Citation: | Shi-Jun Yin, Xi Zhou, Li-Jing Peng, Fang Li, Guo-Can Zheng, Feng-Qing Yang, Yuan-Jia Hu. Preparation of Fe3O4@SW-MIL-101-NH2 for selective pre-concentration of chlorogenic acid metabolites in rat plasma, urine, and feces samples[J]. Journal of Pharmaceutical Analysis, 2022, 12(4): 617-626. doi: 10.1016/j.jpha.2022.01.002 |
N. Nakatani, S. Kayano, H. Kikuzaki, et al., Identification, quantitative determination, and antioxidative activities of chlorogenic acid isomers in prune (Prunus domestica L.), J. Agric. Food Chem. 48 (2000) 5512-5516
|
C. Piñeros-Niño, C.-E. Narváez-Cuenca, A.C. Kushalappa, et al., Hydroxycinnamic acids in cooked potato tubers from Solanum tuberosum group Phureja, Food Sci. Nutr. 5 (2016) 380-389
|
N. Li, X.-Y. Gao, Q. Fan, et al., Rapid determination of chlorogenic acid in aqueous solution of Flos Lonicerae Japonicae extraction, Zhongguo Zhong Yao Za Zhi 32 (2007) 312-314
|
K. Arai, H. Terashima, S. Aizawa, et al., Simultaneous determination of trigonelline, caffeine, chlorogenic acid and their related compounds in instant coffee samples by HPLC using an acidic mobile phase containing octanesulfonate, Anal. Sci. 31 (2015) 831-835
|
Y. Sato, S. Itagaki, T. Kurokawa, et al., In vitro and in vivo antioxidant properties of chlorogenic acid and caffeic acid, Int. J. Pharm. 403 (2011) 136-138
|
Q. Li, Y. Zhao, X. Zheng, et al., Chlorogenic acid alters the biological characteristics of basophil granulocytes by affecting the fluidity of the cell membrane and triggering pseudoallergic reactions, Int. J. Mol. Med. 32 (2013) 1273-1280
|
L.-N. Xing, M.-M. Zhou, Y. Li, et al., Recent progress of potential effects and mechanisms of chlorogenic acid and its intestinal metabolites on central nervous system diseases, Zhongguo Zhong Yao Za Zhi 40 (2015) 1044-1047
|
A. Suzuki, A. Fujii, N. Yamamoto, et al., Improvement of hypertension and vascular dysfunction by hydroxyhydroquinone-free coffee in a genetic model of hypertension, FEBS Lett. 580 (2006) 2317-2322
|
K. Yamagata, Y. Izawa, D. Onodera, et al., Chlorogenic acid regulates apoptosis and stem cell marker-related gene expression in A549 human lung cancer cells, Mol. Cell Biochem. 441 (2018) 9-19
|
B. McDougall, P.J. King, B.W. Wu, et al., Dicaffeoylquinic and dicaffeoyltartaric acids are selective inhibitors of human immunodeficiency virus type 1 integrase, Antimicrob. Agents Chemother. 42 (1998) 140-146
|
M.G.S. Palmieri, L.T. Cruz, F.S. Bertges, et al., Enhancement of antioxidant properties from green coffee as promising ingredient for food and cosmetic industries, Biocatal. Agric. Biotechnol. 16 (2018) 43-48
|
J. Li, S.-P. Wang, Y.-Q. Wang, et al., Comparative metabolism study on chlorogenic acid, cryptochlorogenic acid and neochlorogenic acid using UHPLC-Q-TOF MS coupled with network pharmacology, Chin. J. Nat. Med. 19 (2021) 212-224
|
H. Shen, X. Song, Y. Zhang, et al., Profiling of brevetoxin metabolites produced by Karenia brevis 165 based on liquid chromatography-mass spectrometry, Toxins (Basel) 13 (2021), 354
|
A. Abraham, Y. Wang, K.R. El Said, et al., Characterization of brevetoxin metabolism in Karenia brevis bloom-exposed clams (Mercenaria sp.) by LC-MS/MS, Toxicon 60 (2012) 1030-1040
|
R.H. Pierce, M.S. Henry, L.S. Proffitt, et al., Evaluation of solid sorbents for the recovery of polyether toxins (brevetoxins) in seawater, Bull. Environ. Contam. Toxicol. 49 (1992) 479-484
|
S.F. Teunissen, H. Rosing, L. Brunsveld, et al., Analysis of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine and its phase I and phase II metabolites in mouse urine using LC-UV-MS-MS, Chromatographia 74 (2011) 215-226
|
T. Ogawa, H. Hattori, M. Iwai, et al., A rapid and simultaneous analysis of theophylline and its metabolites in human whole blood by ultra-performance liquid chromatography-tandem mass spectrometry, Forensic Toxicol. 30 (2012) 142-148
|
M. Majd, M. Yazdanpanah, M.R. Bayatloo, et al., Recent advances and applications of cyclodextrins in magnetic solid phase extraction, Talanta 229 (2021), 122296
|
H.-L. Jiang, N. Li, L. Cui, et al., Recent application of magnetic solid phase extraction for food safety analysis, Trends Analyt. Chem. 120 (2019), 115632
|
S.-J. Yin, J. Zhao, F.-Q. Yang, Recent applications of magnetic solid phase extraction in sample preparation for phytochemical analysis, J. Pharm. Biomed. Anal. 192 (2021), 113675
|
Y. Liao, X. Huang, Z. Wang, et al., Research progress in the application of magnetic solid phase extraction based on carbon based magnetic materials in food analysis, Se Pu 39 (2021) 368-375
|
L. Xie, R. Jiang, F. Zhu, et al., Application of functionalized magnetic nanoparticles in sample preparation, Anal. Bioanal. Chem. 406 (2014) 377-399
|
M. Yu, L. Wang, L. Hu, et al., Recent applications of magnetic composites as extraction adsorbents for determination of environmental pollutants, Trends Analyt. Chem. 119 (2019), 115611
|
W.-K. Li, Y.-P. Shi, Recent advances and applications of carbon nanotubes based composites in magnetic solid-phase extraction, Trends Analyt. Chem. 118 (2019) 652-665
|
A. Speltini, M. Sturini, F. Maraschi, et al., Recent trends in the application of the newest carbonaceous materials for magnetic solid-phase extraction of environmental pollutants, Trends Environ. Analyt. Chem. 10 (2016) 11-23
|
Z. Meng, L. Zhang, Y. Huang, Development of metal-organic framework composites in sample pretreatment, Se Pu 36 (2018) 216-221
|
J. Ma, G. Wu, S. Li, et al., Magnetic solid-phase extraction of heterocyclic pesticides in environmental water samples using metal-organic frameworks coupled to high performance liquid chromatography determination, J. Chromatogr. A 1553 (2018) 57-66
|
Y. Wang, M. Yan, Q. Ji, et al., Fast magnetic solid-phase extraction using an Fe3O4-NH2@MOF material for monohydroxy polycyclic aromatic hydrocarbons in urine of coke-oven workers, Anal. Methods 12 (2020) 2872-2880
|
H. Duo, X. Lu, S. Wang, et al., Synthesis of magnetic metal-organic framework composites, Fe3O4-NH2@MOF-235, for the magnetic solid-phase extraction of benzoylurea insecticides from honey, fruit juice and tap water samples, New J. Chem. 43 (2019) 12563-12569
|
Y. Li, X. Zhou, L. Dong, et al., Magnetic metal-organic frameworks nanocomposites for negligible-depletion solid-phase extraction of freely dissolved polyaromatic hydrocarbons, Environ. Pollut. 252 (2019) 1574-1581
|
T. Wan, W. Li, Z. Chen, Metal organic framework-801 based magnetic solid-phase extraction and its application in analysis of preterm labor treatment drugs, J. Pharm. Biomed. Anal. 199 (2021), 114049
|
S.-H. Huo, H.-Y. An, J. Yu, et al., Pyrolytic in situ magnetization of metal-organic framework MIL-100 for magnetic solid-phase extraction, J. Chromatogr. A 1517 (2017) 18-25
|
R. Yang, J. Tian, Y. Liu, et al., Interaction mechanism of ferritin protein with chlorogenic acid and iron ion:The structure, iron redox, and polymerization evaluation, Food Chem. 349 (2021), 129144
|
Y. Kono, S. Kashine, T. Yoneyama, et al., Iron chelation by chlorogenic acid as a natural antioxidant, Biosci. Biotechnol. Biochem. 62 (1998) 22-27
|
J. Guo, Y. Wan, Y. Zhu, et al., Advanced photocatalysts based on metal nanoparticle/metal-organic framework composites, Nano Res. 14 (2021) 2037-2052
|
M. Musa, W.A. Wan Lbrahim, F. Mohd Marsin, et al., Graphene-magnetite as adsorbent for magnetic solid phase extraction of 4-hydroxybenzoic acid and 3, 4-dihydroxybenzoic acid in stingless bee honey, Food Chem. 265 (2018) 165-172
|
M. Liu, Q. Huang, L. Li, et al., Cerium-doped MIL-101-NH2(Fe) as superior adsorbent for simultaneous capture of phosphate and As(V) from Yangzonghai coastal spring water, J. Hazard. Mater. 423 (2021), 126981
|
P.S. Gao, Y. Guo, X. Li, et al., Magnetic solid phase extraction of sulfonamides based on carboxylated magnetic graphene oxide nanoparticles in environmental waters, J. Chromatogr. A 1575 (2018) 1-10
|
F. Aflatouni, M. Soleimani, Preparation of a new polymerized ionic liquid-modified magnetic nano adsorbent for the extraction and preconcentration of nitrate and nitrite anions from environmental water samples, Chromatographia 81 (2018) 1475-1486
|
C. Huang, J. Wang, M. Li, et al., Construction of a novel Z-scheme V2O5/NH2-MIL-101(Fe) composite photocatalyst with enhanced photocatalytic degradation of tetracycline, Solid State Sci. 117 (2021), 106611
|
S.S. Bayazit, S.T. Danalioglu, M.A. Salam, et al., Preparation of magnetic MIL-101 (Cr) for efficient removal of ciprofloxacin, Environ. Sci. Pollut. Res. 24 (2017) 25452-25461
|
P. Zhu, X.-L. Miao, Y. Chen, Degradation kinetics of chlorogenic acid, cryptochlorogenic acid, and neochlorogenic acid at neutral and alkaline pH values, Yao Xue Xue Bao 51 (2016) 122-126
|
X. Jing, H. Wang, X. Huang, et al., Digital image colorimetry detection of carbaryl in food samples based on liquid phase microextraction coupled with a microfluidic thread-based analytical device, Food Chem. 337 (2021), 127971
|
X. Yao, G.-S. Zhou, Y.-P. Tang, et al., Quercetin-3-O-β-D-glucopyranosyl-(4→1)-α-L-rhamnoside metabolites in the rat using UPLC-Q-TOF/MS, Chin. J. Nat. Med. 12 (2014) 705-711
|
Y.-P. Lee, T.-F. Kuo, S.-S. Lee, Identification of the metabolites of TCM prescription Sinisan, found in miniature pig urine via intragastric administration, J. Pharm. Biomed. Anal. 111 (2015) 311-319
|
Z.-W. Chen, L. Tong, S.-M. Li, et al., Identification of metabolites of Radix Paeoniae Alba extract in rat bile, plasma and urine by ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry, J. Pharm. Anal. 4 (2014) 14-25
|
Q. Cai, Z. Yang, N. Chen, et al., Selective capture and rapid identification of Panax notoginseng metabolites in rat faeces by the integration of magnetic molecularly imprinted polymers and high-performance liquid chromatography coupled with orbitrap mass spectrometry, J. Chromatogr. A 1455 (2016) 65-73
|
A.O. Melekhin, V.V. Tolmacheva, E.G. Shubina, et al., Determination of nitrofuran metabolites in honey using a new derivatization reagent, magnetic solid-phase extraction and LC-MS/MS, Talanta 230 (2021), 122310
|
J. Yu, B. Wang, J. Cai, et al., Selective extraction and determination of aromatic amine metabolites in urine samples by using magnetic covalent framework nanocomposites and HPLC-MS, RSC Adv. 10 (2020) 28437-28446
|