Citation: | Krzysztof Ossoliński, Tomasz Ruman, Valérie Copié, Brian P. Tripet, Leonardo B. Nogueira, Katiane O.P.C. Nogueira, Artur Kołodziej, Aneta Płaza-Altamer, Anna Ossolińska, Tadeusz Ossoliński, Joanna Nizioł. Metabolomic and elemental profiling of blood serum in bladder cancer[J]. Journal of Pharmaceutical Analysis, 2022, 12(6): 889-900. doi: 10.1016/j.jpha.2022.08.004 |
H. Sung, J. Ferlay, R.L. Siegel, et al., Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA A Cancer J. Clin. 71 (2021) 209-249
|
H.A.A. Amin, M.H. Kobaisi, R.M. Samir, Schistosomiasis and bladder cancer in Egypt: truths and myths, open access maced. J. Med. Sci. 7 (2019) 4023-4029
|
M. Burger, J.W. Catto, G. Dalbagni, et al., Epidemiology and risk factors of urothelial bladder cancer, Eur. Urol. 63 (2013) 234-241
|
F.A. Yafi, F. Brimo, J. Steinberg, et al., Prospective analysis of sensitivity and specificity of urinary cytology and other urinary biomarkers for bladder cancer, Urol. Oncol. 33 (2015) 66.e25-66.e31
|
F. Soria, M.J. Droller, Y. Lotan, et al., An up-to-date catalog of available urinary biomarkers for the surveillance of non-muscle invasive bladder cancer, World J. Urol. 36 (2018) 1981-1995
|
Q. Yang, A.-H. Zhang, J.-H. Miao, et al., Metabolomics biotechnology, applications, and future trends: a systematic review, RSC Adv. 9 (2019) 37245-37257
|
G. Raja, Y. Jung, S.H. Jung, et al., 1H-NMR-based metabolomics for cancer targeting and metabolic engineering - a review, Process Biochem. 99 (2020) 112-122
|
X.-W. Zhang, Q.-H. Li, Z.-D. Xu, et al., Mass spectrometry-based metabolomics in health and medical science: a systematic review, RSC Adv. 10 (2020) 3092-3104
|
P.K. Cheung, M.H. Ma, H.F. Tse, et al., The applications of metabolomics in the molecular diagnostics of cancer, Expert Rev. Mol. Diagn. 19 (2019) 785-793
|
Z. Pan, D. Raftery, Comparing and combining NMR spectroscopy and mass spectrometry in metabolomics, Anal. Bioanal. Chem. 387 (2007) 525-527
|
K. Ng, A. Stenzl, A. Sharma, et al., Urinary biomarkers in bladder cancer: a review of the current landscape and future directions, Urol. Oncol. 39 (2021) 41-51
|
R. Batista, N. Vinagre, S. Meireles, et al., Biomarkers for bladder cancer diagnosis and surveillance: a comprehensive review, Diagnostics 10 (2020), 39
|
M.C. Walsh, L. Brennan, J.P. Malthouse, et al., Effect of acute dietary standardization on the urinary, plasma, and salivary metabolomic profiles of healthy humans, Am. J. Clin. Nutr. 84 (2006) 531-539
|
L. Lin, Z. Huang, Y. Gao, et al., LC-MS-based serum metabolic profiling for genitourinary cancer classification and cancer type-specific biomarker discovery, Proteomics 12 (2012) 2238-2246
|
Y. Zhou, R. Song, Z. Zhang, et al., The development of plasma pseudotargeted GC-MS metabolic profiling and its application in bladder cancer, Anal. Bioanal. Chem. 408 (2016) 6741-6749
|
G. Tan, H. Wang, J. Yuan, et al., Three serum metabolite signatures for diagnosing low-grade and high-grade bladder cancer, Sci. Rep. 7 (2017), 46176
|
D. Sahu, Y. Lotan, B. Wittmann, et al., Metabolomics analysis reveals distinct profiles of nonmuscle-invasive and muscle-invasive bladder cancer, Cancer Med. 6 (2017) 2106-2120
|
V. Vantaku, S.R. Donepudi, D.W.B. Piyarathna, et al., Large-scale profiling of serum metabolites in African American and European American patients with bladder cancer reveals metabolic pathways associated with patient survival, Cancer 125 (2019) 921-932
|
C.S. Amara, C.R. Ambati, V. Vantaku, et al., Serum metabolic profiling identified a distinct metabolic signature in bladder cancer smokers: a key metabolic enzyme associated with patient survival, Cancer Epidemiol. Biomarkers Prev. 28 (2019) 770-781
|
X. Liu, M. Zhang, X. Cheng, et al., LC-MS-based plasma metabolomics and lipidomics analyses for differential diagnosis of bladder cancer and renal cell carcinoma, Front. Oncol. 10 (2020), 717
|
Z. Lepara, O. Lepara, A. Fajkić, et al., Serum malondialdehyde (MDA) level as a potential biomarker of cancer progression for patients with bladder cancer, Rom. J. Intern. Med. 58 (2020) 146-152
|
J. Troisi, A. Colucci, P. Cavallo, et al., A serum metabolomic signature for the detection and grading of bladder cancer, Appl. Sci. 11 (2021), 2835
|
M. Cao, L. Zhao, H. Chen, et al., NMR-based metabolomic analysis of human bladder cancer, Anal. Sci. 28 (2012) 451-456
|
N. Bansal, A. Gupta, N. Mitash, et al., Low- and high-grade bladder cancer determination via human serum-based metabolomics approach, J. Proteome Res. 12 (2013) 5839-5850
|
A. Gupta, K. Nath, N. Bansal, et al., Role of metabolomics-derived biomarkers to identify renal cell carcinoma: a comprehensive perspective of the past ten years and advancements, Expert Rev. Mol. Diagn. 20 (2020) 5-18
|
S.J. Mulware, Trace elements and carcinogenicity: a subject in review, 3 Biotech 3 (2013) 85-96
|
S. Mishra, S.P. Dwivedi, R.B. Singh, A review on epigenetic effect of heavy metal carcinogens on human health, Open Nutraceuticals J. 3 (2010) 188-193
|
R.S. Amais, G.L. Donati, M.A. Zezzi Arruda, ICP-MS and trace element analysis as tools for better understanding medical conditions, Trac. Trends Anal. Chem. 133 (2020), 116094
|
S. Wach, K. Weigelt, B. Michalke, et al., Diagnostic potential of major and trace elements in the serum of bladder cancer patients, J. Trace Elem. Med. Biol. 46 (2018) 150-155
|
M. Abdel-Gawad, E. Elsobky, M. Abdel-Hameed, et al., Quantitative and qualitative evaluation of toxic metals and trace elements in the tissues of renal cell carcinoma compared with the adjacent non-cancerous and control kidney tissues, Environ. Sci. Pollut. Res. Int. 27 (2020) 30460-30467
|
J. Nizioł, V. Copié, B.P. Tripet, et al., Metabolomic and elemental profiling of human tissue in kidney cancer, Metabolomics 17 (2021), 30
|
A. Płaza, A. Kołodziej, J. Niziol, et al., Laser ablation synthesis in solution and nebulization of silver-109 nanoparticles for mass spectrometry and mass spectrometry imaging, ACS Meas. Sci. Au 2 (2022) 14-22
|
J. Nizioł, K. Ossoliński, B.P. Tripet, et al., Nuclear magnetic resonance and surface-assisted laser desorption/ionization mass spectrometry-based metabolome profiling of urine samples from kidney cancer patients, J. Pharm. Biomed. Anal. 193 (2021), 113752
|
Z. Pang, J. Chong, G. Zhou, et al., MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights, Nucleic Acids Res. 49 (2021) W388-W396
|
S.Y. Ho, K. Phua, L. Wong, et al., Extensions of the external validation for checking learned model interpretability and generalizability, Patterns (N Y) 1 (2020), 100129
|
A.H. Emwas, E. Saccenti, X. Gao, et al., Recommended strategies for spectral processing and post-processing of 1D 1H-NMR data of biofluids with a particular focus on urine, Metabolomics 14 (2018), 31
|
L. Yu, I.W. Liou, S.W. Biggins, et al., Copper deficiency in liver diseases: a case series and pathophysiological considerations, Hepatol. Commun. 3 (2019) 1159-1165
|
D.S. Wishart, D. Tzur, C. Knox, et al., HMDB: the human metabolome database, Nucleic Acids Res. 35 (2007) D521-D526
|
R. Caspi, R. Billington, C.A. Fulcher, et al., The MetaCyc database of metabolic pathways and enzymes, Nucleic Acids Res. 46 (2017) D633-D639
|
M. Sud, E. Fahy, D. Cotter, et al., LIPID MAPS-nature lipidomics Gateway: an online resource for students and educators interested in lipids, J Chem. Educ. 89 (2012) 291-292
|
C.A. Smith, G. O'Maille, E.J. Want, et al., METLIN A metabolite mass spectral database, Ther. Drug Monit., 27 (2005) 747-751
|
F. Massari, C. Ciccarese, M. Santoni, et al., Metabolic phenotype of bladder cancer, Cancer Treat Rev. 45 (2016) 46-57
|
W. Jones, K. Bianchi, Aerobic glycolysis: beyond proliferation, Front. Immunol. 6 (2015), 227
|
M. V. Liberti, J.W. Locasale, The Warburg effect: how does it benefit cancer cells? Trends Biochem. Sci. 41 (2016) 211-218
|
M.G. Vander Heiden, L.C. Cantley, C.B. Thompson, Understanding the Warburg effect: the metabolic requirements of cell proliferation, Science 324 (2009) 1029-1033
|
J. Frampton, K.G. Murphy, G. Frost, et al., Short-chain fatty acids as potential regulators of skeletal muscle metabolism and function, Nat. Metab. 2 (2020) 840-848
|
S.A. Comerford, Z. Huang, X. Du, et al., Acetate dependence of tumors, Cell 159 (2014) 1591-1602
|
A.M. Hosios, M.G. Vander Heiden, Acetate metabolism in cancer cells, Cancer Metabol. 2 (2014), 27
|
Z.T. Schug, J. Vande Voorde, E. Gottlieb, The metabolic fate of acetate in cancer, Nat. Rev. Cancer 16 (2016) 708-717
|
S. Lee, J.Y. Ku, B.J. Kang, et al., A unique urinary metabolic feature for the determination of bladder cancer, prostate cancer, and renal cell carcinoma, Metabolites 11 (2021), 591
|
S. Sun, X. Li, A. Ren, et al., Choline and betaine consumption lowers cancer risk: a meta-analysis of epidemiologic studies, Sci. Rep. 6 (2016), 35547
|
L.B. Bindels, P. Porporato, E.M. Dewulf, et al., Gut microbiota-derived propionate reduces cancer cell proliferation in the liver, Br. J. Cancer 107 (2012) 1337-1344
|
K. Kim, O. Kwon, T.Y. Ryu, et al., Propionate of a microbiota metabolite induces cell apoptosis and cell cycle arrest in lung cancer, Mol. Med. Rep. 20 (2019) 1569-1574
|
K.M. Maslowski, A.T. Vieira, A. Ng, et al., Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43, Nature 461 (2009) 1282-1286
|
S. Trend, J. Leffler, A.P. Jones, et al., Associations of serum short-chain fatty acids with circulating immune cells and serum biomarkers in patients with multiple sclerosis, Sci. Rep. 11 (2021), 5244
|
S.K. Tayebati, I. Martinelli, M. Moruzzi, et al., Choline and choline alphoscerate do not modulate inflammatory processes in the rat brain, Nutrients 9 (2017), 1084
|
N. Koundouros, G. Poulogiannis, Reprogramming of fatty acid metabolism in cancer, Br. J. Cancer 122 (2020) 4-22
|
R.F. Saito, L.N.S. Andrade, S.O. Bustos, et al., Phosphatidylcholine-derived lipid mediators: the crosstalk between cancer cells and immune cells, Front. Immunol. 13 (2022), 768606
|
J. Nizioł, K. Ossoliński, B.P. Tripet, et al., Nuclear magnetic resonance and surface-assisted laser desorption/ionization mass spectrometry-based serum metabolomics of kidney cancer, Anal. Bioanal. Chem. 412 (2020) 5827-5841
|
J. Li, B. Cheng, H. Xie, et al., Bladder cancer biomarker screening based on non-targeted urine metabolomics, Int. Urol. Nephrol. 54 (2022) 23-29
|
A. Loras, C. Suárez-Cabrera, M.C. Martínez-Bisbal, et al., Integrative metabolomic and transcriptomic analysis for the study of bladder cancer, Cancers 11 (2019), 686
|
T. Ohara, T. Mori, Antiproliferative effects of short-chain fatty acids on human colorectal cancer cells via gene expression inhibition, Anticancer Res. 39 (2019) 4659-4666
|
X. Wang, J. Wang, B. Rao, et al., Gut flora profiling and fecal metabolite composition of colorectal cancer patients and healthy individuals, Exp. Ther. Med. 23 (2022), 250
|
S. Qi, D. Xu, Q. Li, et al., Metabonomics screening of serum identifies pyroglutamate as a diagnostic biomarker for nonalcoholic steatohepatitis, Clin. Chim. Acta 473 (2017) 89-95
|
T.W. Sedlak, B.D. Paul, G.M. Parker, et al., The glutathione cycle shapes synaptic glutamate activity, Proc. Natl. Acad. Sci. U. S. A. 116 (2019) 2701-2706
|
J.A. Eckstein, G.M. Ammerman, J.M. Reveles, et al., Analysis of glutamine, glutamate, pyroglutamate, and GABA in cerebrospinal fluid using ion pairing HPLC with positive electrospray LC/MS/MS, J. Neurosci. Methods 171 (2008) 190-196
|
J.W. Kim, G. Lee, S.M. Moon, et al., Metabolomic screening and star pattern recognition by urinary amino acid profile analysis from bladder cancer patients, Metabolomics 6 (2010) 202-206
|
A. Yiannikourides, G.O. Latunde-Dada, A short review of iron metabolism and pathophysiology of iron disorders, Medicines (Basel) 6 (2019), 85
|
H. Mazdak, F. Yazdekhasti, A. Movahedian, et al., The comparative study of serum iron, copper, and zinc levels between bladder cancer patients and a control group, Int. Urol. Nephrol. 42 (2010) 89-93
|
R.A.M. Brown, K.L. Richardson, T.D. Kabir, et al., Altered iron metabolism and impact in cancer biology, metastasis, and immunology, Front. Oncol. 10 (2020), 476
|
S.V. Torti, D.H. Manz, B.T. Paul, et al., Iron and cancer, Annu. Rev. Nutr. 38 (2018) 97-125
|
W. Young, Review of lithium effects on brain and blood, Cell Transplant. 18 (2009) 951-975
|
S.Y. Aghdam, S. Barger, Glycogen synthase kinase-3 in neurodegeneration and neuroprotection: lessons from lithium, Curr. Alzheimer Res. 4 (2007) 21-31
|
M. Kielczykowska, M. Polz-Dacewicz, E. Kopcial, et al., Selenium prevents lithium accumulation and does not disturb basic microelement homeostasis in liver and kidney of rats exposed to lithium, Ann. Agric. Environ. Med. 27 (2020) 129-133
|
A. Sun, I. Shanmugam, J. Song, et al., Lithium suppresses cell proliferation by interrupting E2F-DNA interaction and subsequently reducing S-phase gene expression in prostate cancer, Prostate. 67 (2007) 976-988
|
A. Latosinska, M. Mokou, M. Makridakis, et al., Proteomics analysis of bladder cancer invasion: targeting EIF3D for therapeutic intervention, Oncotarget 8 (2017) 69435-69455
|
J. Pinto, Â. Carapito, F. Amaro, et al., Discovery of volatile biomarkers for bladder cancer detection and staging through urine metabolomics, Metabolites 11 (2021), 199
|
M. Meng, S. Chen, T. Lao, et al., Nitrogen anabolism underlies the importance of glutaminolysis in proliferating cells, Cell Cycle 9 (2010) 3921-3932
|
A. Gupta, N. Bansal, N. Mitash, et al., NMR-derived targeted serum metabolic biomarkers appraisal of bladder cancer: a pre- and post-operative evaluation, J. Pharm. Biomed. Anal. 183 (2020), 113134
|
J.V. Alberice, A.F. Amaral, E.G. Armitage, et al., Searching for urine biomarkers of bladder cancer recurrence using a liquid chromatography-mass spectrometry and capillary electrophoresis-mass spectrometry metabolomics approach, J. Chromatogr. A 1318 (2013) 163-170
|
K. Łuczykowski, N. Warmuzińska, S. Operacz, et al., Metabolic evaluation of urine from patients diagnosed with high grade (HG) bladder cancer by SPME-LC-MS method, Molecules 26 (2021), 2194
|
L. Graff, M. Frungieri, R. Zanner, et al., Expression of histidine decarboxylase and synthesis of histamine by human small cell lung carcinoma, Am. J. Pathol. 160 (2002) 1561-1565
|
A. Loras, M. Trassierra, D. Sanjuan-Herráez, et al., Bladder cancer recurrence surveillance by urine metabolomics analysis, Sci. Rep. 8 (2018), 9172
|
A. Yumba Mpanga, D. Siluk, J. Jacyna, et al., Targeted metabolomics in bladder cancer: from analytical methods development and validation towards application to clinical samples, Anal. Chim. Acta 1037 (2018) 188-199
|
C.R. Santos, A. Schulze, Lipid metabolism in cancer, FEBS J. 279 (2012) 2610-2623
|
M.Y. Lee, A. Yeon, M. Shahid, et al., Reprogrammed lipid metabolism in bladder cancer with cisplatin resistance, Oncotarget 9 (2018) 13231-13243
|
H. Furuya, Y. Shimizu, T. Kawamori, Sphingolipids in cancer, Cancer Metastasis Rev. 30 (2011) 567-576
|
B. Ogretmen, Sphingolipids in cancer: regulation of pathogenesis and therapy, FEBS Lett. 580 (2006) 5467-5476
|
S. Kawamura, C. Ohyama, R. Watanabe, et al., Glycolipid composition in bladder tumor: a crucial role of GM3 ganglioside in tumor invasion, Int. J. Cancer 94 (2001) 343-347
|
A. Bettiga, M. Aureli, G. Colciago, et al., Bladder cancer cell growth and motility implicate cannabinoid 2 receptor-mediated modifications of sphingolipids metabolism, Sci. Rep. 7 (2017), 42157
|
V. Sorrenti, L. Vanella, R. Acquaviva, et al., Cyanidin induces apoptosis and differentiation in prostate cancer cells, Int. J. Oncol. 47 (2015) 1303-1310
|
X. Liu, D. Zhang, Y. Hao, et al., Cyanidin curtails renal cell carcinoma tumorigenesis, Cell. Physiol. Biochem. 46 (2018) 2517-2531
|