Citation: | Ning He, Zhentao Li, Changjun Hu, Zilin Chen. In situ synthesis of a spherical covalent organic framework as a stationary phase for capillary electrochromatography[J]. Journal of Pharmaceutical Analysis, 2022, 12(4): 610-616. doi: 10.1016/j.jpha.2022.06.005 |
H.J. Issaq, A decade of capillary electrophoresis, Electrophoresis 21 (2000) 1921-1939
|
W.R. Vandaveer 4th, S.A. Pasas-Farmer, D.J. Fischer, et al., Recent developments in electrochemical detection for microchip capillary electrophoresis, Electrophoresis 25 (2004) 3528-3549
|
F. Ali, W.J. Cheong, Open tubular capillary electrochromatography with an N-phenylacrylamide-styrene copolymer-based stationary phase for the separation of anomers of glucose and structural isomers of maltotriose, J. Separ. Sci. 38 (2015) 1763-1770
|
D. Wistuba, V. Schurig, Recent progress in enantiomer separation by capillary electrochromatography, Electrophoresis 21 (2000) 4136-4158
|
S.A. Shamsi, Chiral capillary electrophoresis-mass spectrometry:modes and applications, Electrophoresis 23 (2002) 4036-4051
|
C. Pan, W. Wang, X. Chen, In situ rapid preparation of homochiral metal-organic framework coated column for open tubular capillary electrochromatography, J. Chromatogr. A 1427 (2016) 125-133
|
Z. Fei, M. Zhang, J. Zhang, et al., Chiral metal-organic framework used as stationary phases for capillary electrochromatography, Anal. Chim. Acta 830 (2014) 49-55
|
C.P. Kapnissi-Christodoulou, A.G. Nicolaou, I.J. Stavrou, Enantioseparations in open-tubular capillary electrochromatography:recent advances and applications, J. Chromatogr. A 1467 (2016) 145-154
|
F.M. Tarongoy Jr., P.R. Haddad, R.I. Boysen, et al., Open tubular-capillary electrochromatography:developments and applications from 2013 to 2015, Electrophoresis 37 (2016) 66-85
|
S. Štěpánová, V. Kašička, Recent applications of capillary electromigration methods to separation and analysis of proteins, Anal. Chim. Acta 933 (2016) 23-42
|
X. Liu, X. Liu, X. Liu, et al., Graphene oxide and reduced graphene oxide as novel stationary phases via electrostatic assembly for open-tubular capillary electrochromatography, Electrophoresis 34 (2013) 1869-1876
|
W. Wang, X. Xiao, J. Chen, et al., Carboxyl modified magnetic nanoparticles coated open tubular column for capillary electrochromatographic separation of biomolecules, J. Chromatogr. A 1411 (2015) 92-100
|
Y.Y. Xu, L.F. Xu, S.D. Qi, et al., In situ synthesis of MIL-100(Fe) in the capillary column for capillary electrochromatographic separation of small organic molecules, Anal. Chem. 85 (2013) 11369-11375
|
J. Zhang, P. Zhu, S. Xie, et al., Homochiral porous organic cage used as stationary phase for open tubular capillary electrochromatography, Anal. Chim. Acta 999 (2018) 169-175
|
S.H. Zhang, Q. Yang, C. Wang, et al., Porous organic frameworks:advanced materials in analytical chemistry, Adv. Sci. 5 (2018), 1801116
|
S. Zhang, Y. Zheng, H. An, et al., Covalent organic frameworks with chirality enriched by biomolecules for efficient chiral separation, Angew. Chem., Int. Ed. Engl. 57 (2018) 16754-16759
|
X. Wang, N. Ye, Recent advances in metal-organic frameworks and covalent organic frameworks for sample preparation and chromatographic analysis, Electrophoresis 38 (2017) 3059-3078
|
L. Zhao, W. Lu, X. Niu, et al., Preparation of a two-dimensional azine-linked covalent organic framework-coated capillary and its application to the separation of nitrophenol environmental endocrine disruptors by open tubular capillary electrochromatography, Se Pu 38 (2020) 1095-1101
|
Y. Zhang, X.N. Jin, X.F. Ma, et al., Chiral porous organic frameworks and their application in enantioseparation, Anal. Methods 13 (2021) 8-33
|
D. Kong, T. Bao, Z. Chen, In situ synthesis of the imine-based covalent organic framework LZU1 on the inner walls of capillaries for electrochromatographic separation of nonsteroidal drugs and amino acids, Microchim. Acta 184 (2017) 1169-1176
|
X. Feng, X.S. Ding, D.L. Jiang, Covalent organic frameworks, Chem. Soc. Rev. 41 (2012) 6010-6022
|
S. Ding, W. Wang, Covalent organic frameworks (COFs):from design to applications, Chem. Soc. Rev. 42 (2013) 548-568
|
E.L. Spitler, W.R. Dichtel, Lewis acid-catalysed formation of two-dimensional phthalocyanine covalent organic frameworks, Nat. Chem. 2 (2010) 672-677
|
L.P. Guo, S.B. Jin, Stable covalent organic frameworks for photochemical applications, ChemPhotoChem 3 (2019) 973-983
|
C. Zheng, C. Zhong, Estimation of framework charges in covalent organic frameworks using connectivity-based atom contribution method, J. Phys. Chem. C 114 (2010) 9945-9951
|
Z. Li, X. Feng, Y. Zou, et al., A 2D azine-linked covalent organic framework for gas storage applications, Chem. Commun. 50 (2014) 13825-13828
|
L. Chen, K. Furukawa, J. Gao, et al., Photoelectric covalent organic frameworks:converting open lattices into ordered donor-acceptor heterojunctions, J. Am. Chem. Soc. 136 (2014) 9806-9809
|
N. Huang, X. Chen, R. Krishna, et al., Two-dimensional covalent organic frameworks for carbon dioxide capture through channel-wall functionalization, Angew. Chem., Int. Ed. Engl. 54 (2015) 2986-2990
|
Q. Fang, S. Gu, J. Zheng, et al., 3D microporous base-functionalized covalent organic frameworks for size-selective catalysis, Angew. Chem., Int. Ed. Engl. 53 (2014) 2878-2882
|
F. Zhao, H. Liu, S.D.R. Mathe, et al., Covalent organic frameworks:from materials design to biomedical application, Nanomaterials, 8 (2017), 15
|
A. Altaf, N. Baig, M. Sohail, et al., Covalent organic frameworks:advances in synthesis and applications, Mater. Today Commun. 28 (2021), 102612
|
I. Ahmed, S.H. Jhung, Covalent organic framework-based materials:synthesis, modification, and application in environmental remediation, Coord. Chem. Rev. 441 (2021), 213989
|
T. Bao, S. Wang, N. Zhang, et al., Facile synthesis and immobilization of functionalized covalent organic framework-1 for electrochromatographic separation, J. Chromatogr. A, 1645 (2021), 462130
|
T. Zhang, P. Li, S. Ding, et al., High permeability composite nanofiltration membrane assisted by introducing TpPa covalent organic frameworks interlayer with nanorods for desalination and NaCl/dye separation, Separ. Purif. Technol. 270 (2021), 118802
|
Y. Fu, Z. Li, Q. Li, et al., In situ room-temperature preparation of a covalent organic framework as stationary phase for high-efficiency capillary electrochromatographic separation, J. Chromatogr. A 1649 (2021), 462239
|
Q.Y. Li, Z.T. Li, Y.Y. Fu, et al., Room-temperature growth of covalent organic frameworks as the stationary phase for open-tubular capillary electrochromatography, Analyst 146 (2021) 6643-6649
|
T. Bao, P. Tang, Z. Mao, et al., An immobilized carboxyl containing metal-organic framework-5 stationary phase for open-tubular capillary electrochromatography, Talanta 154 (2016) 360-366
|
Q. Sun, W. Ma, O. Dan, et al., Thiol functionalized covalent organic framework for highly selective enrichment and detection of mercury by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, Analyst 146 (2021) 2991-2997
|
X. Niu, S. Ding, W. Wang, et al., Separation of small organic molecules using covalent organic frameworks-LZU1 as stationary phase by open-tubular capillary electrochromatography, J. Chromatogr. A 1436 (2016) 109-117
|
L. Zhao, W. Lv, X. Niu, et al., An azine-linked covalent organic framework as stationary phase for separation of environmental endocrine disruptors by open-tubular capillary electrochromatography, J. Chromatogr. A 1615 (2020), 460722
|
X. Wang, X. Hu, Y. Shao, et al., Ambient temperature fabrication of a covalent organic framework from 1,3,5-triformylphloroglucinol and 1,4-phenylenediamine as a coating for use in open-tubular capillary electrochromatography of drugs and amino acids, Microchim. Acta 186 (2019), 650
|
R. Zong, X. Wang, H. Yin, et al., Capillary coated with three-dimensional covalent organic frameworks for separation of fluoroquinolones by open-tubular capillary electrochromatography, J. Chromatogr. A 1656 (2021), 462549
|
W. Sun, Y. Liu, W. Zhou, et al., In-situ growth of a spherical vinyl-functionalized covalent organic framework as stationary phase for capillary electrochromatography-mass spectrometry analysis, Talanta 230 (2021), 122330
|