Citation: | Zhigang Liang, Huanhuan Wang, Fangling Wu, Longfei Wang, Chenwei Li, Chuan-Fan Ding. Drug adulteration analysis based on complexation with cyclodextrin and metal ions using ion mobility spectrometry[J]. Journal of Pharmaceutical Analysis, 2023, 13(3): 287-295. doi: 10.1016/j.jpha.2022.11.002 |
P. Posadzki, L. Watson, E. Ernst, Contamination and adulteration of herbal medicinal products (HMPs): an overview of systematic reviews, Eur. J. Pharmacol. 69 (2013) 295-307.
|
S. Nithaniyal, S.L. Vassou, S. Poovitha, et al., Identification of species adulteration in traded medicinal plant raw drugs using DNA barcoding, GENOME 60 (2017) 139-146.
|
Y. Jiang, S. Cong, G. Song, et al., Defective cuprous oxide as a selective surface-enhanced Raman scattering sensor of dye adulteration in Chinese herbal medicines, J. Raman Spectrosc. 52 (2021) 1265-1274.
|
J.-W. Hao, Y. Chen, N.-D. Chen, et al., Rapid Detection of Adulteration in Dendrobium huoshanense Using NIR Spectroscopy Coupled with Chemometric Methods, J. Aoac. Int. 104 (2021) 854-859.
|
L. Childs, C. Dow, Allopurinol-induced hepatomegaly, BMJ case reports 2012 (2012).
|
C.W. Wang, R.L. Dao, W.H. Chung, Immunopathogenesis and risk factors for allopurinol severe cutaneous adverse reactions, Curr. Opin. Allergy Cl. 16 (2016) 339-345.
|
Z.Q. Feng, C.G. Sun, Z.J. Zheng, et al., Optimization of Spray-Drying Conditions and Pharmacodynamics Study of Theophylline/Chitosan/beta-Cyclodextrin Microspheres, Dry. Technol. 33 (2015) 55-65.
|
J. Timson, Theobromine and theophylline, Mutat. Res-Gen Tox. En. 32 (1975) 169-177.
|
C. Wu, F. Zhang, Y. Guo, Identification and distinction of acrolein-deoxyguanosine adduct isomers by high-performance liquid chromatography/ion mobility spectrometry/quadrupole time-of-flight mass spectrometry combined with in-source collision-induced dissociation, Rapid Commun. Mass Sp. 34 (2020), e8677.
|
H. Tada, A. Fujisaki, K. Itoh, et al., Facile and rapid high-performance liquid chromatography method for simultaneous determination of allopurinol and oxypurinol in human serum, J. Clin. Pharm. Ther. 28(2003) 229-234.
|
M.K. Reinders, L.C. Nijdam, E. N. van Roon, et al., A simple method for quantification of allopurinol and oxipurinol in human serum by high-performance liquid chromatography with UV-detection, J. Pharmaceut. Biomed. 45(2007) 312-317.
|
G. Camurri, A. Zaramella, High-throughput liquid chromatography/mass spectrometry method for the determination of the chromatographic hydrophobicity index, Anal. Chem.73(2001) 3716-3722.
|
K. Safranow, Z. Machoy, K. Ciechanowski, Analysis of purines in urinary calculi by high-performance liquid chromatography, Anal. Biochem. 286(2000) 224-230.
|
K. Masuda, Y. Murano, Simultaneous analysis of various triacylglycerol isomers by supercritical fluid chromatography, J. Am. Oil Chem. Soc. 97 (2020) 20-20.
|
H. Deng, Y. Wang, J. Wang, et al., Separation of N '-nitrosonornicotine isomers and enantiomers by supercritical fluid chromatography tandem mass spectrometry, J. Chromatogr. A 1641 (2021) 461971.
|
M. Shah, N. Patel, N. Tripathi, et al., Capillary electrophoresis methods for impurity profiling of drugs: A review of the past decade, J. Pharm. Anal. 12 (2021) 15-28.
|
T.L. Amorim, L.M. Duarte, H.F. Dos Santos, et al., Screening method for simultaneous detection of elaidic and vaccenic trans fatty acid isomers by capillary zone electrophoresis, Anal. Chim. Acta 1048 (2019) 212-220.
|
H. Lu, H. Zhang, H.W. Chen, et al., Ambient mass spectrometry for food science and industry, TrAC Trend Anal. Chem. 107 (2018) 99-115.
|
D.-Q. Han, Z.-P. Yao, Chiral mass spectrometry: An overview, TrAC Trend Anal. Chem. 123 (2020) 115763.
|
Y. Huang, T. Wang, M. Fillet, et al., Simultaneous determination of amino acids in different teas using supercritical fluid chromatography coupled with single quadrupole mass spectrometry, J. Pharm. Anal. 9(2019) 254-258.
|
J. Wu, R.M. Crist, S.E. McNeil, et al., Ion quantification in liposomal drug products using high performance liquid chromatography, J. Pharmaceut. Biomed. 165 (2019) 41-46.
|
K.A. Morrison, B.H. Clowers, Contemporary glycomic approaches using ion mobility-mass spectrometry, Curr. Opin. Chem. Biol. 42 (2018) 119-129.
|
L. Liu, R. Hua, H.-Wen. Chen (2014). Research Progress of Ionization Technologies for Ion Mobility Spectrometry. J. Chinese Mass Spectrom. Soc. 35(2014) 97.
|
X. Garcia, M.d.M. Sabate, J. Aubets, et al., Ion Mobility-Mass Spectrometry for Bioanalysis, Separations 8(3) (2021) 33.
|
J.C. May, J.A. McLean, Ion Mobility-Mass Spectrometry: Time-Dispersive Instrumentation, Anal. Chem. 87(3) (2015) 1422-1436.
|
V. Domalain, M. Hubert-Roux, C.M. Lange, et al., Use of transition metals to improve the diastereomers differentiation by ion mobility and mass spectrometry, J. Mass Spectrom. 49(5) (2014) 423-427.
|
X. Yu, Z.-P. Yao, Chiral differentiation of amino acids through binuclear copper bound tetramers by ion mobility mass spectrometry, Anal. Chim. Aata 981 (2017) 62-70.
|
J. Hofmann, H.S. Hahm, P.H. Seeberger, et al., Identification of carbohydrate anomers using ion mobility-mass spectrometry, Nature 526 (2015) 241-244.
|
A. Troc, M. Zimnicka, W. Danikiewicz, Separation of catechin epimers by complexation using ion mobility mass spectrometry, J. Mass Spectrom. 50 (2015) 542-548.
|
J.D. Zhang, K.M.M. Kabir, W.A. Donald, Metal-ion free chiral analysis of amino acids as small as proline using high-definition differential ion mobility mass spectrometry, Anal. Chim. Aata 1036 (2018) 172-178.
|
J.D. Zhang, K.M.M. Kabir, H.E. Lee, et al., Chiral recognition of amino acid enantiomers using high-definition differential ion mobility mass spectrometry, Int. J. Mass Spectrom. 428 (2018) 1-7.
|
Y. Huang, E.D. Dodds, Ion Mobility Studies of Carbohydrates as Group I Adducts: Isomer Specific Collisional Cross Section Dependence on Metal Ion Radius, Anal. Chem. 85(20) (2013) 9728-9735.
|
C. Xie, L. Gu, Q. Wu, et al., Effective Chiral Discrimination of Amino Acids through Oligosaccharide Incorporation by Trapped Ion Mobility Spectrometry, Anal. Chem. 93(2) (2021) 859-867.
|
H. Wang, F. Wu, F. Xu, et al., Identification of Bi-2-naphthol and Its Phosphate Derivatives Complexed with Cyclodextrin and Metal Ions Using Trapped Ion Mobility Spectrometry, Anal. Chem. 93(45) (2021) 15096-15104.
|
S. Yang, L. Gu, F. Wu, et al., The chirality determination of amino acids by forming complexes with cyclodextrins and metal ions using ion mobility spectrometry, and a DFT calculation, Talanta 243 (2022) 123363-123363.
|
F. Wu, X. Wu, F. Xu, et al., Recognition of Cis-Trans and Chiral Proline and Its Derivatives by Ion Mobility Measurement of Their Complexes with Natamycin and Metal Ion, Anal. Chem. 94(8) (2022) 3553-3564.
|
S. Yang, F. Wu, F. Yu, et al., Distinction of chiral penicillamine using metal-ion coupled cyclodextrin complex as chiral selector by trapped ion mobility-mass spectrometry and a structure investigation of the complexes, Anal. Chim. Aata 1184 (2021) 339017-339017.
|
F. Fernandez-Lima, D.A. Kaplan, J. Suetering, M.A. Park, Gas-phase separation using a trapped ion mobility spectrometer, Int. J Ion Mobil. Spectrometry: official publication of the International Society for Ion Mobility Spec. 14(2011) 93-98.
|
C.D. Chouinard, G. Nagy, I.K. Webb, S.V.B. Garimella, et al., Rapid Ion Mobility Separations of Bile Acid Isomers Using Cyclodextrin Adducts and Structures for Lossless Ion Manipulations, Aanl. Chem. 90(18) (2018) 11086-11091.
|
M.E. Ridgeway, M. Lubeck, J. Jordens, et al., Trapped ion mobility spectrometry: A short review, International J. Mass Spectrom. 425(2018) 22-35.
|
S. A. Ewing, M. T. Donor, J. W. Wilson, et al., Collidoscope: an improved tool for computing collisional cross-sections with the trajectory method. J Mass Spectrom. 28(2017) 587-596.
|