Volume 12 Issue 6
Dec.  2022
Turn off MathJax
Article Contents
Liang Qi, Jiayun Zhang, Ying Gao, Pin Gong, Chengyuan Liang, Yao Su, Qiao Zeng, Yafeng Zhang. Peptide-RNA complexation-induced fluorescence “turn on” displacement assay for the recognition of small ligands targeting HIV-1 RNA[J]. Journal of Pharmaceutical Analysis, 2022, 12(6): 923-928. doi: 10.1016/j.jpha.2022.07.003
Citation: Liang Qi, Jiayun Zhang, Ying Gao, Pin Gong, Chengyuan Liang, Yao Su, Qiao Zeng, Yafeng Zhang. Peptide-RNA complexation-induced fluorescence “turn on” displacement assay for the recognition of small ligands targeting HIV-1 RNA[J]. Journal of Pharmaceutical Analysis, 2022, 12(6): 923-928. doi: 10.1016/j.jpha.2022.07.003

Peptide-RNA complexation-induced fluorescence “turn on” displacement assay for the recognition of small ligands targeting HIV-1 RNA

doi: 10.1016/j.jpha.2022.07.003
Funds:

This work was supported by the Natural Science Foundation of Shaanxi Province of China (Grant No.: 202012119), the Start-up Funding of Shaanxi University of Science and Technology (Grant No.: 2019BJ-48), and the Innovation Capability Support Program of Shaanxi Province of China (Grant No.: 2021PT-044).

  • Received Date: Jan. 13, 2022
  • Accepted Date: Jul. 14, 2022
  • Rev Recd Date: Jul. 04, 2022
  • Publish Date: Dec. 26, 2022
  • The regulator of expression of virion (Rev) protein binds specifically to the Rev-responsive element (RRE) RNA in order to regulate the expression of the human immunodeficiency virus (HIV)-1 genes. Fluorescence indicator displacement assays have been used to identify ligands that can inhibit the Rev–RRE interaction; however, the small fluorescence indicators cannot fully replace the Rev peptide or protein. As a result, a single rhodamine B labeled Rev (RB-Rev) model peptide was utilized in this study to develop a direct and efficient Rev–RRE inhibitor screening model. Due to photon-induced electron transfer quenching of the tryptophan residue on the RB fluorophore, the fluorescence of RB in Rev was weakened and could be dramatically reactivated by interaction with RRE RNA in ammonium acetate buffer (approximately six times). The interaction could reduce the electron transfer between tryptophan and RB, and RRE could also increase RB fluorescence. The inhibitor screening model was evaluated using three known positive Rev–RRE inhibitors, namely, proflavin, 6-chloro-9-[3-(2-chloroethylamino)propylamino]-2-methoxyacridine (ICR 191), and neomycin, as well as a negative drug, arginine. With the addition of the positive drugs, the fluorescence of the Rev–RRE decreased, indicating the displacement of RB-Rev. This was confirmed using atomic force microscopy (AFM) and the fluorescence was essentially unaffected by the addition of arginine. The results demonstrated that RB-Rev can be used as a fluorescent probe for recognizing small ligands that target RRE RNA. The Rev–RRE inhibitor screening model offers a novel approach to evaluating and identifying long-acting Rev inhibitors.
  • loading
  • K.M. De Cock, H.W. Jaffe, J.W. Curran, The evolving epidemiology of HIV/AIDS, AIDS 26 (2012) 1205-1213
    M. Soliman, G. Srikrishna, A. Balagopal, Mechanisms of HIV-1 control, Curr. HIV AIDS Rep. 14 (2017) 101-109
    D.R. Davies, The structure and function of the aspartic proteinases, Annu. Rev. Biophys. Biophys. Chem. 19 (1990) 189-215
    M.S. Hirsch, F. Brun-Vézinet, B. Clotet, et al., Antiretroviral drug resistance testing in adults infected with human immunodeficiency virus type 1: 2003 recommendations of an International AIDS Society-USA Panel, Clin. Infect. Dis. 37 (2003) 113-128
    T.A. Cooper, L. Wan, G. Dreyfuss, RNA and disease, Cell 136 (2009) 777-793
    T. Klimkait, E.R. Felder, G. Albrecht, et al., Rational optimization of a HIV-1 Tat inhibitor: rapid progress on combinatorial lead structures, Biotechnol. Bioeng. 61 (1998) 155-168
    A.W. Cochrane, C.H. Chen, C.A. Rosen, Specific interaction of the human immunodeficiency virus Rev protein with a structured region in the env mRNA, Proc. Natl. Acad. Sci. U. S. A. 87 (1990) 1198-1202
    H.S. Olsen, A.W. Cochrane, P.J. Dillon, et al., Interaction of the human immunodeficiency virus type 1 Rev protein with a structured region in env mRNA is dependent on multimer formation mediated through a basic stretch of amino acids, Genes Dev. 4 (1990) 1357-1364
    M.J. Scanlon, D.P. Fairlie, D.J. Craik, et al., NMR solution structure of the RNA-binding peptide from human immunodeficiency virus (type 1) Rev, Biochemistry 34 (1995) 8242-8249
    L.S. Tiley, M.H. Malim, H.K. Tewary, et al., Identification of a high-affinity RNA-binding site for the human immunodeficiency virus type 1 Rev protein, Proc. Natl. Acad. Sci. U. S. A. 89 (1992) 758-762
    K.S. Cook, G.J. Fisk, J. Hauber, et al., Characterization of HIV-1 REV protein: binding stoichiometry and minimal RNA substrate, Nucleic Acids Res. 19 (1991) 1577-1583
    M.L. Zapp, T.J. Hope, T.G. Parslow, et al., Oligomerization and RNA binding domains of the type 1 human immunodeficiency virus Rev protein: a dual function for an arginine-rich binding motif, Proc. Natl. Acad. Sci. U. S. A. 88 (1991) 7734-7738
    M.L. Zapp, S. Stern, M.R. Green, Small molecules that selectively block RNA binding of HIV-1 Rev protein inhibit Rev function and viral production, Cell 74 (1993) 969-978
    S. Prado, M. Beltrán, M. Coiras, et al., Bioavailable inhibitors of HIV-1 RNA biogenesis identified through a Rev-based screen, Biochem. Pharmacol. 107 (2016) 14-28
    Y. Dai, J.E. Wynn, A.N. Peralta, et al., Discovery of a branched peptide that recognizes the Rev response element (RRE) RNA and blocks HIV-1 replication, J. Med. Chem. 61 (2018) 9611-9620
    A.D. Dearborn, E. Eren, N.R. Watts, et al., Structure of an RNA aptamer that can inhibit HIV-1 by blocking Rev-cognate RNA (RRE) binding and Rev-Rev association, Structure 26 (2018) 1187-1195.e4
    S. Prado, M. Beltrán, Á. Moreno, et al., A small-molecule inhibitor of HIV-1 Rev function detected by a diversity screen based on RRE-Rev interference, Biochem. Pharmacol. 156 (2018) 68-77
    K.A. Lacourciere, J.T. Stivers, J.P. Marino, Mechanism of neomycin and Rev peptide binding to the Rev responsive element of HIV-1 as determined by fluorescence and NMR spectroscopy, Biochemistry 39 (2000) 5630-5641
    E.S. DeJong, C. Chang, M.K. Gilson, et al., Proflavine acts as a Rev inhibitor by targeting the high-affinity Rev binding site of the Rev responsive element of HIV-1, Biochemistry 42 (2003) 8035-8046
    L. Qi, J.-R. Wei, X.-J. Lv, et al., A ratiometric fluorescence RRE RNA-targeted assay for a new fluorescence ligand, Biosens. Bioelectron. 86 (2016) 287-292
    J. Tao, A.D. Frankel, Specific binding of arginine to TAR RNA, Proc. Natl. Acad. Sci. U. S. A. 89 (1992) 2723-2726
    A.A. Dewantari, N. Yongwattana, P. Payongsri, et al., Fluorescence detection of deoxyadenosine in Cordyceps spp. by indicator displacement assay, Molecules 25 (2020), 2045
    J. Zhang, S. Umemoto, K. Nakatani, Fluorescent indicator displacement assay for ligand-RNA interactions, J. Am. Chem. Soc. 132 (2010) 3660-3661
    S. Umemoto, S. Im, J. Zhang, et al., Structure-activity studies on the fluorescent indicator in a displacement assay for the screening of small molecules binding to RNA, Chem. Eur J. 18 (2012) 9999-10008
    L. Qi, Y.-Y. Fan, H. Wei, et al., Graphene oxide-enhanced and proflavine-probed fluorescence polarization biosensor for ligand-RNA interaction assay, Sensor. Actuator. B Chem. 257 (2018) 666-671
    N.W. Luedtke, Y. Tor, Fluorescence-based methods for evaluating the RNA affinity and specificity of HIV-1 Rev-RRE inhibitors, Biopolymers 70 (2003) 103-119
    N.L. Mills, M.D. Daugherty, A.D. Frankel, et al., An alpha-helical peptidomimetic inhibitor of the HIV-1 Rev-RRE interaction, J. Am. Chem. Soc. 128 (2006) 3496-3497
    T. Takahashi, K. Hamasaki, I. Kumagai, et al., Design of a nucleobase-conjugated peptide that recognizes HIV-1 RRE IIB RNA with high affinity and specificity, Chem. Commun. 2000 349-350
    C. Matsumoto, K. Hamasaki, H. Mihara, et al., A high-throughput screening utilizing intramolecular fluorescence resonance energy transfer for the discovery of the molecules that bind HIV-1 TAR RNA specifically, Bioorg. Med. Chem. Lett. 10 (2000) 1857-1861
    S. Hwang, N. Tamilarasu, K. Kibler, et al., Discovery of a small molecule Tat-trans-activation-responsive RNA antagonist that potently inhibits human immunodeficiency virus-1 replication, J. Biol. Chem. 278 (2003) 39092-39103
    R. Tan, L. Chen, J.A. Buettner, et al., RNA recognition by an isolated alpha helix, Cell 73 (1993) 1031-1040
    J.L. Battiste, H. Mao, N.S. Rao, et al., Alpha helix-RNA major groove recognition in an HIV-1 Rev peptide-RRE RNA complex, Science 273 (1996) 1547-1551
    A.C. Vaiana, H. Neuweiler, A. Schulz, et al., Fluorescence quenching of dyes by tryptophan: interactions at atomic detail from combination of experiment and computer simulation, J. Am. Chem. Soc. 125 (2003) 14564-14572
    H. Neuweiler, A. Schulz, M. Böhmer, et al., Measurement of submicrosecond intramolecular contact formation in peptides at the single-molecule level, J. Am. Chem. Soc. 125 (2003) 5324-5330
    J. Pallesen, M. Dong, F. Besenbacher, et al., Structure of the HIV-1 Rev response element alone and in complex with regulator of virion (Rev) studied by atomic force microscopy, FEBS J. 276 (2009) 4223-4232
    J.N. Demas, G.A. Crosby, The measurement of photoluminescence quantum yields. Review, J. Phys. Chem. 75 (1971) 991-1024
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (307) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return