Citation: | Yinfei Chen, Shiyu Zhu, Jiayu Fu, Jianguo Lin, Yan Sun, Gaochao Lv, Minhao Xie, Tao Xu, Ling Qiu. Development of a radiolabeled site-specific single-domain antibody positron emission tomography probe for monitoring PD-L1 expression in cancer[J]. Journal of Pharmaceutical Analysis, 2022, 12(6): 869-878. doi: 10.1016/j.jpha.2022.09.001 |
I. Mellman, G. Coukos, G. Dranoff, Cancer immunotherapy comes of age, Nature 480 (2011) 480-489
|
D.M. Pardoll, The blockade of immune checkpoints in cancer immunotherapy, Nat. Rev. Cancer 12 (2012) 252-264
|
S.L. Topalian, F.S. Hodi, J.R. Brahmer, et al., Safety, activity, and immune correlates of anti-PD-1 antibody in cancer, N. Engl. J. Med. 366 (2012) 2443-2454
|
H.O. Alsaab, S. Sau, R. Alzhrani, et al., PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: mechanism, combinations, and clinical outcome, Front. Pharmacol. 8 (2017), e00561
|
L.M. Francisco, P.T. Sage, A.H. Sharpe, The PD-1 pathway in tolerance and autoimmunity, Immunol. Rev. 236 (2010) 219-242
|
L.M. Francisco, V.H. Salinas, K.E. Brown, et al., PD-L1 regulates the development, maintenance, and function of induced regulatory T cells, J. Exp. Med. 206 (2009) 3015-3029
|
A. Al Mamun, Z. Mei, L. Qiu, et al., Theoretical investigation on QSAR of (2-methyl-3-biphenylyl) methanol analogs as PD-L1 inhibitor, Chin. J. Chem. Phys. 33 (2020) 459-467
|
J.R. Brahmer, S.S. Tykodi, L.Q.M. Chow, et al., Safety and activity of anti-PD-L1 antibody in patients with advanced cancer, N. Engl. J. Med. 366 (2012) 2455-2465
|
A. Carretero-González, D. Lora, I. Ghanem, et al., Analysis of response rate with anti-PD1/PD-L1 monoclonal antibodies in advanced solid tumors: a meta-analysis of randomized clinical trials, Oncotarget 9 (2018) 8706-8715
|
J. Brahmer, K.L. Reckamp, P. Baas, et al., Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer, N. Engl. J. Med. 373 (2015) 123-135
|
A.I. Daud, J.D. Wolchok, C. Robert, et al., Programmed death-ligand 1 expression and response to the anti-programmed death 1 antibody pembrolizumab in melanoma, J. Clin. Oncol. 34 (2016) 4102-4109
|
L. Carbognin, S. Pilotto, M. Milella, et al., Differential activity of nivolumab, pembrolizumab and MPDL3280A according to the tumor expression of programmed death-ligand-1 (PD-L1): sensitivity analysis of trials in melanoma, lung and genitourinary cancers, PLoS One 10 (2015), e0130142
|
J.M. Taube, A. Klein, J.R. Brahmer, et al., Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy, Clin. Cancer Res. 20 (2014) 5064-5074
|
H. Gao, Y. Wu, J. Shi, et al., Nuclear imaging-guided PD-L1 blockade therapy increases effectiveness of cancer immunotherapy, J. Immunother. Cancer 8 (2020), e001156
|
X. Meng, Z. Huang, F. Teng, et al., Predictive biomarkers in PD-1/PD-L1 checkpoint blockade immunotherapy, Cancer Treat. Rev. 41 (2015) 868-876
|
C. Tibaldi, A. Lunghi, E. Baldini, Use of programmed cell death protein ligand 1 assay to predict the outcomes of non-small cell lung cancer patients treated with immune checkpoint inhibitors, World J. Clin. Oncol. 8 (2017) 320-328
|
M.S. Tsao, K.M. Kerr, M. Kockx, et al., PD-L1 immunohistochemistry comparability study in real-life clinical samples: results of blueprint phase 2 project, J. Thorac. Oncol. 13 (2018) 1302-1311
|
F. Bensch, E.L. van der Veen, M.N. Lub-de Hooge, et al., 89Zr-atezolizumab imaging as a non-invasive approach to assess clinical response to PD-L1 blockade in cancer, Nat. Med. 24 (2018) 1852-1858
|
K. Hu, H. Kuan, M. Hanyu, et al., Developing native peptide-based radiotracers for PD-L1 PET imaging and improving imaging contrast by pegylation, Chem. Commun. 55 (2019) 4162-4165
|
Q. Wang, W. Hai, S. Shi, et al., Oral uptake and persistence of the FnAb-8 protein characterized by in situ radio-labeling and PET/CT imaging, Asian J. Pharm. Sci. 15 (2020) 752-758
|
G. Delso, S. Fürst, B. Jakoby, et al., Performance measurements of the Siemens mMR integrated whole-body PET/MR scanner, J. Nucl. Med. 52 (2011) 1914-1922
|
K. He, S. Zeng, L. Qian, Recent progress in the molecular imaging of therapeutic monoclonal antibodies, J. Pharm. Anal. 10 (2020) 397-413
|
W.G. Lesniak, S. Chatterjee, M. Gabrielson, et al., PD-L1 detection in tumors using [64Cu]atezolizumab with PET, Bioconjugate Chem. 27 (2016) 2103-2110
|
C. Truillet, H.L.J. Oh, S.P. Yeo, et al., Imaging PD-L1 expression with immunoPET, Bioconjugate Chem. 29 (2018) 96-103
|
J. Wei, Y.H. Wang, C.Y. Lee, et al., An analysis of isoclonal antibody formats suggests a role for measuring PD-L1 with low molecular weight PET radiotracers, Mol. Imaging Biol. 22 (2020) 1553-1561
|
J.N. Tinianow, H.S. Gill, A. Ogasawara, et al., Site-specifically 89Zr-labeled monoclonal antibodies for immunoPET, Nucl. Med. Biol. 37 (2010) 289-297
|
Z. Liu, Z.-B. Li, Q. Cao, et al., Small-animal PET of tumors with 64Cu-labeled RGD-bombesin heterodimer, J. Nucl. Med. 50 (2009) 1168-1177
|
R.A. De Silva, D. Kumar, A. Lisok, et al., Peptide-based 68Ga-PET radiotracer for imaging PD-L1 expression in cancer, Mol. Pharm.. 15 (2018) 3946-3952
|
G. Lv, X. Sun, L. Qiu, et al., PET imaging of tumor PD-L1 expression with a highly specific nonblocking single-domain antibody, J. Nucl. Med. 61 (2020) 117-122
|
L.K. Kristensen, C. Christensen, M.M. Jensen, et al., Site-specifically labeled 89Zr-DFO-trastuzumab improves immuno-reactivity and tumor uptake for immuno-PET in a subcutaneous HER2-positive xenograft mouse model, Theranostics 9 (2019) 4409-4420
|
A. Sukhanova, K. Even-Desrumeaux, A. Kisserli, et al., Oriented conjugates of single-domain antibodies and quantum dots: toward a new generation of ultrasmall diagnostic nanoprobes, Nanomedicine 8 (2012) 516-525
|
D. Sussman, L. Westendorf, D.W. Meyer, et al., Engineered cysteine antibodies: an improved antibody-drug conjugate platform with a novel mechanism of drug-linker stability, Protein Eng. Des. Sel. 31 (2018) 47-54
|
K.A. Zettlitz, C.M. Waldmann, W.K. Tsai, et al., A dual-modality linker enables site-specific conjugation of antibody fragments for 18F-immuno-PET and fluorescence imaging, J. Nucl. Med. 60 (2019) 1467-1473
|
H.L. Wissler, E.B. Ehlerding, Z. Lyu, et al., Site-specific immuno-PET tracer to image PD-L1, Mol. Pharm. 16 (2019) 2028-2036
|
B. Tian, W.Y. Wong, M.D. Uger, et al., Development and characterization of a camelid single domain antibody-urease conjugate that targets vascular endothelial growth factor receptor 2, Front. Immunol. 8 (2017), e00956
|
S. Massa, N. Vikani, C. Betti, et al., Sortase A-mediated site-specific labeling of camelid single-domain antibody-fragments: a versatile strategy for multiple molecular imaging modalities, Contrast Media Mol. Imaging 11 (2016) 328-339
|
J.R. Junutula, H. Raab, S. Clark, et al., Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index, Nat. Biotechnol. 26 (2008) 925-932
|
T.H. Pillow, J. Tien, K.L. Parsons-Reponte, et al., Site-specific trastuzumab maytansinoid antibody-drug conjugates with improved therapeutic activity through linker and antibody engineering, J. Med. Chem. 57 (2014) 7890-7899
|
S. Heskamp, W. Hobo, J.D. Molkenboer-Kuenen, et al., Noninvasive imaging of tumor PD-L1 expression using radiolabeled anti-PD-L1 antibodies, Cancer Res. 75 (2015) 2928-2936
|
G. Lv, Y. Miao, Y. Chen, et al., Promising potential of a 18F-labelled small-molecular radiotracer to evaluate PD-L1 expression in tumors by PET imaging, Bioorg. Chem. 115 (2021), e105294
|
N.M. Naba, N. Tolay, B. Erman, et al., Doxorubicin inhibits miR-140 expression and upregulates PD-L1 expression in HCT116 cells, opposite to its effects on MDA-MB-231 cells, Turk. J. Biol. 44 (2020) 15-23
|
Q. Liu, L. Jiang, K. Li, et al., Immuno-PET imaging of 68Ga-labeled nanobody Nb109 for dynamic monitoring the PD-L1 expression in cancers, Cancer Immunol. Immunother. 70 (2021) 1721-1733
|
D.M. Chigoho, Q. Lecocq, R.M. Awad, et al., Site-specific radiolabeling of a human PD-L1 nanobody via maleimide-cysteine chemistry, Pharmaceuticals 14 (2021), e550
|