Volume 13 Issue 2
Mar.  2023
Turn off MathJax
Article Contents
Yikun Liu, Ning He, Yingfang Lu, Weiqiang Li, Xin He, Zhentao Li, Zilin Chen. A benzenesulfonic acid-modified organic polymer monolithic column with reversed-phase/hydrophilic bifunctional selectivity for capillary electrochromatography[J]. Journal of Pharmaceutical Analysis, 2023, 13(2): 209-215. doi: 10.1016/j.jpha.2022.10.006
Citation: Yikun Liu, Ning He, Yingfang Lu, Weiqiang Li, Xin He, Zhentao Li, Zilin Chen. A benzenesulfonic acid-modified organic polymer monolithic column with reversed-phase/hydrophilic bifunctional selectivity for capillary electrochromatography[J]. Journal of Pharmaceutical Analysis, 2023, 13(2): 209-215. doi: 10.1016/j.jpha.2022.10.006

A benzenesulfonic acid-modified organic polymer monolithic column with reversed-phase/hydrophilic bifunctional selectivity for capillary electrochromatography

doi: 10.1016/j.jpha.2022.10.006
Funds:

This work was supported by the National Natural Science Foundation of China (Grant Nos.: 82273885, 82073808 and 81872828).

  • Received Date: May 20, 2022
  • Accepted Date: Oct. 31, 2022
  • Rev Recd Date: Oct. 30, 2022
  • Publish Date: Mar. 07, 2023
  • Here, a styrene-based polymer monolithic column poly(VBS-co-TAT-co-AHM) with reversed-phase/hydrophilic interaction liquid chromatography (RPLC/HILIC) bifunctional separation mode was successfully prepared for capillary electrochromatography by the in situ polymerization of sodium p-styrene sulfonate (VBS) with cross-linkers 3-(acryloyloxy)-2-hydroxypropyl methacrylate (AHM) and 1,3,5-triacryloylhexahydro-1,3,5-triazine (TAT). The preparation conditions of the monolith were optimized. The morphology and formation of the poly(VBS-co-TAT-co-AHM) monolith were confirmed by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). The separation performances of the monolith were evaluated systematically. It should be noted that the incorporation of VBS functional monomer can provide π-π interactions, hydrophilic interactions, and ion-exchange interactions. Hence, the prepared poly(VBS-co-TAT-co-AHM) monolith can achieve efficient separation of thiourea compounds, benzene series, phenol compounds, aniline compounds and sulfonamides in RPLC or HILIC separation mode. The largest theoretical plate number for N,N'-dimethylthiourea reached 1.7×105 plates/m. In addition, the poly(VBS-co-TAT-co-AHM) monolithic column showed excellent reproducibility and stability. This novel monolithic column has great application value and potential in capillary electrochromatography (CEC).
  • loading
  • M. M. Dittmann, G. P. Rozing, Capillary electrochromatography -a high-efficiency micro-separation technique, J. Chromatogr. A, 744 (1996) 63-74
    P. Huang, X. Jin, Y. Chen, et al., Use of a Mixed-Mode Packing and Voltage Tuning for Peptide Mixture Separation in Pressurized Capillary Electrochromatography with an Ion Trap Storage/Reflectron Time-of-Flight Mass Spectrometer Detector, Anal. Chem., 71 (1999) 1786-1791
    Z. Mao, C. Hu, Z. Li, et al., A reversed-phase/hydrophilic bifunctional interaction mixed-mode monolithic column with biphenyl and quaternary ammonium stationary phases for capillary electrochromatography, Analyst, 144 (2019) 4386-4394
    C. Hu, Z. Mao, Z. Li, et al., Benzoic acid-modified monolithic column for separation of hydrophilic compounds by capillary electrochromatography with high content of water in mobile phase, J. Chromatogr. A, 1647 (2021)
    Y. Huo, W.T. Kok, Recent applications in CEC, Electrophoresis, 29 (2008) 80-93
    G. D'Orazio, M. Asensio-Ramos, C. Fanali, et al., Capillary electrochromatography in food analysis, Trac-Trends Anal. Chem., 82 (2016) 250-267
    Y. Wang, S. Zhuo, J. Hou, et al., Construction of β-Cyclodextrin Covalent Organic Framework-Modified Chiral Stationary Phase for Chiral Separation, ACS Appl. Mater. Inter., 11 (2019) 48363-48369
    B. Chen, Y. Du, H. Wang, Study on enantiomeric separation of basic drugs by NACE in methanol-based medium using erythromycin lactobionate as a chiral selector, Electrophoresis, 31 (2010) 371-377
    L. D'Ulivo, Y.L. Feng, A novel open tubular capillary electrochromatographic method for differentiating the DNA interaction affinity of environmental contaminants, PLoS One, 11 (2016) e0153081
    C. Tejada-Casado, M. Hernandez-Mesa, M. Del Olmo-Iruela, et al., Capillary electrochromatography coupled with dispersive liquid-liquid microextraction for the analysis of benzimidazole residues in water samples, Talanta, 161 (2016) 8-14
    K. Liu, P. Aggarwal, J.S. Lawson, et al., Organic monoliths for high-performance reversed-phase liquid chromatography, J. Sep. Sci., 36 (2013) 2767-2781
    V. Augustin, A. Jardy, P. Gareil, et al., In situ synthesis of monolithic stationary phases for electrochromatographic separations: study of polymerization conditions, J. Chromatogr. A, 1119 (2006) 80-87
    M. Jonnada, R. Rathnasekara, Z. El Rassi, Recent advances in nonpolar and polar organic monoliths for HPLC and CEC, Electrophoresis, 36 (2015) 76-100
    F. Ye, S. Wang, S. Zhao, Preparation and characterization of mixed-mode monolithic silica column for capillary electrochromatography, J. Chromatogr. A, 1216 (2009) 8845-8850
    T. A. Lin, G. Y. Li, L. K. Chau, Sol-gel monolithic anion-exchange column for capillary electrochromatography, Anal. Chim. Acta, 576 (2006) 117-123
    J. Kang, D. Wistuba, V. Schurig, A silica monolithic column prepared by the sol-gel process for enantiomeric separation by capillary electrochromatography, Electrophoresis, 23 (2002) 1116-1120
    W. Bao, C. Zhang, M. Yang, et al., Preparation and modeling study of novel carboxymethyl-β-cyclodextrin silica hybrid monolithic column for enantioseparations in capillary electrochromatography, Microchem. J., 170 (2021)
    L. J. Yan, Q. H. Zhang, Y. Q. Feng, et al., Octyl-functionalized hybrid silica monolithic column for reversed-phase capillary electrochromatography, J. Chromatogr. A, 1121 (2006) 92-98
    Y. Wang, Q.-L. Deng, G.-Z. Fang, et al., A novel ionic liquid monolithic column and its separation properties in capillary electrochromatography, Anal. Chim. Acta, 712 (2012) 1-8
    H.-Y. Huang, Y.-J. Cheng, C.-L. Lin, Analyses of synthetic antioxidants by capillary electrochromatography using poly(styrene-divinylbenzene-lauryl methacrylate) monolith, Talanta, 82 (2010) 1426-1433
    X. Wang, X. Lin, Z. Xie, et al., Preparation and evaluation of a neutral methacrylate-based monolithic column for hydrophilic interaction stationary phase by pressurized capillary electrochromatography, J. Chromatogr. A, 1216 (2009) 4611-4617
    C.-C. Liu, Q.-L. Deng, G.-Z. Fang, et al., Ionic liquids monolithic columns for protein separation in capillary electrochromatography, Anal. Chim. Acta, 804 (2013) 313-320
    E.F. Hilder, F. Svec, J.M. Frechet, Development and application of polymeric monolithic stationary phases for capillary electrochromatography, J. Chromatogr. A, 1044 (2004) 3-22
    A.S. Popov, K.A. Spiridonov, A.S. Uzhel, et al., Prospects of using hyperbranched stationary phase based on poly(styrene-divinylbenzene) in mixed-mode chromatography, J. Chromatogr. A, 1642 (2021), 462010
    A.V. Zatirakha, A.D. Smolenkov, O.A. Shpigun, Preparation and chromatographic performance of polymer-based anion exchangers for ion chromatography: A review, Anal. Chim. Acta, 904 (2016) 33-50
    H.Y. Huang, H.Y. Lin, S.P. Lin, CEC with monolithic poly(styrene-divinylbenzene-vinylsulfonic acid) as the stationary phase, Electrophoresis, 27 (2006) 4674-4681
    W.H. Jin, H.J. Fu, X.D. Huang, et al., Optimized preparation of poly(styrene-co-divinylbenzene-co-methacrylic acid) monolithic capillary column for capillary electrochromatography, Electrophoresis, 24 (2003) 3172-3180
    F. Detobel, K. Broeckhoven, J. Wellens, et al., Parameters affecting the separation of intact proteins in gradient-elution reversed-phase chromatography using poly(styrene-co-divinylbenzene) monolithic capillary columns, J. Chromatogr. A, 1217 (2010) 3085-3090
    M. Schmitt, M. Egorycheva, A. Seubert, Mixed-acidic cation-exchange material for the separation of underivatized amino acids, J. Chromatogr. A, 1664 (2022) 462790
    A.S. Rasheed, B.A. Al-Phalahy, A. Seubert, Studies on Behaviors of Interactions Between New Polymer-based ZIC-HILIC Stationary Phases and Carboxylic Acids, J. Chromatogr. Sci., 55 (2017) 52-59
    M.A. Abbas, A.S. Rasheed, Retention Characteristic of Ranitidine Hydrochloride on New Polymer-Based in Zwitter Ion Chromatography-Hydrophilic Interaction Chromatography Stationary Phases, J. Chem. Soc. Pak., 40 (2018) 89-94
    H.G. Kang, M.S. Lee, W.J. Sim, et al., Effect of number of cross-linkable sites on proton conducting, pore-filling membranes, J. Membr. Sci., 460 (2014) 178-184
    M. Quaglia, E. De Lorenzi, C. Sulitzky, et al., Molecularly imprinted polymer films grafted from porous or nonporous silica: Novel affinity stationary phases in capillary electrochromatography, Electrophoresis, 24 (2003) 952-957
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (209) PDF downloads(18) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return