Volume 13 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
Congshan Jiang, Kaichong Jiang, Xiaowei Li, Ning Zhang, Wenhua Zhu, Liesu Meng, Yanmin Zhang, Shemin Lu. Evaluation of immunoprotection against coronavirus disease 2019: Novel variants, vaccine inoculation, and complications[J]. Journal of Pharmaceutical Analysis, 2023, 13(1): 1-10. doi: 10.1016/j.jpha.2022.10.003
Citation: Congshan Jiang, Kaichong Jiang, Xiaowei Li, Ning Zhang, Wenhua Zhu, Liesu Meng, Yanmin Zhang, Shemin Lu. Evaluation of immunoprotection against coronavirus disease 2019: Novel variants, vaccine inoculation, and complications[J]. Journal of Pharmaceutical Analysis, 2023, 13(1): 1-10. doi: 10.1016/j.jpha.2022.10.003

Evaluation of immunoprotection against coronavirus disease 2019: Novel variants, vaccine inoculation, and complications

doi: 10.1016/j.jpha.2022.10.003
Funds:

We appreciate the critical reading of our work by Professor Xu Li from Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University. We are very grateful for the financial support from the National Natural Science Foundation of China (Grant Nos.: 81970029, 81974014, 82211530115, and 81470452), China Postdoctoral Science Foundation (Project No.: 2021M702591), the Natural Science Foundation of Shaanxi Province (Project No.: 2021JQ-024), Fundamental Research Funds for the Central Universities (Project No.: xjh012020026), Xi'an Health Commission (COVID-19 special project), Xi'an Talent Program (Project No.: XAYC200023), and research funds of Xi'an Children's Hospital (Project No.: 2020A03).

  • Received Date: Jun. 21, 2022
  • Accepted Date: Oct. 20, 2022
  • Rev Recd Date: Oct. 19, 2022
  • Publish Date: Oct. 27, 2022
  • The strikingly rapidly mutating nature of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome has been a constant challenge during the coronavirus disease 2019 (COVID-19) pandemic. In this study, various techniques, including reverse transcription-quantitative polymerase chain reaction, antigen-detection rapid diagnostic tests, and high-throughput sequencing were analyzed under different scenarios and spectra for the etiological diagnosis of COVID-19 at the population scale. This study aimed to summarize the latest research progress and provide up-to-date understanding of the methodology used for the evaluation of the immunoprotection conditions against future variants of SARS-CoV-2. Our novel work reviewed the current methods for the evaluation of the immunoprotection status of a specific population (endogenous antibodies) before and after vaccine inoculation (administered with biopharmaceutical antibody products). The present knowledge of the immunoprotection status regarding the COVID-19 complications was also discussed. Knowledge on the immunoprotection status of specific populations can help guide the design of pharmaceutical antibody products, inform practice guidelines, and develop national regulations with respect to the timing of and need for extra rounds of vaccine boosters.
  • loading
  • Johns Hopkins University & Medicine, Coronavrius Resource Center, Global Map. https://coronavirus.jhu.edu/map.html. (Accessed 6 September 2022).
    F. Wu, S. Zhao, B. Yu, et al., A new coronavirus associated with human respiratory disease in China, Nature 579 (2020) 265-269
    X. Li, M. Geng, Y. Peng, et al., Molecular immune pathogenesis and diagnosis of COVID-19, J. Pharm. Anal. 10 (2020) 102-108
    B. Oberfeld, A. Achanta, K. Carpenter, et al., SnapShot: COVID-19, Cell 181 (2020) 954-954.e1
    C. Jiang, X. Li, C. Ge, et al., Molecular detection of SARS-CoV-2 being challenged by virus variation and asymptomatic infection, J. Pharm. Anal. 11 (2021) 257-264
    J. Hadfield, C. Megill, S.M. Bell, et al., Nextstrain: Real-time tracking of pathogen evolution, Bioinformatics 34 (2018) 4121-4123
    The Nextstrain team, Genomic epidemiology of SARS-CoV-2 with subsampling focused globally over the past 6 months. https://nextstrain.org/ncov/gisaid/global/6m. (Accessed 16 June 2022).
    S.A. Madhi, G. Kwatra, J.E. Myers, et al., Population immunity and covid-19 severity with Omicron variant in South Africa, N. Engl. J. Med. 386 (2022) 1314-1326
    J.A. Lewnard, V.X. Hong, M.M. Patel, et al., Clinical outcomes among patients infected with Omicron (B.1.1.529) SARS-CoV-2variant in southern California, Lancet. Respir. Med. 10 (2022) 689-699
    R.A. Bull, T.N. Adikari, J.M. Ferguson, et al., Analytical validity of nanopore sequencing for rapid SARS-CoV-2 genome analysis, Nat. Commun. 11 (2020), 6272
    A. Chappleboim, D. Joseph-Strauss, A. Rahat, et al., Early sample tagging and pooling enables simultaneous SARS-CoV-2 detection and variant sequencing, Sci. Transl. Med. 13 (2021), eabj2266
    X. Li, Y. Xu, X. Li, et al., Real-world effectiveness and protection of SARS-CoV-2 vaccine among patients hospitalized for COVID-19 in Xi’an, China, December 8, 2021, to January 20, 2022: A retrospective study, Front. Immunol. 13 (2022), 978977.
    C. Sheridan, Coronavirus and the race to distribute reliable diagnostics, Nat. Biotechnol. 38 (2020) 382-384
    F. Arena, S. Pollini, G.M. Rossolini, et al., Summary of the available molecular methods for detection of SARS-CoV-2 during the ongoing pandemic, Int. J. Mol. Sci. 22 (2021), 1298
    M. Artesi, S. Bontems, P. Gobbels, et al., A recurrent mutation at position 26340 of SARS-CoV-2 is associated with failure of the E gene quantitative reverse transcription-PCR utilized in a commercial dual-target diagnostic assay, J. Clin. Microbiol. 58 (2020), 015988-20
    K.K.K. Ko, N.B. Abdul Rahman, S.Y.L. Tan, et al., SARS-CoV-2 N gene G29195T point mutation may affect diagnostic reverse transcription-PCR detection, Microbiol. Spectr. 10 (2022), e0222321
    J.C.C. Lesbon, M.D. Poleti, E.C. de Mattos Oliveira, et al., Nucleocapsid (N) gene mutations of SARS-CoV-2 can affect real-time RT-PCR diagnostic and impact false-negative results, Viruses 13 (2021), 2474.
    P. Laine, H. Nihtila, E. Mustanoja, et al., SARS-CoV-2 variant with mutations in N gene affecting detection by widely used PCR primers, J. Med. Virol. 94 (2022) 1227-1231
    A. Jain, M. Rophina, S. Mahajan, et al., Analysis of the potential impact of genomic variants in global SARS-CoV-2 genomes on molecular diagnostic assays, Int. J. Infect. Dis. 102 (2021) 460-462
    R.W. Peeling, P.L. Olliaro, D.I. Boeras, et al., Scaling up COVID-19 rapid antigen tests: Promises and challenges, Lancet Infect. Dis. 21 (2021) e290-e295
    Antigen-detection in the Diagnosis of SARS-CoV-2 Infection Using Rapid Immunoassays: Interim Guidance. https://www.who.int/publications/i/item/antigen-detection-in-the-diagnosis-of-sars-cov-2infection-using-rapid-immunoassays. (Accessed 6 September 2022).
    J. Xu, W. Suo, Y. Goulev, et al., Handheld microfluidic filtration platform enables rapid, low-cost, and robust self-testing of SARS-CoV-2 virus, Small 17 (2021), e2104009
    L. Liv, G. Çoban, N. Nakiboğlu, et al., A rapid, ultrasensitive voltammetric biosensor for determining SARS-CoV-2 spike protein in real samples, Biosens. Bioelectron. 192 (2021), 113497.
    M. Nóra, D. Déri, D.S. Veres, et al., Evaluating the field performance of multiple SARS-Cov-2 antigen rapid tests using nasopharyngeal swab samples, PLoS One 17 (2022), e0262399.
    J.-L. Bayart, J. Degosserie, J. Favresse, et al., Analytical sensitivity of six SARS-CoV-2 rapid antigen tests for omicron versus delta variant, Viruses 14 (2022), 654.
    A. Sette, S. Crotty, Adaptive immunity to SARS-CoV-2 and COVID-19, Cell 184 (2021) 861-880
    M.J. Peluso, A.N. Deitchman, L. Torres, et al., Long-term SARS-CoV-2-specific immune and inflammatory responses in individuals recovering from COVID-19 with and without post-acute symptoms, Cell Rep. 36 (2021), 109518
    S. Jeffrey, G. Carl, M. Blair, et al., Longitudinal evaluation and decline of antibody responses in SARS-CoV-2 infection, Nat. Biotechnol. 5 (2020), 1598-1607
    Q.-X. Long, X.-J. Tang, Q.-L. Shi, et al., Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections, Nat. Med. 26 (2020) 1200-1204
    N. Mumoli, J. Vitale, A. Mazzone, Clinical immunity in discharged medical patients with COVID-19, Int. J. Infect. Dis. 99 (2020) 229-230
    S.F. Lumley, J. Wei, D. O'Donnell, et al., The duration, dynamics, and determinants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody responses in individual healthcare workers, Clin. Infect. Dis. 73 (2021) e699-e709
    S.F. Lumley, D. O'Donnell, N.E. Stoesser, et al., Antibody status and incidence of SARS-CoV-2 infection in health care workers, N. Engl. J. Med. 384 (2021) 533-540
    M. Ackermann, H.-J. Anders, R. Bilyy, et al., Patients with COVID-19: In the dark-NETs of neutrophils, Cell Death Differ. 28 (2021) 3125-3139
    S. Lee, R. Channappanavar, T.-D. Kanneganti, Coronaviruses: Innate immunity, inflammasome activation, inflammatory cell death, and cytokines, Trends Immunol. 41 (2020) 1083-1099
    A. Grifoni, D. Weiskopf, S.I. Ramirez, et al., Targets of T cell responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 disease and unexposed individuals, Cell 181 (2020) 1489-1501.e15
    K.J. Ewer, J.R. Barrett, S. Belij-Rammerstorfer, et al., T cell and antibody responses induced by a single dose of ChAdOx1 nCoV-19 (AZD1222) vaccine in a phase 1/2 clinical trial, Nat. Med. 27 (2021) 270-278
    A. Tarke, J. Sidney, C.K. Kidd, et al., Comprehensive analysis of T cell immunodominance and immunoprevalence of SARS-CoV-2 epitopes in COVID-19 cases, Cell Rep. Med. 2 (2021), 100204
    P. Brodin, Immune determinants of COVID-19 disease presentation and severity, Nat. Med. 27 (2021) 28-33
    United States COVID-19 cases and deaths by state over time. https://data.cdc.gov/Case-Surveillance/United-States-COVID-19-Cases-and-Deaths-by-State-o/9mfq-cb36. (Accessed 6 September 2022).
    C. Rydyznski Moderbacher, S.I. Ramirez, J.M. Dan, et al., Antigen-specific adaptive immunity to SARS-CoV-2 in acute COVID-19 and associations with age and disease severity, Cell 183 (2020) 996-1012.e19
    K. Lingappan, H. Karmouty-Quintana, J. Davies, et al., Understanding the age divide in COVID-19: Why are children overwhelmingly spared? Am. J. Physiol. Lung Cell. Mol. Physiol. 319 (2020) L39-L44
    P. Brodin, Why is COVID-19 so mild in children? Acta Paediatr. 109 (2020) 1082-1083
    L.A. Bienvenu, J. Noonan, X. Wang, et al., Higher mortality of COVID-19 in males: Sex differences in immune response and cardiovascular comorbidities, Cardiovasc. Res. 116 (2020) 2197-2206
    G. Chen, Y. Zhang, Y. Zhang, et al., Differential immune responses in pregnant patients recovered from COVID-19, Signal Transduct. Target. Ther. 6 (2021), 289
    D.J. Jamieson, S.A. Rasmussen, An update on COVID-19 and pregnancy, Am. J. Obstet. Gynecol. 226 (2022) 177-186
    J.D. Goldman, P.C. Robinson, T.S. Uldrick, et al., COVID-19 in immunocompromised populations: Implications for prognosis and repurposing of immunotherapies, J. Immunother. Cancer 9 (2021), e002630
    P. Bost, F. De Sanctis, S. Cane, et al., Deciphering the state of immune silence in fatal COVID-19 patients, Nat. Commun. 12 (2021), 1428
    C. Huang, Y. Wang, X. Li, et al., Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China, Lancet 395 (2020) 497-506
    National SARS-CoV-2 Serology Assay Evaluation Group, Performance characteristics of five immunoassays for SARS-CoV-2: A head-to-head benchmark comparison, Lancet Infect. Dis. 20 (2020) 1390-1400
    E.R. Adams, M. Ainsworth, R. Anand, et al., Antibody testing for COVID-19: A report from the National COVID Scientific Advisory Panel, Wellcome Open. Res. 5 (2020), 139
    M. Merad, C.A. Blish, F. Sallusto, et al., The immunology and immunopathology of COVID-19, Science 375 (2022) 1122-1127
    A. Dotan, S. Muller, D. Kanduc, et al., The SARS-CoV-2 as an instrumental trigger of autoimmunity, Autoimmun. Rev. 20 (2021), 102792
    J. M. Dan, J. Mateus, Y. Kato, et al., Immunological memory to SARS-CoV-2 assessed for up to eight months after infection, BioRxiv. 2020. https://pubmed.ncbi.nlm.nih.gov/33442687
    L. Premkumar, B. Segovia-Chumbez, R. Jadi, et al., The receptor binding domain of the viral spike protein is an immunodominant and highly specific target of antibodies in SARS-CoV-2 patients, Sci. Immunol. 5 (2020), eabc8413
    N.M.A. Okba, M.A. Muller, W. Li, et al., Severe acute respiratory syndrome coronavirus 2-specific antibody responses in coronavirus disease Patients, Emerg. Infect. Dis. 26 (2020) 1478-1488
    A.J. Wilk, A. Rustagi, N.Q. Zhao, et al., A single-cell atlas of the peripheral immune response in patients with severe COVID-19, Nat. Med. 26 (2020) 1070-1076
    E. Callaway, The race for coronavirus vaccines: A graphical guide, Nature 580 (2020) 576-577
    J. Pallesen, N. Wang, K.S. Corbett, et al., Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen, Proc. Natl. Acad. Sci. U S A 114 (2017) E7348-E7357
    View-hub by IVAC, COVID vaccine data. https://view-hub.org. (Accessed 16 June 2022).
    K.S. Corbett, D.K. Edwards, S.R. Leist, et al., SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness, Nature 586 (2020) 567-571
    U. Sahin, A. Muik, I. Vogler, et al., BNT162b2 vaccine induces neutralizing antibodies and poly-specific T cells in humans, Nature 595 (2021) 572-577
    H. Wang, Y. Zhang, B. Huang, et al., Development of an inactivated vaccine candidate, BBIBP-CorV, with potent protection against SARS-CoV-2, Cell 182 (2020) 713-721.e9
    Y. Zhang, G. Zeng, H. Pan, et al., Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18-59 years: A randomised, double-blind, placebo-controlled, phase 1/2 clinical trial, Lancet Infect. Dis. 21 (2021) 181-192
    H. Kelly, B. Sokola, H. Abboud, Safety and efficacy of COVID-19 vaccines in multiple sclerosis patients, J. Neuroimmunol. 356 (2021), 577599.
    M. Bergwerk, T. Gonen, Y. Lustig, et al., Covid-19 breakthrough infections in vaccinated health care workers, N. Engl. J. Med. 385 (2021) 1474-1484
    Y.J. Hou, S. Chiba, P. Halfmann, et al., SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo, Science 370 (2020), 1464-1468
    B. Korber, W.M. Fischer, S. Gnanakaran, et al., Tracking changes in SARS-CoV-2 spike: Evidence that D614G increases infectivity of the COVID-19 virus, Cell 182 (2020) 812-827.e19
    J. Wu, L. Zhang, Y. Zhang, et al., The antigenicity of epidemic SARS-CoV-2 variants in the United Kingdom, Front. Immunol. 12 (2021), 687869.
    Q. Li, J. Wu, J. Nie, et al., The impact of mutations in SARS-CoV-2 spike on viral infectivity and antigenicity, Cell 182 (2020), 1284-1294.e9
    E.C. Thomson, L.E. Rosen, J.G. Shepherd, et al., Circulating SARS-CoV-2 spike N439K variants maintain fitness while evading antibody-mediated immunity, Cell 184 (2021) 1171-1187.e20
    R.P.M.C. Borges, H.A. Brango, et al, Projeto S: A stepped-wedge randomized trial to assess CoronaVac effectiveness in Serrana, Brazil, Preprints with The Lancet. 2021. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3973422
    J. Sadoff, G. Gray, A. Vandebosch, et al., Safety and efficacy of single-dose Ad26.COV2.S vaccine against covid-19, N. Engl. J. Med. 384 (2021) 2187-2201
    K.R.W. Emary, T. Golubchik, P.K. Aley, et al., Efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 variant of concern 202012/01 (B.1.1.7): An exploratory analysis of a randomised controlled trial, Lancet 397 (2021) 1351-1362
    Sinopharm COVID-19 vaccine (BBIBP-CorV). https://www.precisionvaccinations.com/vaccines/sinopharm-covid-19-vaccine-bbibp-corv. (Accessed 16 June 2022).
    L.R. Baden, H.M. El Sahly, B. Essink, et al., Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine, N. Engl. J. Med. 384 (2021) 403-416
    R. Ella, S. Reddy, W. Blackwelder, et al., Efficacy, safety, and lot-to-lot immunogenicity of an inactivated SARS-CoV-2 vaccine (BBV152): Interim results of a randomised, double-blind, controlled, phase 3 trial, Lancet 398 (2021) 2173-2184
    F.P. Polack, S.J. Thomas, N. Kitchin, et al., Safety and efficacy of the BNT162b2 mRNA covid-19 vaccine, N. Engl. J. Med. 383 (2020) 2603-2615
    L. Lu, B.W.Y. Mok, L.L. Chen, et al., Neutralization of Severe Acute Respiratory Syndrome Coronavirus 2 Omicron variant by sera from BNT162b2 or CoronaVac vaccine recipients, Clin. Infect. Dis. 75 (2022) e822-e826
    G. Alter, J. Yu, J. Liu, et al., Immunogenicity of Ad26.COV2.S vaccine against SARS-CoV-2 variants in humans, Nature 596 (2021) 268-272
    J. Lopez Bernal, N. Andrews, C. Gower, et al., Effectiveness of covid-19 vaccines against the B.1.617.2 (delta) variant, N. Engl. J. Med. 385 (2021) 585-594
    X. Zhao, D. Li, W. Ruan, et al., Effects of a prolonged booster interval on neutralization of omicron variant, N. Engl. J. Med. 386 (2022) 894-896
    A. Choi, M. Koch, K. Wu, et al., Serum neutralizing activity of mRNA-1273 against SARS-CoV-2 variants, J. Virol. 95 (2021), e0131321
    T. Bhatnagar, S. Chaudhuri, M. Ponnaiah, et al., Effectiveness of BBV152/Covaxin and AZD1222/Covishield vaccines against severe COVID-19 and B.1.617.2/Delta variant in India, 2021: A multi-centric hospital-based case-control study, Int. J. Infect. Dis. 122 (2022) 693-702
    C. Davis, N. Logan, G. Tyson, et al., Reduced neutralisation of the Delta (B.1.617.2) SARS-CoV-2 variant of concern following vaccination, PLoS Pathog. 17 (2021), e1010022
    C. Ma, W. Sun, T. Tang, et al., Effectiveness of adenovirus type 5 vectored and inactivated COVID-19 vaccines against symptomatic COVID-19, COVID-19 pneumonia, and severe COVID-19 caused by the B.1.617.2 (Delta) variant: Evidence from an outbreak in Yunnan, China, 2021, Vaccine 40 (2022) 2869-2874
    T. Tada, H. Zhou, M.I. Samanovic, et al., Comparison of neutralizing antibody titers elicited by mRNA and adenoviral vector vaccine against SARS-CoV-2 variants, BioRxiv. 2021. https://www.biorxiv.org/content/10.1101/2021.07.19.452771v3
    M. Mousa, M. Albreiki, F. Alshehhi, et al., Similar effectiveness of the inactivated vaccine BBIBP-CorV (Sinopharm) and the mRNA vaccine BNT162b2 (Pfizer-BioNTech) against COVID-19 related hospitalizations during the Delta outbreak in the UAE, J. Travel Med. 29 (2022), taac036
    V.V. Edara, B.A. Pinsky, M.S. Suthar, et al., Infection and vaccine-induced neutralizing-antibody responses to the SARS-CoV-2 B.1.617 variants, N. Engl. J. Med. 385 (2021) 664-666
    P.D. Yadav, G.N. Sapkal, R.R. Sahay, et al., Elevated neutralization of Omicron with sera of COVID-19 recovered and breakthrough cases vaccinated with Covaxin than two dose naive vaccinees, J. Infect. 84 (2022) 834-872
    C. Liu, H.M. Ginn, W. Dejnirattisai, et al., Reduced neutralization of SARS-CoV-2 B.1.617 by vaccine and convalescent serum, Cell 184 (2021) 4220-4236.e13
    J.L. Suah, B.H. Tng, P.S.K. Tok, et al., Real-world effectiveness of homologous and heterologous BNT162b2, CoronaVac, and AZD1222 booster vaccination against Delta and Omicron SARS-CoV-2 infection, Emerg. Microbes Infect. 11 (2022) 1343-1345
    P. Mlcochova, S.A. Kemp, M.S. Dhar, et al., SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion, Nature 599 (2021) 114-119
    Y. Lustig, N. Zuckerman, I. Nemet, et al., Neutralising capacity against Delta (B.1.617.2) and other variants of concern following Comirnaty (BNT162b2, BioNTech/Pfizer) vaccination in health care workers, Israel, Euro. Surveill. 26 (2021), 2100557
    E. Perez-Then, C. Lucas, V.S. Monteiro, et al., Neutralizing antibodies against the SARS-CoV-2 Delta and Omicron variants following heterologous CoronaVac plus BNT162b2 booster vaccination, Nat. Med. 28 (2022) 481-485
    L. Liu, S. Iketani, Y. Guo, et al., Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2, Nature 602 (2022) 676-681
    W. F. Garcia-Beltran, K. J. St Denis, A. Hoelzemer, et al., mRNA-based COVID-19 vaccine boosters induce neutralizing immunity against SARS-CoV-2 Omicron variant, Cell. 185 (2022) 457-466
    E. Cameroni, J.E. Bowen, L.E. Rosen, et al., Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift, Nature 602 (2022), 664-670
    C. Zeng, J.P. Evans, K. Chakravarthy, et al., COVID-19 mRNA booster vaccines elicit strong protection against SARS-CoV-2 Omicron variant in patients with cancer, Cancer Cell 40 (2022) 117-119
    W. Dejnirattisai, J. Huo, D. Zhou, et al., SARS-CoV-2 Omicron-B.1.1.529 leads to widespread escape from neutralizing antibody responses, Cell 185 (2022) 467-484.e15
    J.M. Carreno, H. Alshammary, J. Tcheou, et al., Activity of convalescent and vaccine serum against SARS-CoV-2 Omicron, Nature 602 (2022) 682-688
    S. Cele, L. Jackson, D.S. Khoury, et al., Omicron extensively but incompletely escapes Pfizer BNT162b2 neutralization, Nature 602 (2022) 654-656
    M. Hoffmann, N. Kruger, S. Schulz, et al., The Omicron variant is highly resistant against antibody-mediated neutralization: Implications for control of the COVID-19 pandemic, Cell 185 (2022) 447-456
    W.J. Wiersinga, A. Rhodes, A.C. Cheng, et al., Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19): A review, JAMA 324 (2020) 782-793
    S.R. Wilcox, Management of respiratory failure due to covid-19, BMJ 369 (2020), m1786
    A. Copaescu, O. Smibert, A. Gibson, et al., The role of IL-6 and other mediators in the cytokine storm associated with SARS-CoV-2 infection, J. Allergy Clin. Immunol. 146 (2020) 518-534.e1
    D.A. Berlin, R.M. Gulick, F.J. Martinez, Severe covid-19, N Engl J. Med. 383 (2020) 2451-2460
    H. Zacharias, S. Dubey, G. Koduri, et al., Rheumatological complications of covid 19, Autoimmun. Rev. 20 (2021), 102883
    S. Joshi, A. Bhatia, N. Tayal, et al., Rare multisystem inflammatory syndrome in young adult after COVID-19 immunization and subsequent SARSCoV-2 infection, J. Assoc. Physicians India 69 (2022) 11-12
    C. Diorio, S.E. Henrickson, L.A. Vella, et al., Multisystem inflammatory syndrome in children and COVID-19 are distinct presentations of SARS-CoV-2, J. Clin. Invest. 130 (2020) 5967-5975
    B. Raman, D.A. Bluemke, T.F. Luscher, et al., Long COVID: Post-acute sequelae of COVID-19 with a cardiovascular focus, Eur. Heart J. 43 (2022) 1157-1172
    S. Mandal, J. Barnett, S.E. Brill, et al., ‘Long-COVID’: A cross-sectional study of persisting symptoms, biomarker and imaging abnormalities following hospitalisation for COVID-19, Thorax 76 (2021) 396-398
    J. Seessle, T. Waterboer, T. Hippchen, et al., Persistent symptoms in adult patients 1 year after coronavirus disease 2019 (COVID-19): A prospective cohort study, Clin. Infect. Dis. 74 (2022) 1191-1198
    W.-J. Song, C.K.M. Hui, J.H. Hull, et al., Confronting COVID-19-associated cough and the post-COVID syndrome: Role of viral neurotropism, neuroinflammation, and neuroimmune responses, Lancet Respir. Med. 9 (2021) 533-544
    R. Caricchio, M. Gallucci, C. Dass, et al., Preliminary predictive criteria for COVID-19 cytokine storm, Ann. Rheum. Dis. 80 (2021) 88-95
    N. Vaninov, In the eye of the COVID-19 cytokine storm, Nat. Rev. Immunol. 20 (2020), 277
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (102) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return