Citation: | Rahul G. Ingle, Su Zeng, Huidi Jiang, Wei-Jie Fang. Current developments of bioanalytical sample preparation techniques in pharmaceuticals[J]. Journal of Pharmaceutical Analysis, 2022, 12(4): 517-529. doi: 10.1016/j.jpha.2022.03.001 |
C. Bylda, R. Thiele, U. Kobold, et al., Recent advances in sample preparation techniques to overcome difficulties encountered during quantitative analysis of small molecules from biofluids using LC-MS/MS, Analyst 139(2014) 2265-2276.
|
A. Medvedovici, E. Bacalum, V. David, Sample preparation for large-scale bioanalytical studies based on liquid chromatographic techniques, Biomed. Chromatogr. 32(2018), e4137.
|
A. Vaghela, A. Patel, A. Patel, et al., Sample preparation in bioanalysis:A review, Int. J. Sci. Tech. Res. 5(2016) 6-10.
|
I. Kohler, D. Guillarme, Multi-target screening of biological samples using LCMS/MS:Focus on chromatographic innovations, Bioanalysis 6(2014) 1255-1273.
|
B.R. Lopes, J.C. Barreiro, Q.B. Cass, Bioanalytical challenge:A review of environmental and pharmaceuticals contaminants in human milk, J. Pharm. Biomed. Anal. 130(2016) 318-325.
|
O. Deda, H.G. Gika, I.D. Wilson, et al., An overview of fecal sample preparation for global metabolic profiling, J. Pharm. Biomed. Anal. 113(2015) 137-150.
|
Z. Niu, W. Zhang, C. Yu, et al., Recent advances in biological sample preparation methods coupled with chromatography, spectrometry and electrochemistry analysis techniques, TrAC Trends Anal. Chem. 102(2018) 123-146.
|
M.J. Nunes de Paiva, H.C. Menezes, Z. de Lourdes Cardeal, Sampling and analysis of metabolomes in biological fluids, Analyst 139(2014) 3683-3694.
|
T.B. Rosenthal, The effect of temperature on the pH of blood and plasma in vitro, J. Biol. Chem. 173(1948) 25-30.
|
M.A. Fern andez-Peralbo, M.D. Luque de Castro, Preparation of urine samples prior to targeted or untargeted metabolomics mass-spectrometry analysis, TrAC Trends Anal. Chem. 41(2012) 75-85.
|
K. Inoue, K. Harada, K. Takenaka, et al., Levels and concentration ratios of polychlorinated biphenyls and polybrominated diphenyl ethers in serum and breast milk in Japanese mothers, Environ. Health Perspect. 114(2006) 1179-1185.
|
L.A.S. Nunes, D.V. de Macedo, Saliva as a diagnostic fluid in sports medicine:Potential and limitations, J. Bras. Patol. Med. Lab. 49(2013) 247-255.
|
N. de Giovanni, N. Fucci, The current status of sweat testing for drugs of abuse:A review, Curr. Med. Chem. 20(2013) 545-561.
|
J.Y. Wan, P. Liu, H.Y. Wang, et al., Biotransformation and metabolic profile of American ginseng saponins with human intestinal microflora by liquid chromatography quadrupole time-of-flight mass spectrometry, J. Chromatogr. A 1286(2013) 83-92.
|
I.C. Roseboom, H. Rosing, J.H. Beijnen, et al., Skin tissue sample collection, sample homogenization, and analyte extraction strategies for liquid chromatographic mass spectrometry quantification of pharmaceutical compounds, J. Pharm. Biomed. Anal. 191(2020), 113590.
|
K.M. Smith, Y. Xu, Tissue sample preparation in bioanalytical assays, Bioanalysis 4(2012) 741-749.
|
B. Buszewski, M. Szultka, Past, present, and future of solid phase extraction:A review, Crit. Rev. Anal. Chem. 42(2012) 198-213.
|
M. Alexovi c, Y. Dotsikas, P. Bober, et al., Achievements in robotic automation of solvent extraction and related approaches for bioanalysis of pharmaceuticals, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 1092(2018) 402-421.
|
C.L. Arthur, J. Pawliszyn, Solid-phase microextraction with thermal desorption using fused silica optical fibers, Anal. Chem. 62(1990) 2145-2148.
|
E. Boyaci, A. Rodríguez-Lafuente, K. Gorynski, et al., Sample preparation with solid phase microextraction and exhaustive extraction approaches:Comparison for challenging cases, Anal. Chim. Acta 873(2015) 14-30.
|
G. Vas, K. Vekey, Solid-phase microextraction:a powerful sample preparation tool prior to mass spectrometric analysis, J. Mass Spectrom. 39(2004) 233-254.
|
F.M. de Oliveira, G.L. Scheel, R. Augusti, et al., Supramolecular microextraction combined with paper spray ionization mass spectrometry for sensitive determination of tricyclic antidepressants in urine, Anal. Chim. Acta 1106(2020) 52-60.
|
V. Jalili, A. Barkhordari, A. Ghiasvand, A comprehensive look, at solid-phase microextraction technique:a review of reviews, Microchem. J. 152(2020), 104319.
|
J. Matys, B. Gieroba, K. Jo zwiak, Recent developments of bioanalytical methods in determination of neurotransmitters in vivo, J. Pharm. Biomed. Anal. 180(2020), 113079.
|
K. Burlikowska, I. Stryjak, J. Bogusiewicz, et al., Comparison of metabolomic profiles of organs in mice of different strains based on SPME-LC-HRMS, Metabolites 10(2020), 255.
|
J.G. March, C. Genestar, B.M. Simonet, Determination of 2-ethylhexyl 4- (dimethylamino) benzoate using membrane-assisted liquid-liquid extraction and gas chromatography-mass spectrometric detection, Anal. Bioanal. Chem. 394(2009) 883-891.
|
V. Galievsky, J. Pawliszyn, Fluorometer for screening of doxorubicin in perfusate solution and tissue with solid-phase microextraction chemical biopsy sampling, Anal. Chem. 92(2020) 13025-13033.
|
J.M. Kokosa, Advances in solvent microextraction techniques, TrAC Trends Anal. Chem. 43(2013) 2-13.
|
S. Pedersen-Bjergaard, K.E. Rasmussen, Bioanalysis of drugs by liquid-phase microextraction coupled to separation techniques, J. Chromatogr. B 817(2005) 3-12.
|
K. Choi, J. Kim, D.S. Chung, Single-drop microextraction in bioanalysis, Bioanalysis 3(2011) 799-815.
|
E. Tahmasebi, Y. Yamini, A. Saleh, Extraction of trace amounts of pioglitazone as an anti-diabetic drug with hollow fiber liquid phase microextraction and determination by high-performance liquid chromatography-ultraviolet detection in biological fluids, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 877(2009) 1923-1929.
|
M.A. Farajzadeh, M.R.A. Mogaddam, Air-assisted liquid-liquid microextraction method as a novel microextraction technique; application in extraction and preconcentration of phthalate esters in aqueous sample followed by gas chromatography-flame ionization detection, Anal. Chim. Acta 728(2012) 31-38.
|
M.A. Farajzadeh, A. Mohebbi, A. Pazhohan, et al., Air-assisted liquid-liquid microextraction; principles and applications with analytical instruments, TrAC Trends Anal. Chem. 122(2020), 115734.
|
L. Wang, T. Huang, H.X. Cao, et al., Application of air-assisted liquid-liquid microextraction for determination of some fluoroquinolones in milk powder and egg samples:Comparison with conventional dispersive liquid-liquid microextraction, Food Anal. Methods 9(2016) 2223-2230.
|
M.A. Farajzadeh, B. Feriduni, M.R.A. Mogaddam, Determination of triazole pesticide residues in edible oils using air-assisted liquid-liquid microextraction followed by gas chromatography with flame ionization detection, J. Separ. Sci. 38(2015) 1002-1009.
|
S.M. Majidi, M.R. Hadjmohammadi, Hydrophobic borneol-based natural deep eutectic solvents as a green extraction media for air-assisted liquidliquid micro-extraction of warfarin in biological samples, J. Chromatogr. A 1621(2020), 461030.
|
S.K. Rathnasamy, H.B. Balaraman, R. Muniasamy, Air-assisted dispersive liquid phase microextraction coupled chromatography quantification for purification of therapeutic lectin from aloe vera e A potential COVID-19 immune booster, Microchem. J. 165(2021), 106187.
|
M.A. Farajzadeh, M.S. Dabbagh, A. Yadegari, et al., Air-assisted liquid-liquid microextraction vs. dispersive liquid-liquid microextraction; a comparative study for the analysis of multiclass pesticides, Anal. Bioanal. Chem. Res. 6(2019) 29-46.
|
H. Liu, P.K. Dasgupta, Analytical chemistry in a drop. Solvent extraction in a microdrop, Anal. Chem. 68(1996) 1817-1821.
|
O. Filippou, D. Bitas, V. Samanidou, Green approaches in sample preparation of bioanalytical samples prior to chromatographic analysis, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 1043(2017) 44-62.
|
M.A. Jeannot, F.F. Cantwell, Solvent microextraction into a single drop, Anal. Chem. 68(1996) 2236-2240.
|
N.S. Pano-Farias, S.G. Ceballos-Magana, R. Mu~niz-Valencia, et al., Direct im-~mersion single drop micro-extraction method for multi-class pesticides analysis in mango using GC-MS, Food Chem 237(2017) 30-38.
|
I. Sr amkova, B. Horstkotte, P. Solich, et al., Automated in-syringe single-drop head-space micro-extraction applied to the determination of ethanol in wine samples, Anal. Chim. Acta 828(2014) 53-60.
|
D. Verma, S.K. Verma, M.K. Deb, Single-drop micro-extraction and diffuse reflectance Fourier transform infrared spectroscopic determination of chromium in biological fluids, Talanta 78(2009) 270-277.
|
E. Baltussen, P. Sandra, F. David, et al., Stir bar sorptive extraction (SBSE), a novel extraction technique for aqueous samples:Theory and principles, J. Microcolumn Sep. 11(1999) 737-747.
|
N. Ochiai, K. Sasamoto, F. David, et al., Solvent-assisted stir bar sorptive extraction by using swollen polydimethylsiloxane for enhanced recovery of polar solutes in aqueous samples:Application to aroma compounds in beer and pesticides in wine, J. Chromatogr. A 1455(2016) 45-56.
|
M. He, Y. Wang, Q. Zhang, et al., Stir bar sorptive extraction and its application, J. Chromatogr. A 1637(2021), 461810.
|
M. Abdel-Rehim, S. Pedersen-Bjergaard, A. Abdel-Rehim, et al., Microextraction approaches for bioanalytical applications:An overview, J. Chromatogr. A 1616(2020), 460790.
|
J. Peng, D. Xiao, H. He, et al., Molecularly imprinted polymeric stir bar:Preparation and application for the determination of naftopidil in plasma and urine samples, J. Separ. Sci. 39(2016) 383-390.
|
J. Peng, D. Liu, T. Shi, et al., Molecularly imprinted polymers based stir bar sorptive extraction for determination of cefaclor and cefalexin in environmental water, Anal. Bioanal. Chem. 409(2017) 4157-4166.
|
K.D. Clark, C. Zhang, J.L. Anderson, Sample preparation for bioanalytical and pharmaceutical analysis, Anal. Chem. 88(2016) 11262-11270.
|
Y.-M. Zhong, X.-L. Zhong, J.-H. Wang, et al., Rapid analysis and identification of the main constituents in Patrinia scabiosaefolia Fisch. by UPLC/Q-TOF-MS/MS, Acta Chromatogr. 29(2017) 267-277.
|
H.S. Bombana, M.F. dos Santos, D.R. Munoz, et al., Hollow-fibre liquid-phase~microextraction and gas chromatography-mass spectrometric determination of amphetamines in whole blood, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 1139(2020), 121973.
|
K.S. Ask, M. Lid, E.L. Øiestad, et al., Liquid-phase microextraction in 96-well plates-calibration and accurate quantification of pharmaceuticals in human plasma samples, J. Chromatogr. A 1602(2019) 117-123.
|
S. Berijani, Y. Assadi, M. Anbia, et al., Dispersive liquid-liquid microextraction combined with gas chromatography-flame photometric detection. Very simple, rapid and sensitive method for the determination of organophosphorus pesticides in water, J. Chromatogr. A 1123(2006) 1-9.
|
P. Makoś, E. Słupek, J. Gębicki, Hydrophobic deep eutectic solvents in microextraction techniques-A review, Microchem. J. 152(2020), 104384.
|
F.R. Mansour, M.A. Khairy, Pharmaceutical and biomedical applications of dispersive liquid-liquid microextraction, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 10611062(2017) 382-391.
|
F.R. Mansour, N.D. Danielson, Solidification of floating organic droplet in dispersive liquid-liquid microextraction as a green analytical tool, Talanta 170(2017) 22-35.
|
Y. Zhao, X. Hou, D. Qin, et al., Dispersive liquid-liquid microextraction method for the simultaneous determination of four isomers of hexachlorocyclohexane and six pyrethroid pesticides in milk by gas chromatography electron capture detector, Food Anal. Methods 13(2020) 370-381.
|
Q. Wang, L. Li, C.-L. Long, et al., Detection of C60 in environmental water using dispersive liquid-liquid micro-extraction followed by high-performance liquid chromatography, Environ. Technol. 41(2020) 1015-1022.
|
M. Iqbal, E. Ezzeldin, N.Y. Khalil, et al., UPLC-MS/MS determination of suvorexant in urine by a simplified dispersive liquid-liquid micro-extraction followed by ultrasound assisted back extraction from solidified floating organic droplets, J. Pharm. Biomed. Anal. 164(2019) 1-8.
|
S. Sadeghi, Z. Nasehi, Simultaneous determination of Brilliant Green and Crystal Violet dyes in fish and water samples with dispersive liquid-liquid micro-extraction using ionic liquid followed by zero crossing first derivative spectrophotometric analysis method, Spectrochim, Acta A Mol. Biomol. Spectrosc. 201(2018) 134-142.
|
P. Tomai, A. Gentili, R. Curini, et al., Dispersive liquid-liquid microextraction, an effective tool for the determination of synthetic cannabinoids in oral fluid by liquid chromatographyetandem mass spectrometry, J. Pharm. Anal. 11(2021) 292-298.
|
F. Vincenti, C. Montesano, L. Cellucci, et al., Combination of pressurized liquid extraction with dispersive liquid liquid micro extraction for the determination of sixty drugs of abuse in hair, J. Chromatogr. A 1605(2019), 360348.
|
G.-S. Zhou, Y.-C. Yuan, Y. Yin, et al., Hydrophilic interaction chromatography combined with ultrasound-assisted ionic liquid dispersive liquid-liquid microextraction for determination of underivatized neurotransmitters in dementia patients' urine samples, Anal. Chim. Acta 1107(2020) 74-84.
|
F. Hansen, E.L. Øiestad, S. Pedersen-Bjergaard, Bioanalysis of pharmaceuticals using liquid-phase microextraction combined with liquid chromatographymass spectrometry, J. Pharm. Biomed. Anal. 189(2020), 113446.
|
A. Asati, G.N.V. Satyanarayana, D.K. Patel, Comparison of two microextraction methods based on solidification of floating organic droplet for the determination of multiclass analytes in river water samples by liquid chromatography tandem mass spectrometry using Central Composite Design, J. Chromatogr. A 1513(2017) 157-171.
|
V. Ferrone, R. Cotellese, M. Carlucci, et al., Air assisted dispersive liquid-liquid microextraction with solidification of the floating organic droplets (AADLLME-SFO) and UHPLC-PDA method:application to antibiotics analysis in human plasma of hospital acquired pneumonia patients, J. Pharm. Biomed. Anal. 151(2018) 266-273.
|
V. Kiarostami, M.R. Rouini, R. Mohammadian, et al., Binary solvents dispersive liquiddliquid microextraction (BS-DLLME) method for determination of tramadol in urine using high-performance liquid chromatography, DARU J. Pharm. Sci. 22(2014), 25.
|
S. Zaruba, A.B. Vishnikin, V. Andruch, Application of solidification of floating organic drop microextraction for inorganic anions:Determination of phosphate in water samples, Microchem. J. 122(2015) 10-15.
|
Q. Luo, S. Wang, M. Adeel, et al., Solvent demulsification-dispersive liquidliquid microextraction based on solidification of floating organic drop coupled with ultra-high-performance liquid chromatography-tandem mass spectrometry for simultaneous determination of 13 organophosphate esters in aqueous samples, Sci. Rep. 9(2019), 11292.
|
M. Ramin, M. Khadem, F. Omidi, et al., Development of dispersive liquidliquid microextraction procedure for trace determination of malathion pesticide in urine samples, Iran, J. Publ. Health 48(2019) 1893-1902.
|
N. Li, T. Zhang, G. Chen, et al., Recent advances in sample preparation techniques for quantitative detection of pharmaceuticals in biological samples, TrAC Trends Anal. Chem. 142(2021), 116318.
|
S.A. Arain, T.G. Kazi, H.I. Afridi, et al., Application of dual-cloud point extraction for the trace levels of copper in serum of different viral hepatitis patients by flame atomic absorption spectrometry:A multivariate study, Spectrochim. Acta A Mol. Biomol. Spectrosc. 133(2014) 651-656.
|
E. Ashrafzadeh Afshar, M.A. Taher, H. Fazelirad, et al., Application of dispersive liquid-liquid-solidified floating organic drop microextraction and ETAAS for the preconcentration and determination of indium, Anal. Bioanal. Chem. 409(2017) 1837-1843.
|
O.A. Urucu, S. Donmez, E.K. Yetimo € glu, Solidi fied floating organic drop microextraction for the detection of trace amount of lead in various samples by electrothermal atomic absorption spectrometry, J. Anal. Methods Chem. 2017(2017), 6268975.
|
E. Akkaya, D.S. Chormey, S. Bakırdere, Sensitive determination of cadmium using solidified floating organic drop microextraction-slotted quartz tube-flame atomic absorption spectroscopy, Environ. Monit. Assess. 189(2017), 513.
|
Y. Huang, Z. Zheng, L. Huang, et al., Optimization of dispersive liquid-phase microextraction based on solidified floating organic drop combined with high-performance liquid chromatography for the analysis of glucocorticoid residues in food, J. Pharm. Biomed. Anal. 138(2017) 363-372.
|
A. Amiri Pebdani, S. Dadfarnia, A.M.H. Haji Shabani, et al., Modified dispersive liquid-phase microextraction based on sequential injection solidified floating organic drop combined with HPLC for the determination of phenobarbital and phenytoin, J. Separ. Sci. 41(2018) 509-517.
|
M. Asadi, Syringe-to-syringe dispersive liquid-phase microextraction solidified floating organic drop combined with high-performance liquid chromatography for the separation and quantification of ochratoxin A in food samples, J. Separ. Sci. 40(2017) 3094-3099.
|
A. Sakanupongkul, R. Sananmuang, Y. Udnan, et al., Speciation of mercury in water and freshwater fish samples by a two-step solidified floating organic drop microextraction with electrothermal atomic absorption spectrometry, Food Chem. 277(2019) 496-503.
|
M. Shirinnejad, A.H.M. Sarrafi, Dispersive liquid-liquid microextraction based on solidification of floating organic drop with central composite design for the spectrofluorometric determination of naproxen, J. Fluoresc. 29(2019) 1039-1047.
|
R. Jiang, J. Pawliszyn, Thin-film microextraction offers another geometry for solid-phase microextraction, TrAC Trends Anal. Chem. 39(2012) 245-253.
|
H. Piri-Moghadam, E. Gionfriddo, J.J. Grandy, et al., Development and validation of eco-friendly strategies based on thin film microextraction for water analysis, J. Chromatogr. A 1579(2018) 20-30.
|
H.Y. Hijazi, C.S. Bottaro, Molecularly imprinted polymer thin-film as a microextraction adsorbent for selective determination of trace concentrations of polycyclic aromatic sulfur heterocycles in seawater, J. Chromatogr. A 1617(2020), 460824.
|
Z. Jafari, M.R. Hadjmohammadi, In situ growth of zeolitic imidazolate framework-8 on woven cotton yarn for the thin film microextraction of quercetin in human plasma and food samples, Anal. Chim. Acta 1131(2020) 45-55.
|
L. Ripoll, J. Navarro-Gonz alez, S. Legnaioli, et al., Evaluation of thin film microextraction for trace elemental analysis of liquid samples using LIBS detection, Talanta 223(2021), 121736.
|
H. Karimiyan, M.R. Hadjmohammadi, K.L. Kunjali, et al., Graphene oxide/polyethylene glycol-stick for thin film microextraction of b-blockers from human oral fluid by liquid chromatography-tandem mass spectrometry, Molecules 24(2019), 3664.
|
N. Drouin, S. Rudaz, J. Schappler, Sample preparation for polar metabolites in bioanalysis, Analyst 143(2017) 16-20.
|
F.A. Hansen, S. Pedersen-Bjergaard, Electromembrane extraction of streptomycin from biological fluids, J. Chromatogr. A 1639(2021), 461915.
|
J. Yan, U. Kuzhiumparambil, S. Bandodkar, et al., Development and validation of a simple, rapid and sensitive LC-MS/MS method for the measurement of urinary neurotransmitters and their metabolites, Anal. Bioanal. Chem. 409(2017) 7191-7199.
|
X. Yu, X. Li, S. You, et al., Electromembrane extraction of chlorprothixene, haloperidol and risperidone from whole blood and urine, J. Chromatogr. A 1629(2020), 461480.
|
Y. Zhu, J. Guan, L. Cao, et al., Determination of trace iodide in iodised table salt on silver sulfate-modified carbon paste electrode by differential pulse voltammetry with electrochemical solid phase nano-extraction, Talanta 80(2010) 1234-1238.
|
M. Lashgari, V. Singh, J. Pawliszyn, A critical review on regulatory, sample preparation methods:validating solid-phase microextraction techniques, TrAC Trends Anal. Chem. 119(2019), 115618.
|
A. Keramat, R. Zare-Dorabei, Ultrasound-assisted dispersive magnetic solid phase extraction for preconcentration and determination of trace amount of Hg (II) ions from food samples and aqueous solution by magnetic graphene oxide (Fe3O4@GO/2-PTSC):Central composite design optimization, Ultrason. Sonochem. 38(2017) 421-429.
|
E. Yilmaz, G. Sarp, F. Uzcan, et al., Application of magnetic nanomaterials in bioanalysis, Talanta 229(2021), 122285.
|
S. Armenta, F.A. Esteve-Turrillas, S. Garrigues, et al., Smart materials for sample preparation in bioanalysis:A green overview, Sustain. Chem. Pharm. 21(2021), 100411.
|
V. Londhe, M. Rajadhyaksha, Opportunities and obstacles for microsampling techniques in bioanalysis:special focus on DBS and VAMS, J. Pharm. Biomed. Anal. 182(2020), 113102.
|
J. Miura, H. Ishii, H. Watanabe, Extraction and separation of nickel chelate of 1-(2-thiazolylazo)-2-naphthol in nonionic surfactant solution, Bunseki Kagaku 25(1976) 808-809.
|
A. Namera, T. Saito, Recent advances in unique sample preparation techniques for bioanalysis, Bioanalysis 5(2013) 915-932.
|
R. Venson, A.S. Korb, G. Cooper, A review of the application of hollow-fiber liquid-phase microextraction in bioanalytical methods-a systematic approach with focus on forensic toxicology, J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 1108(2019) 32-53.
|
N. Song, M. Guo, L. Shi, Rapid residue analysis of sulfonylurea herbicides in surface water:Methodolgy and residue findings in eastern Tiaoxi river of China, J. Mater. Sci. Chem. Eng. 4(2016) 41-50.
|
G. Kojro, P. Wroczynski, Cloud point extraction in the determination of drugs in biological matrices, J. Chromatogr. Sci. 58(2020) 151-162.
|
S.S. Arya, A.M. Kaimal, M. Chib, et al., Novel, energy efficient and green cloud point extraction:Technology and applications in food processing, J. Food Sci. Technol. 56(2019) 524-534.
|
D.S.M. Shukri, M.M. Sanagi, W.A.W. Ibrahim, et al., Liquid chromatographic determination of NSAIDs in urine after dispersive liquid-liquid microextraction based on solidification of floating organic droplets, Chromatographia 78(2015) 987-994.
|
J. Giebułtowicz, G. Kojro, R. Piotrowski, et al., Cloud-point extraction is compatible with liquid chromatography coupled to electrospray ionization mass spectrometry for the determination of antazoline in human plasma, J. Pharm. Biomed. Anal. 128(2016) 294-301.
|
N. Guo, Y.-W. Jiang, P. Kou, et al., Application of integrative cloud point extraction and concentration for the analysis of polyphenols and alkaloids in mulberry leaves, J. Pharm. Biomed. Anal. 167(2019) 132-139.
|
X. Wang, H. Sun, A. Zhang, et al., Potential role of metabolomics approaches in the area of traditional Chinese medicine:As pillars of the bridge between Chinese and Western medicine, J. Pharm. Biomed. Anal. 55(2011) 859-868.
|
G. Kojro, P.J. Rudzki, D.M. Pisklak, et al., Matrix effect screening for cloudpoint extraction combined with liquid chromatography coupled to mass spectrometry:Bioanalysis of pharmaceuticals, J. Chromatogr. A 1591(2019) 44-54.
|
W. Wei, X.-B. Yin, X.-W. He, pH-mediated dual-cloud point extraction as a preconcentration and clean-up technique for capillary electrophoresis determination of phenol and m-nitrophenol, J. Chromatogr. A 1202(2008) 212-215.
|
S.S. Arain, T.G. Kazi, J.B. Arain, et al., Preconcentration of toxic elements in artificial saliva extract of different smokeless tobacco products by dual-cloud point extraction, Microchem. J. 112(2014) 42-49.
|
Y.A. Olcer, M. Tascon, A.E. Eroglu, et al., Thin film microextraction:Towards faster and more sensitive microextraction, TrAC Trends Anal. Chem. 113(2019) 93-101.
|
A.A. El-Sherbeni, M.R. Stocco, F.B. Wadji, et al., Addressing the instability issue of dopamine during microdialysis:The determination of dopamine, serotonin, methamphetamine and its metabolites in rat brain, J. Chromarogr. A 1627(2020), 461403.
|
F. Mu, X. Zhou, F. Fan, et al., A fluorescence biosensor for therapeutic drug monitoring of vancomycin using in vivo microdialysis, Anal. Chim. Acta 1151(2021), 338250.
|
L. Tobieson, Z. Czifra, K. Wåhlen, et al., Proteomic investigation of protein adsorption to cerebral microdialysis membranes in surgically treated intracerebral hemorrhage patients-a pilot study, Proteome Sci. 18(2020), 7.
|
C.F. Pierce, A. Kwasnicki, S.S. Lakka, et al., Cerebral microdialysis as a tool for assessing the delivery of chemotherapy in brain tumor patients, World Neurosurg. 145(2021) 187-196.
|
L. Liu, X. Zhang, Y. Lou, et al., Cerebral microdialysis in glioma studies, from theory to application, J. Pharm. Biomed. Anal. 96(2014) 77-89.
|
A. Forsse, T.H. Nielsen, S. Mølstrøm, et al., A prospective observational feasibility study of jugular bulb microdialysis in subarachnoid hemorrhage, Neurocritical Care 33(2020) 241-255.
|
C. Zhang, A.G. Woolfork, K. Suh, et al., Clinical and pharmaceutical applications of affinity ligands in capillary electrophoresis:A review, J. Pharm. Biomed. Anal. 177(2020), 112882.
|
R. Guthrie, A. Susi, A simple phenylalanine method for detecting phenylketonuria in large populations of newborn infants, Pediatrics 32(1963) 338-343.
|
D. Chepyala, H.C. Kuo, K.Y. Su, et al., Improved dried blood spot-based metabolomics analysis by a postcolumn infused-internal standard assisted liquid chromatography-electrospray ionization mass spectrometry method, Anal. Chem. 91(2019) 10702-10712.
|
G. Nys, M.G.M. Kok, A.C. Servais, et al., Beyond dried blood spot:Current microsampling techniques in the context of biomedical applications, TrAC Trends Anal. Chem. 97(2017) 326-332.
|
S. Capiau, H. Veenhof, R.A. Koster, et al., Official International Association for Therapeutic Drug Monitoring and Clinical Toxicology Guideline:Development and validation of dried blood spot-based methods for therapeutic drug monitoring, Ther. Drug Monit. 41(2019) 409-430.
|
C.W.N. Damen, H. Rosing, J.H.M. Schellens, et al., Application of dried blood spots combined with high-performance liquid chromatography coupled with electrospray ionisation tandem mass spectrometry for simultaneous quantification of vincristine and actinomycin-D, Anal. Bioanal. Chem. 394(2009) 1171-1182.
|
S. Fischer, R. Obrist, U. Ehlert, How and when to use dried blood spots in psychoneuroendocrinological research, Psychoneuroendocrinology 108(2019) 190-196.
|
R. Zakaria, K.J. Allen, J.J. Koplin, et al., Advantages and challenges of dried blood spot analysis by mass spectrometry across the total testing process, EJIFCC 27(2016) 288-317.
|
P. Bjornstad, A.B. Karger, D.M. Maahs, Measured GFR in routine clinical practicedthe promise of dried blood spots, Adv. Chron. Kidney Dis. 25(2018) 76-83.
|
K.N. Ellefsen, J.L. da Costa, M. Concheiro, et al., Cocaine and metabolite concentrations in DBS and venous blood after controlled intravenous cocaine administration, Bioanalysis 7(2015) 2041-2056.
|
Y. Harahap, C. Elysia, Z. Starlin, et al., Analysis of acrylamide in dried blood spots of lung cancer patients by ultrahigh-performance liquid chromatography tandem mass spectrometry, Int. J. Anal. Chem. 2020(2020), 2015264.
|
T. Lange, A. Thomas, K. Walpurgis, et al., Fully automated dried blood spot sample preparation enables the detection of lower molecular mass peptide and non-peptide doping agents by means of LC-HRMS, Anal. Bioanal. Chem. 412(2020) 3765-3777.
|
V. Lombardi, D. Carassiti, G. Giovannoni, et al., The potential of neurofilaments analysis using dry-blood and plasma spots, Sci. Rep. 10(2020), 97.
|
S.L. Parker, J. Lipman, G. Dimopoulos, et al., A validated method for the quantification of fosfomycin on dried plasma spots by HPLC-MS/MS:Application to a pilot pharmacokinetic study in humans, J. Pharm. Biomed. Anal. 115(2015) 509-514.
|
W. Li, J. Doherty, S. Favara, et al., Evaluation of plasma microsampling for dried plasma spots (DPS) in quantitative LC-MS/MS bioanalysis using ritonavir as a model compound, J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 991(2015) 46-52.
|
D. Gonzalez, C. Melloni, B.B. Poindexter, et al., Simultaneous determination of trimethoprim and sulfamethoxazole in dried plasma and urine spots, Bioanalysis 7(2015) 1137-1149.
|
A. Brahmadhi, M.X. Chen, S.-Y. Wang, et al., Determination of fluoroquinolones in dried plasma spots by using microwave-assisted extraction coupled to ultra-high performance liquid chromatography-tandem mass spectrometry for therapeutic drug monitoring, J. Pharm. Biomed. Anal. 195(2021), 113821.
|
J. Hauser, G. Lenk, S. Ullah, et al., An autonomous microfluidic device for generating volume-defined dried plasma spots, Anal. Chem. 91(2019) 7125-7130.
|
F. Kolocouri, Y. Dotsikas, Y.L. Loukas, Dried plasma spots as an alternative sample collection technique for the quantitative LC-MS/MS determination of gabapentin, Anal. Bioanal. Chem. 398(2010) 1339-1347.
|
A. Abdel-Rehim, M. Abdel-Rehim, Dried saliva spot as a sampling technique for saliva samples, Biomed. Chromatogr. 28(2014) 875-877.
|
R. Meesters, G. Hooff, N. van Huizen, et al., Impact of internal standard addition on dried blood spot analysis in bioanalytical method development, Bioanalysis 3(2011) 2357-2364.
|
N. Zheng, J. Zeng, Q.C. Ji, et al., Bioanalysis of dried saliva spot (DSS) samples using detergent-assisted sample extraction with UHPLC-MS/MS detection, Anal. Chim. Acta 934(2016) 170-179.
|
Y.C. Hsiao, S.Y. Lin, K. Chien, et al., An immuno-MALDI mass spectrometry assay for the oral cancer biomarker, matrix metalloproteinase-1, in dried saliva spot samples, Anal. Chim. Acta 1100(2020) 118-130.
|
M. Numako, T. Toyo'oka, I. Noge, et al., Risk assessment of diabetes mellitus using dried saliva spot followed by ultra-performance liquid chromatography with fluorescence and mass spectrometry, Microchem. J. 142(2018) 202-207.
|
F.G. Bellagambi, T. Lomonaco, P. Salvo, et al., Saliva sampling process:Methods and devices. An overview, TrAC Trends Anal. Chem. 124(2020), 115781.
|
A. Ribeiro, M. Prata, C. Vaz, et al., Determination of methadone and EDDP in oral fluid using the dried saliva spots sampling approach and gas chromatography-tandem mass spectrometry, Anal. Bioanal. Chem. 411(2019) 2177-2187.
|
A. Tartaglia, A. Kabir, F. D'Ambrosio, et al., Fast off-line FPSE-HPLC-PDA determination of six NSAIDs in saliva samples, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 1144(2020), 112082.
|
F. Schulte, H. Hasturk, M. Hardt, Mapping relative differences in human salivary gland secretions by dried saliva spot sampling process and nanoLCMS/MS, Proteomics 19(2019), e1900023.
|
E.L. Rossini, M.I. Milani, L.S. Lima, et al., Paper microfluidic device using carbon dots to detect glucose and lactate in saliva samples, Spectrochim. Acta A Mol. Biomol. Spectrosc. 248(2021), 119285.
|
M. Veli cka, E. Zacharovas, S. Adomavi ciut e, et al., Detection of caffeine intake _by means of EC-SERS spectroscopy of human saliva, Spectrochim. Acta A Mol. Biomol. Spectrosc. 246(2021), 118956.
|
A. Pablo, A.R. Breaud, W. Clarke, Automated analysis of dried urine spot (DUS) samples for toxicology screening, Clin. Biochem. 75(2020) 70-77.
|
N. Al Dhahouri, C.D. Langhans, Z. Al Hammadi, et al., Quantification of methylcitrate in dried urine spots by liquid chromatography tandem mass spectrometry for the diagnosis of propionic and methylmalonic acidemias, Clin. Chim. Acta 487(2018) 41-45.
|
M. Forman, A. Valsamakis, R. Arav-Boger, Dried urine spots for detection and quantification of cytomegalovirus in newborns, Diagn. Microbiol. Infect. Dis. 73(2012) 326-329.
|
M.G.M. Kok, M. Fillet, Volumetric absorptive microsampling:Current advances and applications, J. Pharm. Biomed. Anal. 147(2018) 288-296.
|
G.S. Moorthy, C. Vedar, N.R. Zane, et al., Development and validation of a volumetric absorptive microsampling-liquid chromatography mass spectrometry method for the analysis of cefepime in human whole blood:Application to pediatric pharmacokinetic study, J. Pharm. Biomed. Anal. 179(2020), 113002.
|
R. Mandrioli, L. Mercolini, M. Protti, Blood and plasma volumetric absorptive microsampling (VAMS) coupled to LC-MS/MS for the forensic assessment of cocaine consumption, Molecules 25(2020), 1046.
|
T.P.I.J.M. Canisius, J.W.P. Hans Soons, P. Verschuure, et al., Therapeutic drug monitoring of anti-epileptic drugs-a clinical verification of volumetric absorptive micro sampling, Clin. Chem. Lab. Med. 58(2020) 828-835.
|
C. Tron, M.J. Ferrand-Sorre, J. Querzerho-Raguideau, et al., Volumetric absorptive microsampling for the quantification of tacrolimus in capillary blood by high performance liquid chromatography-tandem mass spectrometry, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 1165(2021), 122521.
|
M. Protti, R. Mandrioli, L. Mercolini, Tutorial:Volumetric absorptive microsampling (VAMS), Anal. Chim. Acta 1046(2019) 32-47.
|
O. Jonsson, R.P. Villar, L.B. Nilsson, et al., Capillary microsampling of 25 ml blood for the determination of toxicokinetic parameters in regulatory studies in animals, Bioanalysis 4(2012) 661-674.
|
H. Prior, L. Marks, C. Grant, et al., Incorporation of capillary microsampling into whole body plethysmography and modified Irwin safety pharmacology studies in rats, Regul. Toxicol. Pharmacol. 73(2015) 19-26.
|
T. Bharucha, A. Chanthongthip, S. Phuangpanom, et al., Pre-cut filter paper for detecting anti-Japanese encephalitis virus IgM from dried cerebrospinal fluid spots, PLoS Neglected Trop. Dis. 10(2016), e0004516.
|
A. Namera, T Saito, Spin column extraction as a new sample preparation method in bioanalysis, Bioanalysis 7(2015) 2171-2176.
|
A. Esrafili, M. Ghambarian, M. Tajik, et al., Spin-column micro-solid phase extraction of chlorophenols using MFU-4l metal-organic framework, Mikrochim. Acta 187(2019), 39.
|
Ł. Nuckowski, A. Kaczmarkiewicz, S. Studzinska, Review on sample prepa- ration methods for oligonucleotides analysis by liquid chromatography, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 1090(2018) 90-100.
|
N.Y. Ashri, M. Abdel-Rehim, Sample treatment based on extraction techniques in biological matrices, Bioanalysis 3(2011) 2003-2018.
|
R. Marcinkowska, K. Konieczna, Ł. Marcinkowski, et al., Application of ionic liquids in microextraction techniques:Current trends and future perspectives, TrAC Trends Anal. Chem. 119(2019), 115614.
|
S. Huang, G. Chen, N. Ye, et al., Solid-phase microextraction:An appealing alternative for the determination of endogenous substances-a review, Anal. Chim. Acta 1077(2019) 67-86.
|
D. Hussain, S.T. Raza Naqvi, M.N. Ashiq, et al., Analytical sample preparation by electrospun solid phase microextraction sorbents, Talanta 208(2020), 120413.
|
J. Namie snik, A. Spietelun, Ł. Marcinkowski, Green sample preparation techniques for chromatographic determination of small organic compounds, Int. J. Chem. Eng. Appl. 6(2015) 215-219.
|
V. Andreu, Y. Pico, Pressurized liquid extraction of organic contaminants in environmental and food samples, TrAC Trends Anal. Chem. 118(2019) 709-721.
|
M.M. Moein, A. Abdel-Rehim, M. Abdel-Rehim, Recent applications of molecularly imprinted Sol-gel methodology in sample preparation, Molecules 24(2019), 2889.
|
H. Pandey, P. Khare, S. Singh, et al., Carbon nanomaterials integrated molecularly imprinted polymers for biological sample analysis:A critical review, Mater. Chem. Phys. 239(2020), 121966.
|
M. Vergara-Barber an, E.J. Carrasco-Correa, M.J. Lerma-García, et al., Current trends in affinity-based monoliths in microextraction approaches:a review, Anal. Chim. Acta 1084(2019) 1-20.
|
S. Souverain, S. Rudaz, J.L. Veuthey, Restricted access materials and large particle supports for on-line sample preparation:An attractive approach for biological fluids analysis, J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 801(2004) 141-156.
|
M.E. Leon-Gonz alez, M. Plaza-Arroyo, L.V. P erez-Arribas, et al., Rapid analysis of pyrethroids in whole urine by high-performance liquid chromatography using a monolithic column and off-line preconcentration in a restricted access material cartridge, Anal. Bioanal. Chem. 382(2005) 527-531.
|
H.D. de Faria, L.C. de Carvalho Abrão, M.G. Santos, et al., New advances in restricted access materials for sample preparation:A review, Anal. Chim. Acta 959(2017) 43-65.
|
C. Jurischka, F. Dinter, A. Efimova, et al., An explorative study of polymers for 3D printing of bioanalytical test systems, Clin. Hemorheol. Microcirc. 75(2020) 57-84.
|
G.W. Bishop, J.E. Satterwhite-Warden, K. Kadimisetty, et al., 3D-printed bioanalytical devices, Nanotechnology 27(2016), 284002.
|
A. Lambert, S. Valiulis, Q. Cheng, Advances in optical sensing and bioanalysis enabled by 3D printing, ACS Sens. 3(2018) 2475-2491.
|
J. Pan, M. Liu, D. Li, et al., Overoxidized poly(3,4-ethylenedioxythiophene)e gold nanoparticlesegraphene-modified electrode for the simultaneous detection of dopamine and uric acid in the presence of ascorbic acid, J. Pharm. Anal. 11(2021) 699-708.
|
E.M. Materon, A. Wong, T.A. Freitas, et al., A sensitive electrochemical detection of metronidazole in synthetic serum and urine samples using lowcost screen-printed electrodes modified with reduced graphene oxide and C60, J. Pharm. Anal. 11(2021) 646-652.
|
M. Locatelli, A. Tartaglia, F. D'Ambrosio, et al., Biofluid sampler:a new gateway for mail-in-analysis of whole blood samples, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 1143(2020), 122055.
|
M. McKeague, C.R. Bradley, A. de Girolamo, et al., Screening and initial binding assessment of fumonisin b(1) aptamers, Int. J. Mol. Sci. 11(2010) 4864-4881.
|
B. Madru, F. Chapuis-Hugon, V. Pichon, Novel extraction supports based on immobilised aptamers:Evaluation for the selective extraction of cocaine, Talanta 85(2011) 616-624.
|
S.N. Aslipashaki, T. Khayamian, Z. Hashemian, Aptamer based extraction followed by electrospray ionization-ion mobility spectrometry for analysis of tetracycline in biological fluids, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 925(2013) 26-32.
|
M. Vergara-Barberan, M.J. Lerma-García, A. Moga, et al., Recent advances in aptamer-based miniaturized extraction approaches in food analysis, TrAC Trends Anal. Chem. 138(2021), 116230.
|
W. Alshaer, H. Hillaireau, E. Fattal, Aptamer-guided nanomedicines for anticancer drug delivery, Adv. Drug Deliv. Rev. 134(2018) 122-137.
|
M. Jie, S. Mao, H. Li, et al., Multi-channel microfluidic chip-mass spectrometry platform for cell analysis, Chin. Chem. Lett. 28(2017) 1625-1630.
|
J. Wu, Z. He, Q. Chen, et al., Biochemical analysis on microfluidic chips, Trac. Trends Anal. Chem. 80(2016) 213-231.
|
N.J. Wang, S.F. Mao, W. Liu, et al., Online monodisperse droplets based liquid-liquid extraction on a continuously flowing system by using microfluidic devices, RSC Adv. 4(2014) 11919-11926.
|
D. Gao, H. Wei, G.-S. Guo, et al., Microfluidic cell culture and metabolism detection with electrospray ionization quadrupole time-of-flight mass spectrometer, Anal. Chem. 82(2010), 5679-5685.
|
X. An, P. Zuo, B.-C. Ye, A single cell droplet microfluidic system for quantitative determination of food-borne pathogens, Talanta 209(2020), 120571.
|
S. Srikanth, J.M. Mohan, S. Raut, et al., Droplet based microfluidic d,evice integrated with ink jet printed three electrode system for electrochemical detection of ascorbic acid, Sens. Actuat. A Phys. 325(2021), 112685.
|
H.R. Singhal, A. Prabhu, M.S. Giri Nandagopal, et al., One-dollar microfluidic paper-based analytical devices:Do-it-yourself approaches, Micro,chem. J. 165(2021), 106126.
|
M. Perez-Rodríguez, M. del Pilar Ca nizares-Macías, Metabolic biomarker modeling for predicting clinical diagnoses through microfluidic paper-based analytical devices, Microchem. J. 165(2021), 106093.
|
E. Dziurkowska, M. Wesolowski, Solid phase extraction purification of saliva samples for antipsychotic drug quantitation, Molecules 23(2018), 2946.
|
S. Meirinho, M. Rodrigues, A. Fortuna, et al., Liquid chromatographic methods for determination of the new antiepileptic drugs stiripentol, retigabine, rufinamide and perampanel:A comprehensive and critical review, J. Pharm. Anal. 11(2021) 405-421.
|