave, W. Beguelin, R. Koche, et al., Loss of BAP1 function leads to EZH2-dependent transformation, Nat. Med. 21 (2015) 1344-1349
    M. Schoumacher, S. Le Corre, A. Houy, et al., Uveal melanoma cells are resistant to EZH2 inhibition regardless of BAP1 status, Nat. Med. 22 (2016) 577-578
    H. S. Kaya-Okur, S. J. Wu, C. A. Codomo, et al., CUT&Tag for efficient epigenomic profiling of small samples and single cells, Nat. Commun. 10 (2019), 1930
    J. W. Harbour, M. D. Onken, E. D. Roberson, et al., Frequent mutation of BAP1 in metastasizing uveal melanomas, Science. 330 (2010) 1410-1413
    J. J. Bosch, J. A. Thompson, M. K. Srivastava, et al., MHC class II-transduced tumor cells originating in the immune-privileged eye prime and boost CD4(+) T lymphocytes that cross-react with primary and metastatic uveal melanoma cells, Cancer Res. 67 (2007) 4499-4506
    P. Chai, J. Yu, R. Jia, et al., Generation of onco-enhancer enhances chromosomal remodeling and accelerates tumorigenesis, Nucleic Acids Res. 48 (2020) 12135-12150
    R. Lin, S. Elf, C. Shan, et al., 6-Phosphogluconate dehydrogenase links oxidative PPP, lipogenesis and tumour growth by inhibiting LKB1-AMPK signalling, Nat. Cell Biol. 17 (2015) 1484-1496
    M. G. Field, C. L. Decatur, S. Kurtenbach, et al., PRAME as an Independent Biomarker for Metastasis in Uveal Melanoma, Clin. Cancer Res. 22 (2016) 1234-1242
    G. Gezgin, S. J. Luk, J. Cao, et al., PRAME as a Potential Target for Immunotherapy in Metastatic Uveal Melanoma, JAMA Ophthalmol. 135 (2017) 541-549
    A. Barski, S. Cuddapah, K. Cui, et al., High-resolution profiling of histone methylations in the human genome, Cell. 129 (2007) 823-837
    S. Chowdhry, C. Zanca, U. Rajkumar, et al., NAD metabolic dependency in cancer is shaped by gene amplification and enhancer remodelling, Nature. 569 (2019) 570-575
    A. Basavapathruni, L. Jin, S. R. Daigle, et al., Conformational adaptation drives potent, selective and durable inhibition of the human protein methyltransferase DOT1L, Chem. Biol. Drug Des. 80 (2012) 971-980
    E. M. Michalak, M. L. Burr, A. J. Bannister, et al., The roles of DNA, RNA and histone methylation in ageing and cancer, Nat. Rev. Mol. Cell Biol. 20 (2019) 573-589
    Q. Feng, H. Wang, H. H. Ng, et al., Methylation of H3-lysine 79 is mediated by a new family of HMTases without a SET domain, Curr. Biol. 12 (2002) 1052-1058
    D. J. Steger, M. I. Lefterova, L. Ying, et al., DOT1L/KMT4 recruitment and H3K79 methylation are ubiquitously coupled with gene transcription in mammalian cells, Mol. Cell Biol. 28 (2008) 2825-2839
    M. Wong, P. Polly, T. Liu, The histone methyltransferase DOT1L: regulatory functions and a cancer therapy target, Am. J. Cancer Res. 5 (2015) 2823-2837
    Z. Zhou, H. Chen, R. Xie, et al., Epigenetically modulated FOXM1 suppresses dendritic cell maturation in pancreatic cancer and colon cancer, Mol. Oncol. 13 (2019) 873-893
    L. Y. Bourguignon, G. Wong, M. Shiina, Up-regulation of Histone Methyltransferase, DOT1L, by Matrix Hyaluronan Promotes MicroRNA-10 Expression Leading to Tumor Cell Invasion and Chemoresistance in Cancer Stem Cells from Head and Neck Squamous Cell Carcinoma, J. Biol. Chem. 291 (2016) 10571-10585
    X. Wang, H. Wang, B. Xu, et al., Depletion of H3K79 methyltransferase Dot1L promotes cell invasion and cancer stem-like cell property in ovarian cancer, Am. J. Transl. Res. 11 (2019) 1145-1153
    C. W. Chen, R. P. Koche, A. U. Sinha, et al., DOT1L inhibits SIRT1-mediated epigenetic silencing to maintain leukemic gene expression in MLL-rearranged leukemia, Nat. Med. 21 (2015) 335-343
    M. H. Cho, J. H. Park, H. J. Choi, et al., DOT1L cooperates with the c-Myc-p300 complex to epigenetically derepress CDH1 transcription factors in breast cancer progression, Nat. Commun. 6 (2015), 7821
    S. R. Daigle, E. J. Olhava, C. A. Therkelsen, et al., Potent inhibition of DOT1L as treatment of MLL-fusion leukemia, Blood. 122 (2013) 1017-1025
    W. Yu, E. J. Chory, A. K. Wernimont, et al., Catalytic site remodelling of the DOT1L methyltransferase by selective inhibitors, Nat. Commun. 3 (2012), 1288
    S. R. Daigle, E. J. Olhava, C. A. Therkelsen, et al., Selective killing of mixed lineage leukemia cells by a potent small-molecule DOT1L inhibitor, Cancer Cell. 20 (2011) 53-65
    M. Wong, A. E. L. Tee, G. Milazzo, et al., The Histone Methyltransferase DOT1L Promotes Neuroblastoma by Regulating Gene Transcription, Cancer Res. 77 (2017) 2522-2533
    K. Ishiguro, H. Kitajima, T. Niinuma, et al., DOT1L inhibition blocks multiple myeloma cell proliferation by suppressing IRF4-MYC signaling, Haematologica. 104 (2019) 155-165
    L. Yang, Q. Lei, L. Li, et al., Silencing or inhibition of H3K79 methyltransferase DOT1L induces cell cycle arrest by epigenetically modulating c-Myc expression in colorectal cancer, Clin. Epigenetics. 11 (2019), 199
    W. Kim, R. Kim, G. Park, et al., Deficiency of H3K79 histone methyltransferase Dot1-like protein (DOT1L) inhibits cell proliferation, J. Biol. Chem. 287 (2012) 5588-5599
    E. M. Stein, G. Garcia-Manero, D. A. Rizzieri, et al., The DOT1L inhibitor pinometostat reduces H3K79 methylation and has modest clinical activity in adult acute leukemia, Blood. 131 (2018) 2661-2669
    J. E. Bradner, D. Hnisz, R. A. Young, Transcriptional Addiction in Cancer, Cell. 168 (2017) 629-643
    C. W. Chen, S. A. Armstrong, Targeting DOT1L and HOX gene expression in MLL-rearranged leukemia and beyond, Exp. Hematol. 43 (2015) 673-684
    K. Cao, M. Ugarenko, P. A. Ozark, et al., DOT1L-controlled cell-fate determination and transcription elongation are independent of H3K79 methylation, Proc. Natl. Acad. Sci. U S A. 117 (2020) 27365-27373
    Y. Huyen, O. Zgheib, R. A. Ditullio, Jr., et al., Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks, Nature. 432 (2004) 406-411
    Y. H. Takahashi, J. M. Schulze, J. Jackson, et al., Dot1 and histone H3K79 methylation in natural telomeric and HM silencing, Mol. Cell. 42 (2011) 118-126
    C. J. Janzen, S. B. Hake, J. E. Lowell, et al., Selective di- or trimethylation of histone H3 lysine 76 by two DOT1 homologs is important for cell cycle regulation in Trypanosoma brucei, Mol. Cell. 23 (2006) 497-507
    V. Audrito, V. G. Messana, S. Deaglio, NAMPT and NAPRT: Two Metabolic Enzymes with Key Roles in Inflammation, Front. Oncol. 10 (2020), 358
    F. Piacente, I. Caffa, S. Ravera, et al., Nicotinic Acid Phosphoribosyltransferase Regulates Cancer Cell Metabolism, Susceptibility to NAMPT Inhibitors, and DNA Repair, Cancer Res. 77 (2017) 3857-3869
    Y. Zhu, J. Liu, J. Park, et al., Subcellular compartmentalization of NAD (+) and its role in cancer: A sereNADe of metabolic melodies, Pharmacol. Ther. 200 (2019) 27-41
    A. Chiarugi, C. Dolle, R. Felici, et al., The NAD metabolome--a key determinant of cancer cell biology, Nat. Rev. Cancer. 12 (2012) 741-752
    J. Morales, L. Li, F. J. Fattah, et al., Review of poly (ADP-ribose) polymerase (PARP) mechanisms of action and rationale for targeting in cancer and other diseases, Crit. Rev. Eukaryot. Gene Expr. 24 (2014) 15-28
    R. H. Houtkooper, E. Pirinen, J. Auwerx, Sirtuins as regulators of metabolism and healthspan, Nat. Rev. Mol. Cell Biol. 13 (2012) 225-238
    N. N. Pavlova, J. Zhu, C. B. Thompson, The hallmarks of cancer metabolism: Still emerging, Cell Metab. 34 (2022) 355-377
    D. Hanahan, R. A. Weinberg, Hallmarks of cancer: the next generation, Cell. 144 (2011) 646-674
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (215) PDF downloads(38) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return