Volume 12 Issue 6
Dec.  2022
Turn off MathJax
Article Contents
Krzysztof Ossoliński, Tomasz Ruman, Valérie Copié, Brian P. Tripet, Leonardo B. Nogueira, Katiane O.P.C. Nogueira, Artur Kołodziej, Aneta Płaza-Altamer, Anna Ossolińska, Tadeusz Ossoliński, Joanna Nizioł. Metabolomic and elemental profiling of blood serum in bladder cancer[J]. Journal of Pharmaceutical Analysis, 2022, 12(6): 889-900. doi: 10.1016/j.jpha.2022.08.004
Citation: Krzysztof Ossoliński, Tomasz Ruman, Valérie Copié, Brian P. Tripet, Leonardo B. Nogueira, Katiane O.P.C. Nogueira, Artur Kołodziej, Aneta Płaza-Altamer, Anna Ossolińska, Tadeusz Ossoliński, Joanna Nizioł. Metabolomic and elemental profiling of blood serum in bladder cancer[J]. Journal of Pharmaceutical Analysis, 2022, 12(6): 889-900. doi: 10.1016/j.jpha.2022.08.004

Metabolomic and elemental profiling of blood serum in bladder cancer

doi: 10.1016/j.jpha.2022.08.004
Funds:

Research was supported mainly by the National Science Center (Poland) (Project SONATA No.: UMO-2018/31/D/ST4/00109). 1H NMR spectra were recorded at Montana State University (MSU), Bozeman, USA, on a cryoprobe-equipped 600 MHz (14 T) AVANCE III solution NMR spectrometer housed in MSU's NMR Center. Funding for MSU NMR Center's NMR instruments has been provided in part by the National Institutes of Health Shared Instrumentation Grant program (Grant Nos.: 1S10RR13878 and 1S10RR026659), the National Science Foundation (Grant Nos: NSF-MRI:DBI-1532078 and NSF-MRI CHE 2018388), the Murdock Charitable Trust Foundation (Grant No.: 2015066:MNL), and support from the office of the Vice President for Research, Economic Development, and Graduate Education at MSU.

  • Received Date: Mar. 22, 2022
  • Accepted Date: Aug. 27, 2022
  • Rev Recd Date: Aug. 19, 2022
  • Publish Date: Dec. 26, 2022
  • Bladder cancer (BC) is one of the most frequently diagnosed types of urinary cancer. Despite advances in treatment methods, no specific biomarkers are currently in use. Targeted and untargeted profiling of metabolites and elements of human blood serum from 100 BC patients and the same number of normal controls (NCs), with external validation, was attempted using three analytical methods, i.e., nuclear magnetic resonance, gold and silver-109 nanoparticle-based laser desorption/ionization mass spectrometry (LDI-MS), and inductively coupled plasma optical emission spectrometry (ICP-OES). All results were subjected to multivariate statistical analysis. Four potential serum biomarkers of BC, namely, isobutyrate, pyroglutamate, choline, and acetate, were quantified with proton nuclear magnetic resonance, which had excellent predictive ability as judged by the area under the curve (AUC) value of 0.999. Two elements, Li and Fe, were also found to distinguish between cancer and control samples, as judged from ICP-OES data and AUC of 0.807 (in validation set). Twenty-five putatively identified compounds, mostly related to glycans and lipids, differentiated BC from NCs, as detected using LDI-MS. Five serum metabolites were found to discriminate between tumor grades and nine metabolites between tumor stages. The results from three different analytical platforms demonstrate that the identified distinct serum metabolites and metal elements have potential to be used for noninvasive detection, staging, and grading of BC.
  • loading
  • H. Sung, J. Ferlay, R.L. Siegel, et al., Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA A Cancer J. Clin. 71 (2021) 209-249
    H.A.A. Amin, M.H. Kobaisi, R.M. Samir, Schistosomiasis and bladder cancer in Egypt: truths and myths, open access maced. J. Med. Sci. 7 (2019) 4023-4029
    M. Burger, J.W. Catto, G. Dalbagni, et al., Epidemiology and risk factors of urothelial bladder cancer, Eur. Urol. 63 (2013) 234-241
    F.A. Yafi, F. Brimo, J. Steinberg, et al., Prospective analysis of sensitivity and specificity of urinary cytology and other urinary biomarkers for bladder cancer, Urol. Oncol. 33 (2015) 66.e25-66.e31
    F. Soria, M.J. Droller, Y. Lotan, et al., An up-to-date catalog of available urinary biomarkers for the surveillance of non-muscle invasive bladder cancer, World J. Urol. 36 (2018) 1981-1995
    Q. Yang, A.-H. Zhang, J.-H. Miao, et al., Metabolomics biotechnology, applications, and future trends: a systematic review, RSC Adv. 9 (2019) 37245-37257
    G. Raja, Y. Jung, S.H. Jung, et al., 1H-NMR-based metabolomics for cancer targeting and metabolic engineering - a review, Process Biochem. 99 (2020) 112-122
    X.-W. Zhang, Q.-H. Li, Z.-D. Xu, et al., Mass spectrometry-based metabolomics in health and medical science: a systematic review, RSC Adv. 10 (2020) 3092-3104
    P.K. Cheung, M.H. Ma, H.F. Tse, et al., The applications of metabolomics in the molecular diagnostics of cancer, Expert Rev. Mol. Diagn. 19 (2019) 785-793
    Z. Pan, D. Raftery, Comparing and combining NMR spectroscopy and mass spectrometry in metabolomics, Anal. Bioanal. Chem. 387 (2007) 525-527
    K. Ng, A. Stenzl, A. Sharma, et al., Urinary biomarkers in bladder cancer: a review of the current landscape and future directions, Urol. Oncol. 39 (2021) 41-51
    R. Batista, N. Vinagre, S. Meireles, et al., Biomarkers for bladder cancer diagnosis and surveillance: a comprehensive review, Diagnostics 10 (2020), 39
    M.C. Walsh, L. Brennan, J.P. Malthouse, et al., Effect of acute dietary standardization on the urinary, plasma, and salivary metabolomic profiles of healthy humans, Am. J. Clin. Nutr. 84 (2006) 531-539
    L. Lin, Z. Huang, Y. Gao, et al., LC-MS-based serum metabolic profiling for genitourinary cancer classification and cancer type-specific biomarker discovery, Proteomics 12 (2012) 2238-2246
    Y. Zhou, R. Song, Z. Zhang, et al., The development of plasma pseudotargeted GC-MS metabolic profiling and its application in bladder cancer, Anal. Bioanal. Chem. 408 (2016) 6741-6749
    G. Tan, H. Wang, J. Yuan, et al., Three serum metabolite signatures for diagnosing low-grade and high-grade bladder cancer, Sci. Rep. 7 (2017), 46176
    D. Sahu, Y. Lotan, B. Wittmann, et al., Metabolomics analysis reveals distinct profiles of nonmuscle-invasive and muscle-invasive bladder cancer, Cancer Med. 6 (2017) 2106-2120
    V. Vantaku, S.R. Donepudi, D.W.B. Piyarathna, et al., Large-scale profiling of serum metabolites in African American and European American patients with bladder cancer reveals metabolic pathways associated with patient survival, Cancer 125 (2019) 921-932
    C.S. Amara, C.R. Ambati, V. Vantaku, et al., Serum metabolic profiling identified a distinct metabolic signature in bladder cancer smokers: a key metabolic enzyme associated with patient survival, Cancer Epidemiol. Biomarkers Prev. 28 (2019) 770-781
    X. Liu, M. Zhang, X. Cheng, et al., LC-MS-based plasma metabolomics and lipidomics analyses for differential diagnosis of bladder cancer and renal cell carcinoma, Front. Oncol. 10 (2020), 717
    Z. Lepara, O. Lepara, A. Fajkić, et al., Serum malondialdehyde (MDA) level as a potential biomarker of cancer progression for patients with bladder cancer, Rom. J. Intern. Med. 58 (2020) 146-152
    J. Troisi, A. Colucci, P. Cavallo, et al., A serum metabolomic signature for the detection and grading of bladder cancer, Appl. Sci. 11 (2021), 2835
    M. Cao, L. Zhao, H. Chen, et al., NMR-based metabolomic analysis of human bladder cancer, Anal. Sci. 28 (2012) 451-456
    N. Bansal, A. Gupta, N. Mitash, et al., Low- and high-grade bladder cancer determination via human serum-based metabolomics approach, J. Proteome Res. 12 (2013) 5839-5850
    A. Gupta, K. Nath, N. Bansal, et al., Role of metabolomics-derived biomarkers to identify renal cell carcinoma: a comprehensive perspective of the past ten years and advancements, Expert Rev. Mol. Diagn. 20 (2020) 5-18
    S.J. Mulware, Trace elements and carcinogenicity: a subject in review, 3 Biotech 3 (2013) 85-96
    S. Mishra, S.P. Dwivedi, R.B. Singh, A review on epigenetic effect of heavy metal carcinogens on human health, Open Nutraceuticals J. 3 (2010) 188-193
    R.S. Amais, G.L. Donati, M.A. Zezzi Arruda, ICP-MS and trace element analysis as tools for better understanding medical conditions, Trac. Trends Anal. Chem. 133 (2020), 116094
    S. Wach, K. Weigelt, B. Michalke, et al., Diagnostic potential of major and trace elements in the serum of bladder cancer patients, J. Trace Elem. Med. Biol. 46 (2018) 150-155
    M. Abdel-Gawad, E. Elsobky, M. Abdel-Hameed, et al., Quantitative and qualitative evaluation of toxic metals and trace elements in the tissues of renal cell carcinoma compared with the adjacent non-cancerous and control kidney tissues, Environ. Sci. Pollut. Res. Int. 27 (2020) 30460-30467
    J. Nizioł, V. Copié, B.P. Tripet, et al., Metabolomic and elemental profiling of human tissue in kidney cancer, Metabolomics 17 (2021), 30
    A. Płaza, A. Kołodziej, J. Niziol, et al., Laser ablation synthesis in solution and nebulization of silver-109 nanoparticles for mass spectrometry and mass spectrometry imaging, ACS Meas. Sci. Au 2 (2022) 14-22
    J. Nizioł, K. Ossoliński, B.P. Tripet, et al., Nuclear magnetic resonance and surface-assisted laser desorption/ionization mass spectrometry-based metabolome profiling of urine samples from kidney cancer patients, J. Pharm. Biomed. Anal. 193 (2021), 113752
    Z. Pang, J. Chong, G. Zhou, et al., MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights, Nucleic Acids Res. 49 (2021) W388-W396
    S.Y. Ho, K. Phua, L. Wong, et al., Extensions of the external validation for checking learned model interpretability and generalizability, Patterns (N Y) 1 (2020), 100129
    A.H. Emwas, E. Saccenti, X. Gao, et al., Recommended strategies for spectral processing and post-processing of 1D 1H-NMR data of biofluids with a particular focus on urine, Metabolomics 14 (2018), 31
    L. Yu, I.W. Liou, S.W. Biggins, et al., Copper deficiency in liver diseases: a case series and pathophysiological considerations, Hepatol. Commun. 3 (2019) 1159-1165
    D.S. Wishart, D. Tzur, C. Knox, et al., HMDB: the human metabolome database, Nucleic Acids Res. 35 (2007) D521-D526
    R. Caspi, R. Billington, C.A. Fulcher, et al., The MetaCyc database of metabolic pathways and enzymes, Nucleic Acids Res. 46 (2017) D633-D639
    M. Sud, E. Fahy, D. Cotter, et al., LIPID MAPS-nature lipidomics Gateway: an online resource for students and educators interested in lipids, J Chem. Educ. 89 (2012) 291-292
    C.A. Smith, G. O'Maille, E.J. Want, et al., METLIN A metabolite mass spectral database, Ther. Drug Monit., 27 (2005) 747-751
    F. Massari, C. Ciccarese, M. Santoni, et al., Metabolic phenotype of bladder cancer, Cancer Treat Rev. 45 (2016) 46-57
    W. Jones, K. Bianchi, Aerobic glycolysis: beyond proliferation, Front. Immunol. 6 (2015), 227
    M. V. Liberti, J.W. Locasale, The Warburg effect: how does it benefit cancer cells? Trends Biochem. Sci. 41 (2016) 211-218
    M.G. Vander Heiden, L.C. Cantley, C.B. Thompson, Understanding the Warburg effect: the metabolic requirements of cell proliferation, Science 324 (2009) 1029-1033
    J. Frampton, K.G. Murphy, G. Frost, et al., Short-chain fatty acids as potential regulators of skeletal muscle metabolism and function, Nat. Metab. 2 (2020) 840-848
    S.A. Comerford, Z. Huang, X. Du, et al., Acetate dependence of tumors, Cell 159 (2014) 1591-1602
    A.M. Hosios, M.G. Vander Heiden, Acetate metabolism in cancer cells, Cancer Metabol. 2 (2014), 27
    Z.T. Schug, J. Vande Voorde, E. Gottlieb, The metabolic fate of acetate in cancer, Nat. Rev. Cancer 16 (2016) 708-717
    S. Lee, J.Y. Ku, B.J. Kang, et al., A unique urinary metabolic feature for the determination of bladder cancer, prostate cancer, and renal cell carcinoma, Metabolites 11 (2021), 591
    S. Sun, X. Li, A. Ren, et al., Choline and betaine consumption lowers cancer risk: a meta-analysis of epidemiologic studies, Sci. Rep. 6 (2016), 35547
    L.B. Bindels, P. Porporato, E.M. Dewulf, et al., Gut microbiota-derived propionate reduces cancer cell proliferation in the liver, Br. J. Cancer 107 (2012) 1337-1344
    K. Kim, O. Kwon, T.Y. Ryu, et al., Propionate of a microbiota metabolite induces cell apoptosis and cell cycle arrest in lung cancer, Mol. Med. Rep. 20 (2019) 1569-1574
    K.M. Maslowski, A.T. Vieira, A. Ng, et al., Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43, Nature 461 (2009) 1282-1286
    S. Trend, J. Leffler, A.P. Jones, et al., Associations of serum short-chain fatty acids with circulating immune cells and serum biomarkers in patients with multiple sclerosis, Sci. Rep. 11 (2021), 5244
    S.K. Tayebati, I. Martinelli, M. Moruzzi, et al., Choline and choline alphoscerate do not modulate inflammatory processes in the rat brain, Nutrients 9 (2017), 1084
    N. Koundouros, G. Poulogiannis, Reprogramming of fatty acid metabolism in cancer, Br. J. Cancer 122 (2020) 4-22
    R.F. Saito, L.N.S. Andrade, S.O. Bustos, et al., Phosphatidylcholine-derived lipid mediators: the crosstalk between cancer cells and immune cells, Front. Immunol. 13 (2022), 768606
    J. Nizioł, K. Ossoliński, B.P. Tripet, et al., Nuclear magnetic resonance and surface-assisted laser desorption/ionization mass spectrometry-based serum metabolomics of kidney cancer, Anal. Bioanal. Chem. 412 (2020) 5827-5841
    J. Li, B. Cheng, H. Xie, et al., Bladder cancer biomarker screening based on non-targeted urine metabolomics, Int. Urol. Nephrol. 54 (2022) 23-29
    A. Loras, C. Suárez-Cabrera, M.C. Martínez-Bisbal, et al., Integrative metabolomic and transcriptomic analysis for the study of bladder cancer, Cancers 11 (2019), 686
    T. Ohara, T. Mori, Antiproliferative effects of short-chain fatty acids on human colorectal cancer cells via gene expression inhibition, Anticancer Res. 39 (2019) 4659-4666
    X. Wang, J. Wang, B. Rao, et al., Gut flora profiling and fecal metabolite composition of colorectal cancer patients and healthy individuals, Exp. Ther. Med. 23 (2022), 250
    S. Qi, D. Xu, Q. Li, et al., Metabonomics screening of serum identifies pyroglutamate as a diagnostic biomarker for nonalcoholic steatohepatitis, Clin. Chim. Acta 473 (2017) 89-95
    T.W. Sedlak, B.D. Paul, G.M. Parker, et al., The glutathione cycle shapes synaptic glutamate activity, Proc. Natl. Acad. Sci. U. S. A. 116 (2019) 2701-2706
    J.A. Eckstein, G.M. Ammerman, J.M. Reveles, et al., Analysis of glutamine, glutamate, pyroglutamate, and GABA in cerebrospinal fluid using ion pairing HPLC with positive electrospray LC/MS/MS, J. Neurosci. Methods 171 (2008) 190-196
    J.W. Kim, G. Lee, S.M. Moon, et al., Metabolomic screening and star pattern recognition by urinary amino acid profile analysis from bladder cancer patients, Metabolomics 6 (2010) 202-206
    A. Yiannikourides, G.O. Latunde-Dada, A short review of iron metabolism and pathophysiology of iron disorders, Medicines (Basel) 6 (2019), 85
    H. Mazdak, F. Yazdekhasti, A. Movahedian, et al., The comparative study of serum iron, copper, and zinc levels between bladder cancer patients and a control group, Int. Urol. Nephrol. 42 (2010) 89-93
    R.A.M. Brown, K.L. Richardson, T.D. Kabir, et al., Altered iron metabolism and impact in cancer biology, metastasis, and immunology, Front. Oncol. 10 (2020), 476
    S.V. Torti, D.H. Manz, B.T. Paul, et al., Iron and cancer, Annu. Rev. Nutr. 38 (2018) 97-125
    W. Young, Review of lithium effects on brain and blood, Cell Transplant. 18 (2009) 951-975
    S.Y. Aghdam, S. Barger, Glycogen synthase kinase-3 in neurodegeneration and neuroprotection: lessons from lithium, Curr. Alzheimer Res. 4 (2007) 21-31
    M. Kielczykowska, M. Polz-Dacewicz, E. Kopcial, et al., Selenium prevents lithium accumulation and does not disturb basic microelement homeostasis in liver and kidney of rats exposed to lithium, Ann. Agric. Environ. Med. 27 (2020) 129-133
    A. Sun, I. Shanmugam, J. Song, et al., Lithium suppresses cell proliferation by interrupting E2F-DNA interaction and subsequently reducing S-phase gene expression in prostate cancer, Prostate. 67 (2007) 976-988
    A. Latosinska, M. Mokou, M. Makridakis, et al., Proteomics analysis of bladder cancer invasion: targeting EIF3D for therapeutic intervention, Oncotarget 8 (2017) 69435-69455
    J. Pinto, Â. Carapito, F. Amaro, et al., Discovery of volatile biomarkers for bladder cancer detection and staging through urine metabolomics, Metabolites 11 (2021), 199
    M. Meng, S. Chen, T. Lao, et al., Nitrogen anabolism underlies the importance of glutaminolysis in proliferating cells, Cell Cycle 9 (2010) 3921-3932
    A. Gupta, N. Bansal, N. Mitash, et al., NMR-derived targeted serum metabolic biomarkers appraisal of bladder cancer: a pre- and post-operative evaluation, J. Pharm. Biomed. Anal. 183 (2020), 113134
    J.V. Alberice, A.F. Amaral, E.G. Armitage, et al., Searching for urine biomarkers of bladder cancer recurrence using a liquid chromatography-mass spectrometry and capillary electrophoresis-mass spectrometry metabolomics approach, J. Chromatogr. A 1318 (2013) 163-170
    K. Łuczykowski, N. Warmuzińska, S. Operacz, et al., Metabolic evaluation of urine from patients diagnosed with high grade (HG) bladder cancer by SPME-LC-MS method, Molecules 26 (2021), 2194
    L. Graff, M. Frungieri, R. Zanner, et al., Expression of histidine decarboxylase and synthesis of histamine by human small cell lung carcinoma, Am. J. Pathol. 160 (2002) 1561-1565
    A. Loras, M. Trassierra, D. Sanjuan-Herráez, et al., Bladder cancer recurrence surveillance by urine metabolomics analysis, Sci. Rep. 8 (2018), 9172
    A. Yumba Mpanga, D. Siluk, J. Jacyna, et al., Targeted metabolomics in bladder cancer: from analytical methods development and validation towards application to clinical samples, Anal. Chim. Acta 1037 (2018) 188-199
    C.R. Santos, A. Schulze, Lipid metabolism in cancer, FEBS J. 279 (2012) 2610-2623
    M.Y. Lee, A. Yeon, M. Shahid, et al., Reprogrammed lipid metabolism in bladder cancer with cisplatin resistance, Oncotarget 9 (2018) 13231-13243
    H. Furuya, Y. Shimizu, T. Kawamori, Sphingolipids in cancer, Cancer Metastasis Rev. 30 (2011) 567-576
    B. Ogretmen, Sphingolipids in cancer: regulation of pathogenesis and therapy, FEBS Lett. 580 (2006) 5467-5476
    S. Kawamura, C. Ohyama, R. Watanabe, et al., Glycolipid composition in bladder tumor: a crucial role of GM3 ganglioside in tumor invasion, Int. J. Cancer 94 (2001) 343-347
    A. Bettiga, M. Aureli, G. Colciago, et al., Bladder cancer cell growth and motility implicate cannabinoid 2 receptor-mediated modifications of sphingolipids metabolism, Sci. Rep. 7 (2017), 42157
    V. Sorrenti, L. Vanella, R. Acquaviva, et al., Cyanidin induces apoptosis and differentiation in prostate cancer cells, Int. J. Oncol. 47 (2015) 1303-1310
    X. Liu, D. Zhang, Y. Hao, et al., Cyanidin curtails renal cell carcinoma tumorigenesis, Cell. Physiol. Biochem. 46 (2018) 2517-2531
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (348) PDF downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return