| Citation: | Wujun Chen, Bing Liang, Xiaolin Wu, Ling Li, Chao Wang, Dongming Xing. Advances and challenges in using nirmatrelvir and its derivatives against SARS-CoV-2 infection[J]. Journal of Pharmaceutical Analysis, 2023, 13(3): 255-261. doi: 10.1016/j.jpha.2022.10.005 |
|
M. Pavan, G. Bolcato, D. Bassani, et al., Supervised Molecular Dynamics (SuMD) Insights into the mechanism of action of SARS-CoV-2 main protease inhibitor PF-07321332, J. Enzyme. Inhib. Med. Chem. 36 (2021), 16461650.
|
|
S. Korkmaz, M. Atescelik, H.N. Balci, et al., Health Anxiety, Health Perception, and Healthy Lifestyle Behavior Among Psychiatric Patients During the COVID-19 Pandemic, Prim. Care. Companion. CNS. Disord. 24 (2022), 21m03197.
|
|
D.R. Owen, C.M.N. Allerton, A.S. Anderson, et al., An oral SARS-CoV-2 M(pro) inhibitor clinical candidate for the treatment of COVID-19, Science 374 (2021) 1586-1593.
|
|
N. Abu-Freha, H. Alsana, S. El-Saied, et al., COVID-19 Vaccination Among the Arab Bedouin Population: Lessons Learned From a Minority Population, Int. J. Public. Health. 67 (2022), 1604133.
|
|
P. Sendi, R.R. Razonable, S.B. Nelson, et al., First-generation oral antivirals against SARS-CoV-2, Clin. Microbiol. Infect. (2022) S1198-743X(22)00223-3.
|
|
S. Ullrich, V.M. Sasi, M.C. Mahawaththa, et al., Challenges of short substrate analogues as SARS-CoV-2 main protease inhibitors, Bioorg. Med. Chem. Lett. 50 (2021), 128333.
|
|
V. Soriano, C. de-Mendoza, B. Edagwa, et al., Oral antivirals for the prevention and treatment of SARS-CoV-2 infection, AIDS. Rev. 24 (2022) 41-49.
|
|
A.K. Singh, A. Singh, R. Singh, et al., An updated practical guideline on use of molnupiravir and comparison with agents having emergency use authorization for treatment of COVID-19, Diabetes Metabol. Syndr. 16 (2022), 102396.
|
|
K. Vandyck, J. Deval, Considerations for the discovery and development of 3-chymotrypsin-like cysteine protease inhibitors targeting SARS-CoV-2 infection, Curr. Opin. Virol. 49 (2021) 36-40.
|
|
W. Wen, C. Chen, J. Tang, et al., Efficacy and safety of three new oral antiviral treatment (molnupiravir, fluvoxamine and Paxlovid) for COVID-19: a meta-analysis, Ann. Med. 54 (2022) 516-523.
|
|
T.C. Lee, A.M. Morris, S.A. Grover, et al., Outpatient Therapies for COVID-19: How Do We Choose?, Open. Forum. Infect. Dis. 9 (2022), ofac008.
|
|
E. Mahase, Covid-19: Pfizer's paxlovid is 89% effective in patients at risk of serious illness, company reports, BMJ 375 (2021), n2713.
|
|
European medicines agency science medicinec health, COVID-19: EMA Recommends Conditional Marketing Authorisation for Paxlovid. https://www.ema.europa.eu/en/news/covid-19-ema-recommends-conditional-marketing-authorisation-paxlovid. (Accessed 27 January 2022).
|
|
Medicines Patent Pool, Pfizer and the Medicines Patent Pool signed a licence agreement to facilitate affordable access of Pfizer’s oral COVID-19 antiviral treatment candidate PF-07321332 in combination with low dose ritonavir in 95 countries. https://medicinespatentpool.org/news-publications-post/pfizer-and-the-medicines-patent-pool-mpp-sign-licensing-agreement-for-covid-19-oral-antiviral-treatment-candidate-to-expand-access-in-low-and-middle-income-countries. (Accessed 16 November 2021).
|
|
Medicines Patent Pool, 36 generic manufacturers signed agreements with MPP to produce generic versions of Pfizer’s oral COVID-19 treatment. https://medicinespatentpool.org/news-publications-post/35-generic-manufacturers-sign-agreements-with-mpp-to-produce-low-cost-generic-versions-of-pfizers-oral-covid-19-treatment-nirmatrelvir-in-combination-with-ritonavir-for-supply-in-95-low-and, (Accessed 17 March 2022).
|
|
Y. Zhao, C. Fang, Q. Zhang, et al., Crystal structure of SARS-CoV-2 main protease in complex with protease inhibitor PF-07321332, Protein. Cell. 13 (2022) 689-693.
|
|
B. Ahmad, M. Batool, Q.U. Ain, et al., Exploring the Binding Mechanism of PF-07321332 SARS-CoV-2 Protease Inhibitor through Molecular Dynamics and Binding Free Energy Simulations, Int. J. Mol. Sci. 22 (2021), 9124.
|
|
S. Simsek-Yavuz, F.I. Komsuoglu Celikyurt, An update of anti-viral treatment of COVID-19, Turk. J. Med. Sci. 51 (2021) 3372-3390.
|
|
J. Lia, C. Lin, X. Zhou, et al., Structural basis of main proteases of coronavirus bound to drug candidate PF-07321332, J. Virol. 96 (2022), e0201321.
|
|
C.A. Ramos-Guzman, J.J. Ruiz-Pernia, I. Tunon, Computational simulations on the binding and reactivity of a nitrile inhibitor of the SARS-CoV-2 main protease, Chem. Commun (Camb). 57 (2021) 9096-9099.
|
|
L. Brewitz, J. Kamps, P. Lukacik, et al., Mass Spectrometric Assays Reveal Discrepancies in Inhibition Profiles for the SARS-CoV-2 Papain-Like Protease, ChemMedChem 17 (2022), e202200016.
|
|
H. Eng, A.L. Dantonio, E.P. Kadar, et al., Disposition of PF-07321332 (Nirmatrelvir), an Orally Bioavailable Inhibitor of SARS-CoV-2 3CL Protease, across Animals and Humans, Drug. Metab. Dispos. 50 (2022) 576-590.
|
|
R.S.P. Singh, S.S. Toussi, F. Hackman, et al., Innovative Randomized Phase 1 Study and Dosing Regimen Selection to Accelerate and Inform Pivotal COVID-19 Trial of Nirmatrelvir, Clin. Pharmacol. Ther. 112 (2022) 101-111.
|
|
B. Charlier, A. Coglianese, F. De Rosa, et al., The Effect of Plasma Protein Binding on the Therapeutic Monitoring of Antiseizure Medications, Pharmaceutics 13 (2021), 1208.
|
|
J. Hochman, C. Tang, T. Prueksaritanont, Drug-drug interactions related to altered absorption and plasma protein binding: theoretical and regulatory considerations, and an industry perspective, J. Pharm. Sci. 104 (2015) 916-929.
|
|
T. Bohnert, L.S. Gan, Plasma protein binding: from discovery to development, J. Pharm. Sci. 102 (2013) 2953-2994.
|
|
T. Bohnert, L.S. Gan, Plasma protein binding: from discovery to development, J. Pharm. Sci. 102 (2013) 2953-2994.
|
|
D.A. Smith, L. Di, E.H. Kerns, The effect of plasma protein binding on in vivo efficacy: misconceptions in drug discovery, Nat. Rev. Drug. Discov. 9 (2010) 929-939.
|
|
J.F. Denissen, B.A. Grabowski, M.K. Johnson, et al., Metabolism and disposition of the HIV-1 protease inhibitor ritonavir (ABT-538) in rats, dogs, and humans, Drug. Metab. Dispos. 25 (1997) 489-501.
|
|
N.R. Catlin, C.J. Bowman, S.N. Campion, et al., Reproductive and developmental safety of nirmatrelvir (PF-07321332), an oral SARS-CoV-2 Mpro inhibitor in animal models, Reprod. Toxicol. 108 (2022) 56-61.
|
|
M. de Vries, A.S. Mohamed, R.A. Prescott, et al., A comparative analysis of SARS-CoV-2 antivirals characterizes 3CLpro inhibitor PF-00835231 as a potential new treatment for COVID-19, J. Virol. 95 (2021) e0189-20.
|
|
Z. Wang, L. Yang, In the age of Omicron variant: Paxlovid raises new hopes of COVID-19 recovery, J. Med. Virol. 94 (2022) 1766-1767.
|
|
P. Li, Y. Wang, M. Lavrijsen, et al., SARS-CoV-2 Omicron variant is highly sensitive to molnupiravir, nirmatrelvir, and the combination, Cell. Res. 32 (2022) 322-324.
|
|
S. Ullrich, K.B. Ekanayake, G. Otting, et al., Main protease mutants of SARS-CoV-2 variants remain susceptible to nirmatrelvir, Bioorg. Med. Chem. Lett. 62 (2022), 128629.
|
|
S. Drozdzal, J. Rosik, K. Lechowicz, et al., An update on drugs with therapeutic potential for SARS-CoV-2 (COVID-19) treatment, Drug. Resist. Updat. 59 (2021), 100794.
|
|
K.S. Yang, S.Z. Leeuwon, S. Xu, et al., Evolutionary and Structural Insights about Potential SARS-CoV-2 Evasion of Nirmatrelvir. J. Med. Chem. 65 (2022) 8686-8698.
|
|
L. Vangeel, W. Chiu, S. De Jonghe, et al., Remdesivir, Molnupiravir and Nirmatrelvir remain active against SARS-CoV-2 Omicron and other variants of concern, Antiviral. Res. 198 (2022), 105252.
|
|
A. Dabrowska, A. Szczepanski, P. Botwina, et al., Efficacy of antiviral drugs against the omicron variant of SARS-CoV-2, bioRxiv. 2021. https://doi.org/10.1101/2021.12.21.473268.
|
|
S.R. Leist, K.H. Dinnon. 3rd, A. Schafer, et al., A Mouse-Adapted SARS-CoV-2 Induces Acute Lung Injury and Mortality in Standard Laboratory Mice, Cell 183 (2020) 1070-1085.e12.
|
|
L.H. Tostanoski, L.E. Gralinski, D.R. Martinez, et al., Protective Efficacy of Rhesus Adenovirus COVID-19 Vaccines against Mouse-Adapted SARS-CoV-2, J. Virol. 95 (2021), e0097421.
|
|
Pfizer. Inc., Pfizer shares top-Line results from phase 2/3 EPIC-PEP study of PaxlovidTM for post-exposure prophylactic use. https://www.pfizer.com/news/press-release/press-release-detail/pfizer-shares-top-line-results-phase-23-epic-pep-study. (Accessed 29 April 2022).
|
|
J. Hammond, H. Leister-Tebbe, A. Gardner, et al., Oral Nirmatrelvir for High-Risk, Nonhospitalized Adults with Covid-19, N. Engl. J. Med. 386 (2022) 1397-1408.
|
|
A. Garcia-Lledo, J. Gomez-Pavon, J. Gonzalez Del Castillo, et al., Pharmacological treatment of COVID-19: an opinion paper, Rev. Esp. Quimioter. 35 (2022) 115-130.
|
|
T. Patchen, Covid-19 roundup: WHO issues 'strong' recommendation for Pfizer's Paxlovid but wants more price transparency. https://endpts.com/covid-19-roundup-who-issues-strong-recommendation-for-pfizers-paxlovid-but-wants-more-price-transparency/. (Accessed 22 April 2022).
|
|
E.Y. Dai, K.A. Lee, A.B. Nathanson, et al., Viral kinetics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron infection in mRNAvaccinated individuals treated and not treated with nirmatrelvir-ritonavir, medRxiv. 2022. https://doi.org/10.1101/2022.08.04.22278378.
|
|
J. Steenhuysen, The case for testing Pfizer's Paxlovid for treating long COVID. https://www.msn.com/en-us/health/medical/the-case-for-testing-pfizers-paxlovid-for-treating-long-covid/ar-AAWkJLn?utm_source=sfmc&utm_medium=email&utm_campaign=RSScholarlySquareApril+2022. (Accessed 18 April 2022).
|
|
B. Boras, R.M. Jones, B.J. Anson, et al., Preclinical characterization of an intravenous coronavirus 3CL protease inhibitor for the potential treatment of COVID19, Nat. Commun. 12 (2021), 6055.
|
|
AP. Lea, D. Faulds, Ritonavir, Drugs 52 (1996) 541-548.
|
|
Paxlovid for treatment of COVID-19, Med. Lett. Drugs. Ther. 64 (2022) 9-10.
|
|
M. Marzi, M.K. Vakil, M. Bahmanyar, et al., Paxlovid: Mechanism of Action, Synthesis, and In Silico Study, Biomed. Res. Int. (2022), 7341493.
|
|
D.V. Parums, Editorial: Current Status of Oral Antiviral Drug Treatments for SARS-CoV-2 Infection in Non-Hospitalized Patients, Med. Sci. Monit. 28 (2022), e935952.
|
|
A. Vuorio, P.T. Kovanen, F. Raal, Cholesterol-lowering drugs for high-risk hypercholesterolemia patients with COVID-19 while on PaxlovidTM therapy, Future. Virol. 2022. https://doi.org/10.2217/fvl-2022-0060.
|
|
D.R. Owen, M.Y. Pettersson, M.R. Reese, et al., Inventors; Nitrile-containing antiviral compounds, World Intellectual Property Organization International Bureau Patent WO 2021/250648A1, 16 December 2021.
|
|
L.D. Arnold, A. Jennings, W. Keung, Inventors; Inhibitors of cysteine proteases and methods of use thereof, World Intellectual Property Organization International Bureau Patent WO 2021/252644A1, 16 December 2021.
|
|
J.D. Panarese, D. Davis, N.T. Kenton, et al., Inventors; Functionalized peptides as antiviral agents, United States patent US 2022/0033383A1, 19 July 2021.
|
|
Y.R. Alugubelli, Z.Z. Geng, K.S. Yang, et al., The N-terminal carbamate is key to high cellular and antiviral potency for boceprevir-based SARS-CoV-2 main protease inhibitors, bioRxiv. 2021. https://www.biorxiv.org/content/10.1101/2021.12.18.473330v1.
|
|
L. Waters, F. Marra, A. Pozniak, et al., Ritonavir and COVID-19: pragmatic guidance is important, Lancet 399 (2022) 1464-1465.
|
|
J. Heskin, S.J.C. Pallett, N. Mughal, et al., Caution required with use of ritonavir-boosted PF-07321332 in COVID-19 management, Lancet 399 (2022) 21-22.
|
|
N.W. Lange, D.M. Salerno, D.L. Jennings, et al., Nirmatrelvir/ritonavir use: Managing clinically significant drug-drug interactions with transplant immunosuppressants, Am. J. Transplant. 22 (2022) 1925-1926.
|
|
E.G. McDonald, T.C. Lee, Nirmatrelvir-ritonavir for COVID-19, CMAJ 194 (2022), E218.
|
|
C. Marzolini, D.R. Kuritzkes, F. Marra, et al., Recommendations for the management of drug-drug interactions between the COVID-19 antiviral nirmatrelvir/ritonavir (Paxlovid) and comedications, Clin. Pharmacol. Ther. 2022. https://doi.org/10.1002/cpt.2646.
|
|
A.X. Wang, A. Koff, D. Hao, et al., Effect of nirmatrelvir/ritonavir on calcineurin inhibitor levels: Early experience in four SARS-CoV-2 infected kidney transplant recipients, Am. J. Transplant. 22 (2022) 2117-2119.
|
|
A.S. Nair, Perioperative melatonin in COVID-19 patients: benefits beyond sedation and analgesia, Med. Gas. Res. 12 (2022) 41-43.
|
|
T. Bohnert, L.S. Gan, Plasma protein binding: from discovery to development, J. Pharm. Sci. 102 (2013) 2953-2994.
|
|
D.X. Tan, R.J. Reiter, Mechanisms and clinical evidence to support melatonin's use in severe COVID-19 patients to lower mortality, Life Sci. 294 (2022), 120368.
|
|
S. Fishbane, J.S. Hirsch, V. Nair, Special Considerations for Paxlovid Treatment Among Transplant Recipients With SARS-CoV-2 Infection, Am. J. Kidney. Dis. 79 (2022) 480-482.
|
|
A.S. Tarnawski, A. Ahluwalia, Endothelial cells and blood vessels are major targets for COVID-19-induced tissue injury and spreading to various organs, World. J. Gastroenterol. 28 (2022) 275-289.
|
|
C. Chen, Y. Zhang, X. Zhao, et al., Hypoalbuminemia - An Indicator of the Severity and Prognosis of COVID-19 Patients: A Multicentre Retrospective Analysis, Infect. Drug. Resist. 14 (2021) 3699-3710.
|
|
COVID-19 updates: Remdesivir (Veklury) in high-risk outpatients with COVID-19, Med. Lett. Drugs. Ther. 64 (2022) 31-32.
|