Citation: | Zhiqi Li, Qiqi Fan, Meilin Chen, Ying Dong, Farong Li, Mingshuang Wang, Yulin Gu, Simin Guo, Xianwen Ye, Jiarui Wu, Shengyun Dai, Ruichao Lin, Chongjun Zhao. The interaction between polyphyllin I and SQLE protein induces hepatotoxicity through SREBP-2/HMGCR/SQLE/LSS pathway[J]. Journal of Pharmaceutical Analysis, 2023, 13(1): 39-54. doi: 10.1016/j.jpha.2022.11.005 |
Z. Liu, W. Gao, S. Man, et al., Pharmacological evaluation of sedative-hypnotic activity and gastro-intestinal toxicity of Rhizoma Paridis saponins, J. Ethnopharmacol. 144 (2012) 67-72
|
S. Man, P. Qiu, J. Li, et al., Global metabolic profiling for the study of Rhizoma Paridis saponins-induced hepatotoxicity in rats, Environ. Toxicol. 32 (2017) 99-108
|
Z. Jia, C. Zhao, M. Wang, et al., Hepatotoxicity assessment of Rhizoma Paridis in adult zebrafish through proteomes and metabolome, Biomed. Pharmacother. 121 (2020), 109558
|
C. Zhao, M. Wang, J. Huang, et al., Integrative analysis of proteomic and metabonomics data for identification of pathways related to Rhizoma Paridis-induced hepatotoxicity, Sci. Rep. 10 (2020), 6540
|
M. Chen, K. Ye, B. Zhang, et al., Paris Saponin Ⅱ inhibits colorectal carcinogenesis by regulating mitochondrial fission and NF-κB pathway, Pharmacol. Res. 139 (2019) 273-285
|
J. He, S. Yu, C. Guo, et al., Polyphyllin I induces autophagy and cell cycle arrest via inhibiting PDK1/Akt/mTOR signal and downregulating cyclin B1 in human gastric carcinoma HGC-27 cells, Biomed. Pharma. 117 (2019), 109189
|
W.P. Wang, Y. Liu, M.Y. Sun, et al., Hepatocellular toxicity of Paris saponins I, Ⅱ, VI and VⅡ on two kinds of hepatocytes-HL-7702 and HepaRG cells, and the underlying mechanisms, Cells 8 (2019), 690
|
W. Wang, X. Dong, L. You, et al., Apoptosis in HepaRG and HL-7702 cells inducted by polyphyllin Ⅱ through caspases activation and cell-cycle arrest, J. Cell. Physiol. 234 (2019) 7078-7089
|
M.L. Cowan, T.M. Rahman, S. Krishna, Proteomic approaches in the search for biomarkers of liver fibrosis, Trends Mol. Med. 16 (2010) 171-183
|
L.A. Liotta, M. Ferrari, E. Petricoin, Clinical proteomics: written in blood, Nature 425 (2003), 905
|
Q. Gao, H. Zhu, L. Dong, et al., Integrated proteogenomic characterization of HBV-related hepatocellular carcinoma, Cell 179 (2019), 1240
|
B.F. Cravatt, G.M. Simonm J.R. Yates 3rd, The biological impact of mass-spectrometry-based proteomics, Nature 450 (2007) 991-1000
|
Y. Zhang, X. Wang, C. Chen, et al., Regulation of TBBPA-induced oxidative stress on mitochondrial apoptosis in L02 cells through the Nrf2 signaling pathway, Chemosphere 226 (2019) 463-471
|
Y. Li, Y. Song, M. Zhao, et al., A novel role for CRTC2 in hepatic cholesterol synthesis through SREBP-2, Hepatology 66 (2017) 481-497
|
K.W. Lee, N.J. Kang, Y.S. Heo, et al., Raf and MEK protein kinases are direct molecular targets for the chemopreventive effect of quercetin, a major flavonol in red wine, Cancer Res. 68 (2008) 946-955
|
Y. Liang, L. Yi, P. Deng, et al., Rapamycin antagonizes cadmium-induced breast cancer cell proliferation and metastasis through directly modulating ACSS2, Ecotoxicol. Environ. Saf. 224 (2021),112626
|
C. Zhao, M. Wang, Z. Jia, et al., Similar hepatotoxicity response induced by Rhizoma Paridis in zebrafish larvae, cell and rat, J. Ethnopharmacol. 250 (2020), 112440
|
Z. Li, Y. Tang, Z. Liu, et al., Hepatotoxicity induced by PPⅥ and PPⅦ in zebrafish were related to the Cholesterol disorder, Phytomedicine 95 (2022), 153787.
|
S. Lecomte, D. Habauzit, T.D. Charlier, et al., Emerging estrogenic pollutants in the aquatic environment and breast cancer, Genes 8 (2017),229
|
H. Ebrahimi, M. Naderian, A.A. Sohrabpour, New concepts on pathogenesis and diagnosis of liver fibrosis; A review article, Middle East J. Dig. Dis. 8 (2016) 166-178
|
M.F. Smeland, C. McClenaghan, H.I. Roessler, et al., ABCC9-related Intellectual disability Myopathy Syndrome is a KATP channelopathy with loss-of-function mutations in ABCC9, Nat. Commun. 10 (2019), 4457
|
C. Li, M. Wang, T. Fu, et al., Lipidomics indicates the hepatotoxicity effects of EtOAc extract of Rhizoma Paridis, Front. Pharmacol. 13 (2022), 799512.
|
T. Zhang, S. Zhong, T. Li, et al., Saponins as modulators of nuclear receptors, Crit. Rev. Food Sci. Nutr. 60 (2020) 94-107
|
M. Robles-Diaz, A. Gonzalez-Jimenez, I. Medina-Caliz, et al., Distinct phenotype of hepatotoxicity associated with illicit use of anabolic androgenic steroids, Aliment. Pharmacol. Ther. 41 (2015) 116-125
|
F.R. Maxfield, G. van Meer, Cholesterol, the central lipid of mammalian cells, Curr. Opin. Cell Biol. 22 (2010) 422-429
|
K.E. Brett, Z.M. Ferraro, J. Yockell-Lelievre, et al., Maternal-fetal nutrient transport in pregnancy pathologies: the role of the placenta, Int. J. Mol. Sci. 15 (2014) 16153-16185
|
Y. Zhang, S.R. Breevoort, J. Angdisen, et al., Liver LXRα expression is crucial for whole body cholesterol homeostasis and reverse cholesterol transport in mice, J. Clin. Invest. 122 (2012) 1688-1699
|
J. Luo, H. Yang, B.-L. Song, Mechanisms and regulation of cholesterol homeostasis, Nat. Rev. Mol. Cell Biol. 21 (2020) 225-245
|
T. Rezen, The impact of cholesterol and its metabolites on drug metabolism, Expet Opin. Drug Metabol. Toxicol. 7 (2011) 387-398
|
M. Tan, J. Ye, M. Zhao, et al., Recent developments in the regulation of cholesterol transport by natural molecules, Phytother Res. 35 (2021) 5623-5633
|
D. Xu, Z. Wang, Y. Zhang, et al., PAQR3 modulates cholesterol homeostasis by anchoring Scap/SREBP complex to the Golgi apparatus, Nat. Commun. 6 (2015), 8100
|
A.K. Groen, V.W. Bloks, H. Verkade, et al., Cross-talk between liver and intestine in control of cholesterol and energy homeostasis, Mol. Aspect. Med. 37 (2014) 77-88
|
M. Vinaixa, M.A. Rodriguez, A. Rull, et al., Metabolomic assessment of the effect of dietary cholesterol in the progressive development of fatty liver disease, J. Proteome Res. 9 (2010) 2527-2538
|
Y. Jo, P.C. Lee, P.V. Sguigna, et al., Sterol-induced degradation of HMG CoA reductase depends on interplay of two Insigs and two ubiquitin ligases, gp78 and Trc8, Proc. Natl. Acad. Sci. U. S. A. 108 (2011) 20503-20508
|
Y. Zhu, S.Q. Kim, Y. Zhang, et al., Pharmacological inhibition of acyl-coenzyme A: Cholesterol acyltransferase alleviates obesity and insulin resistance in diet-induced obese mice by regulating food intake, Metabolism 123 (2021), 154861.
|
F.-J. Liao, P.-F. Zheng, Y.-Z. Guan, et al., Weighted gene co-expression network analysis to identify key modules and hub genes related to hyperlipidaemia, Nutr. Metab. 18 (2021), 24
|
T.-F. Liu, J.-J. Tang, P.-S. Li, et al., Ablation of gp78 in liver improves hyperlipidemia and insulin resistance by inhibiting SREBP to decrease lipid biosynthesis, Cell Metabol. 16 (2012) 213-225
|
U. Haas, E. Raschperger, M. Hamberg, et al., Targeted knock-down of a structurally atypical zebrafish 12S-lipoxygenase leads to severe impairment of embryonic development, Proc. Natl. Acad. Sci. U. S. A. 108 (2011) 20479-20484
|
Z. Hubler, R.M. Friedrich, J.L. Sax, et al., Modulation of lanosterol synthase drives 24,25-epoxysterol synthesis and oligodendrocyte formation, Cell Chem. Biol. 28 (2021) 866-875.e5
|
A.T. Cohain, W.T. Barrington, D.M. Jordan, et al., An integrative multiomic network model links lipid metabolism to glucose regulation in coronary artery disease, Nat. Commun. 12 (2021), 547
|
I. Renard, M. Grandmougin, A. Roux, et al., Small-molecule affinity capture of DNA/RNA quadruplexes and their identification in vitro and in vivo through the G4RP protocol, Nucleic Acids Res. 47 (2019) 5502-5510
|
X. Chi, X. Liu, C. Wang, et al., Humanized single domain antibodies neutralize SARS-CoV-2 by targeting the spike receptor binding domain, Nat. Commun. 11 (2020), 4528
|
S. Ye, W. Luo, Z.A. Khan, et al., Celastrol attenuates angiotensin Ⅱ-induced cardiac remodeling by targeting STAT3, Circ. Res. 126 (2020) 1007-1023
|
Z. Hong, T. Liu, L. Wan, et al., Targeting squalene epoxidase interrupts homologous recombination via the ER stress response and promotes radiotherapy efficacy, Cancer Res. 82 (2022) 1298-1312
|
C. Li, Y. Wang, D. Liu, et al., Squalene epoxidase drives cancer cell proliferation and promotes gut dysbiosis to accelerate colorectal carcinogenesis, Gut 71 (2022) 2253-2265
|