Citation: | Yuqing Meng, Jiayun Chen, Yanqing Liu, Yongping Zhu, Yin-Kwan Wong, Haining Lyu, Qiaoli Shi, Fei Xia, Liwei Gu, Xinwei Zhang, Peng Gao, Huan Tang, Qiuyan Guo, Chong Qiu, Chengchao Xu, Xiao He, Junzhe Zhang, Jigang Wang. A highly efficient protein corona-based proteomic analysis strategy for the discovery of pharmacodynamic biomarkers[J]. Journal of Pharmaceutical Analysis, 2022, 12(6): 879-888. doi: 10.1016/j.jpha.2022.07.002 |
J.R. Lamb, L.L. Jennings, V. Gudmundsdottir, et al., It’s in our blood: A glimpse of personalized medicine, Trends Mol. Med. 27 (2021) 20-30
|
N.L. Anderson, The clinical plasma proteome: A survey of clinical assays for proteins in plasma and serum, Clin. Chem. 56 (2010) 177-185
|
H. Zhang, E.C. Yi, X.J. Li, et al., High throughput quantitative analysis of serum proteins using glycopeptide capture and liquid chromatography mass spectrometry, Mol. Cell. Proteomics 4 (2005) 144-155
|
R.S. Tirumalai, K.C. Chan, D.A. Prieto, et al., Characterization of the low molecular weight human serum proteome, Mol. Cell. Proteomics 2 (2003) 1096-1103
|
M.S. Kim, S.M. Pinto, D. Getnet, et al., A draft map of the human proteome, Nature 509 (2014) 575-581
|
L. Dalle Carbonare, M. Manfredi, G. Caviglia, et al., Can half-marathon affect overall health? The yin-yang of sport, J. Proteomics 170 (2018) 80-87
|
L. Urbas, P. Brne, B. Gabor, et al., Depletion of high-abundance proteins from human plasma using a combination of an affinity and pseudo-affinity column, J. Chromatogr. A 1216 (2009) 2689-2694
|
H. Wang, K.K. Dey, P.C. Chen, et al., Integrated analysis of ultra-deep proteomes in cortex, cerebrospinal fluid and serum reveals a mitochondrial signature in Alzheimer’s disease, Mol. Neurodegener. 15 (2020), 43
|
K. Suhre, M.I. McCarthy, J.M. Schwenk, Genetics meets proteomics: Perspectives for large population-based studies, Nat. Rev. Genet. 22 (2021) 19-37
|
G.L. Hortin, D. Sviridov, N.L. Anderson, High-abundance polypeptides of the human plasma proteome comprising the top 4 logs of polypeptide abundance, Clin. Chem. 54 (2008) 1608-1616
|
V. Kulasingam, E.P. Diamandis, Strategies for discovering novel cancer biomarkers through utilization of emerging technologies, Nat. Clin. Pract. Oncol. 5 (2008) 588-599
|
P.Y. Lee, J. Osman, T.Y. Low, et al., Plasma/serum proteomics: Depletion strategies for reducing high-abundance proteins for biomarker discovery, Bioanalysis 11(2019) 1799-1812
|
V. Kumar, S. Ray, S. Ghantasala, et al., An integrated quantitative proteomics workflow for cancer biomarker discovery and validation in plasma, Front. Oncol. 10 (2020), 543997
|
Y. Li, H. Yuan, Z. Dai, et al., Integrated proteomic sample preparation with combination of on-line high-abundance protein depletion, denaturation, reduction, desalting and digestion to achieve high throughput plasma proteome quantification, Anal. Chim. Acta 1154 (2021), 338343
|
S.R. Saptarshi, A. Duschl, A.L. Lopata, Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticle, J. Nanobiotechnology 11 (2013), 26
|
S. Wan, P.M. Kelly, E. Mahon, et al., The “sweet” side of the protein corona: Effects of glycosylation on nanoparticle-cell interactions, ACS Nano 9 (2015) 2157-2166
|
M.P. Monopoli, C. Åberg, A. Salvati, et al., Biomolecular coronas provide the biological identity of nanosized materials, Nat. Nanotechnol. 7 (2012) 779-786
|
R.L. Pinals, D. Yang, D.J. Rosenberg, et al., Quantitative protein Corona composition and dynamics on carbon nanotubes in biological environments, Angew. Chem. Int. Ed. Engl. 59 (2020) 23668-23677
|
C.K. Elechalawar, M.N. Hossen, L. McNally, et al., Analysing the nanoparticle-protein corona for potential molecular target identification, J. Control. Release 322 (2020) 122-136
|
L. Vroman, Effect of absorbed proteins on the wettability of hydrophilic and hydrophobic solids, Nature 196 (1962) 476-477
|
K. Giri, K. Shameer, M.T. Zimmermann, et al., Understanding protein-nanoparticle interaction: A new gateway to disease therapeutics, Bioconjug. Chem. 25 (2014) 1078-1090
|
Y. Liu, J. Wang, Q. Xiong, et al., Nano-bio interactions in cancer: From therapeutics delivery to early detection, Acc. Chem. Res. 54 (2021) 291-301
|
M. Hadjidemetriou, S. McAdam, G. Garner, et al., The human in vivo biomolecule Corona onto PEGylated liposomes: A proof-of-concept clinical study, Adv. Mater. 31 (2019), e1803335
|
J.E. Blume, W.C. Manning, G. Troiano, et al., Rapid, deep and precise profiling of the plasma proteome with multi-nanoparticle protein corona, Nat. Commun. 11 (2020), 3662
|
V.F. Cardoso, A. Francesko, C. Ribeiro, et al., Advances in Magnetic Nanoparticles for Biomedical Applications, Adv. Healthc. Mater. 7 (2018), 1700845
|
Y. Zhu, P. Jiang, B. Luo, et al., Dynamic protein corona influences immune-modulating osteogenesis in magnetic nanoparticle (MNP)-infiltrated bone regeneration scaffolds: In vivo, Nanoscale 11 (2019) 6817-6827
|
Y. Portilla, S. Mellid, A. Paradela, et al., Iron oxide nanoparticle coatings dictate cell outcomes despite the influence of protein coronas, ACS Appl. Mater. Interfaces 13 (2021) 7924-7944
|
U. Sakulkhu, M. Mahmoudi, L. Maurizi, et al., Protein corona composition of superparamagnetic iron oxide nanoparticles with various physico-chemical properties and coatings, Sci. Rep. 4 (2014), 5020
|
D. Bonvin, D. Chiappe, M. Moniatte, et al., Methods of protein corona isolation for magnetic nanoparticles, Analyst 142 (2017) 3805-3815
|
L. Wang, J. Bao, L. Wang, et al., One-pot synthesis and bioapplication of amine-functionalized magnetite nanoparticles and hollow nanospheres, Chemistry 12 (2006) 6341-6347
|
Z.-Z. Yin, Y. Li, L.-P. Jiang, et al., Synthesis and electrocatalytic activity of haemin-functionalised iron(II, III) oxide nanoparticles, Anal. Chim. Acta 781 (2013) 48-53
|
T. Ozkaya, M.S. Toprak, A. Baykal, et al., Synthesis of Fe3O4 nanoparticles at 100 ℃ and its magnetic characterization, J. Alloys Compd. 472 (2009) 18-23
|
M. Ibrahim, A. Nada, D.E. Kamal, Density functional theory and FTIR spectroscopic study of carboxyl group, Indian. J. Pure. Ap. Phy. 43 (2005) 911-917
|
H. Rajabi-Moghaddam, M.R. Naimi-Jamal, M. Tajbakhsh, Fabrication of copper(II)-coated magnetic core-shell nanoparticles Fe3O4@SiO2-2-aminobenzohydrazide and investigation of its catalytic application in the synthesis of 1,2,3-triazole compounds, Sci. Rep. 11 (2021), 2073
|
D.W. Kim, T.H. Kim, S. Choi, et al., Preparation of silica coated iron oxide nanoparticles using non-transferred arc plasma, Adv. Powder Technol. 23 (2012) 701-707
|
A. Miri, H. Najafzadeh, M. Darroudi, et al., Iron oxide nanoparticles: Biosynthesis, magnetic behavior, cytotoxic effect, ChemistryOpen 10 (2021) 327-333
|
N. Kamaly, O.C. Farokhzad, C. Corbo, Nanoparticle protein corona evolution: From biological impact to biomarker discovery, Nanoscale 14 (2022) 1606-1620
|
W. Richtering, I. Alberg, R. Zentel, Nanoparticles in the biological context: Surface morphology and protein corona formation, Small 16 (2020), 2002162
|
Z. Li, Y. Wang, J. Zhu, et al., Emerging well-tailored nanoparticulate delivery system based on in situ regulation of the protein corona, J. Control Release 320 (2020) 1-18
|
C. Corbo, R. Molinaro, A. Parodi, et al., The impact of nanoparticle protein corona on cytotoxicity, immunotoxicity and target drug delivery, Nanomedicine (Lond) 11 (2016) 81-100
|
H. Keshishian, M.W. Burgess, H. Specht, et al., Quantitative, multiplexed workflow for deep analysis of human blood plasma and biomarker discovery by mass spectrometry, Nat. Protoc. 12 (2017) 1683-1701
|
H. Keshishian, M.W. Burgess, M.A. Gillette, et al., Multiplexed, quantitative workflow for sensitive biomarker discovery in plasma yields novel candidates for early myocardial injury, Mol. Cell. Proteomics 14 (2015) 2375-2393
|
C.A. Sobsey, S. Ibrahim, V.R. Richard, et al., Targeted and untargeted proteomics approaches in biomarker development, Proteomics 20 (2020), e1900029
|
T.N. Tiambeng, D.S. Roberts, K.A. Brown, et al., Nanoproteomics enables proteoform-resolved analysis of low-abundance proteins in human serum, Nat. Commun. 11 (2020), 3903
|
In-depth plasma proteomics profiling with nanoparticle-based Proteograph workflow: A performance evaluation of label free and TMT multiplexing approaches. https://seer.bio/wp-content/uploads/2021/11/ASMS_2021_Campos.pdf. (Accessed 28 April 2022).
|
T. Cedervall, I. Lynch, S. Lindman, et al., Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles, Proc. Natl. Acad. Sci. U S A 104 (2007) 2050-2055
|
Y.H. Kim, J.S. Kang, Micro-computed tomography evaluation and pathological analyses of female rats with collagen-induced arthritis, J. Vet. Sci. 16 (2015) 165-171
|
W. Hui, D. Yu, Z. Cao, et al., Butyrate inhibit collagen-induced arthritis via Treg/IL-10/Th17 axis, Int. Immunopharmacol. 68 (2019) 226-233
|