Citation: | Yuan-Yuan Hei, Si Wang, Xiao-Xiao Xi, Hai-Peng Wang, Yuanxu Guo, Minhang Xin, Congshan Jiang, Shemin Lu, San-Qi Zhang. Design, synthesis, and evaluation of fluoroquinolone derivatives as microRNA-21 small-molecule inhibitors[J]. Journal of Pharmaceutical Analysis, 2022, 12(4): 653-663. doi: 10.1016/j.jpha.2021.12.008 |
R.C. Friedman, K.K. Farh, C.B. Burge, et al., Most mammalian mRNAs are conserved targets of microRNAs, Genome Res. 19 (2009) 92-105
|
S.M. Hammond, An overview of microRNAs, Adv. Drug Deliv. Rev. 87 (2015) 3-14
|
B.R. Cullen, Transcription and processing of human microRNA precursors, Mol. Cell 16 (2004) 861-865
|
A.M. Denli, B.B. Tops, R.H. Plasterk, et al., Processing of primary microRNAs by the Microprocessor complex, Nature 432 (2004) 231-235
|
R.I. Gregory, K.-P. Yan, G. Amuthan, et al., The Microprocessor complex mediates the genesis of microRNAs, Nature 432 (2004) 235-240
|
E. Bernstein, A.A. Caudy, S.M. Hammond, et al., Role for a bidentate ribonuclease in the initiation step of RNA interference, Nature 409 (2001) 363-366
|
A. Grishok, A.E. Pasquinelli, D. Conte, et al., Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing, Cell 106 (2001) 23-34
|
S.M. Hammond, E. Bernstein, D. Beach, et al., An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells, Nature 404 (2000) 293-296
|
D.P. Bartel, MicroRNAs:target recognition and regulatory functions, Cell 136 (2009) 215-233
|
S.M. Hammond, MicroRNAs as oncogenes, Curr. Opin. Genet. Dev. 16 (2006) 4-9
|
Y. Peng, C.M. Croce, The role of MicroRNAs in human cancer, Signal Transduct Target Ther. 1 (2016) 15004-15012
|
M.A. Jafri, M.H. Al-Qahtani, J.W. Shay, Role of miRNAs in human cancer metastasis:Implications for therapeutic intervention, Semin. Cancer Biol. 44 (2017) 117-131
|
Y.H. Feng, C.J. Tsao, Emerging role of microRNA-21 in cancer, Biomed. Rep. 5 (2016) 395-402
|
X. Li, S. Xin, Z. He, et al., MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor PDCD4 and promotes cell transformation, proliferation, and metastasis in renal cell carcinoma, Cell Physiol. Biochem. 33 (2014) 1631-1642
|
L.K. Rushworth, A.M. Kidger, L. Delavaine, et al., Dual-specificity phosphatase 5 regulates nuclear ERK activity and suppresses skin cancer by inhibiting mutant Harvey-Ras (HRasQ61L)-driven SerpinB2 expression, Proc. Natl. Acad. Sci. U.S.A. 111 (2014) 18267-18272
|
Y. Lou, X. Yang, F. Wang, et al., MicroRNA-21 promotes the cell proliferation, invasion and migration abilities in ovarian epithelial carcinomas through inhibiting the expression of PTEN protein, Int. J. Mol. Med. 26 (2010) 819-827
|
X. Yu, Y. Chen, R. Tian, et al., miRNA-21 enhances chemoresistance to cisplatin in epithelial ovarian cancer by negatively regulating PTEN, Oncol. Lett. 14 (2017) 1807-1810
|
Y. Naro, N. Ankenbruck, M. Thomas, et al., Small molecule inhibition of MicroRNA miR-21 rescues chemosensitivity of renal-cell carcinoma to topotecan, J. Med. Chem. 61 (2018) 5900-5909
|
A. Markou, M. Zavridou, E.S. Lianidou, miRNA-21 as a novel therapeutic target in lung cancer, Lung Cancer (Auckl) 7 (2016) 19-27
|
E.N. Van Meter, J.A. Onyango, K.A. Teske, A review of currently identified small molecule modulators of microRNA function, Eur. J. Med. Chem. 188 (2020), 112008
|
M.G. Costales, J.L. Childs-Disney, H.S. Haniff, et al., How we think about targeting RNA with small molecules, J. Med. Chem. 63 (2020) 8880-8900
|
J.S. Matarlo, L.R.H. Krumpe, W.F. Heinz, et al., The natural product butylcycloheptyl prodiginine binds pre-miR-21, inhibits dicer-mediated processing of pre-miR-21, and blocks cellular proliferation, Cell Chem. Biol. 10 (2019) 1133-1142.e4
|
A.L. Garner, D.A. Lorenz, J. Sandoval, et al., Tetracyclines as Inhibitors of Pre-microRNA Maturation:A Disconnection between RNA Binding and Inhibition, ACS Med. Chem. Lett. 10 (2019) 816-821
|
S.P. Velagapudi, M.G. Costales, B.R. Vummidi, et al., Approved anti-cancer drugs target oncogenic non-coding RNAs, Cell Chem. Biol. 25 (2018) 1086-1094.e7
|
K. Gumireddy, D.D. Young, X. Xiong, et al., Small-molecule inhibitors of microrna miR-21 function, Angew. Chem. Int. Ed. Engl. 47 (2008) 7482-7484
|
D. Bose, G. Jayaraj, H. Suryawanshi, et al., The tuberculosis drug streptomycin as a potential cancer therapeutic:inhibition of miR-21 function by directly targeting its precursor, Angew. Chem. Int. Ed. Engl. 51 (2012) 1019-1023
|
Z. Shi, J. Zhang, X. Qian, et al., AC1MMYR2, an inhibitor of dicer-mediated biogenesis of Oncomir miR-21, reverses epithelial-mesenchymal transition and suppresses tumor growth and progression, Cancer Res. 73 (2013) 5519-5531
|
Y. Naro, M. Thomas, M.D. Stephens, et al., Aryl amide small-molecule inhibitors of microRNA miR-21 function, Bioorg. Med. Chem. Lett. 25 (2015) 4793-4796
|
C.M. Connelly, R.E. Boer, M.H. Moon, et al., Discovery of inhibitors of MicroRNA-21 processing using small molecule microarrays, ACS Chem. Biol. 12 (2017) 435-443
|
C.S. Jiang, X.M. Wang, S.Q. Zhang, et al., Discovery of 4-benzoylamino-N-(prop-2-yn-1-yl)benzamides as novel microRNA-21 inhibitors, Bioorg. Med. Chem. 23 (2015) 6510-6519
|
H. Sun, G. Tawa, A. Wallqvist, Classification of scaffold-hopping approaches, Drug Discov. Today 17 (2012) 310-324
|
Y.Y. Hei, Y.X. Guo, C.S. Jiang, et al., The dual luciferase reporter system and RT-qPCR strategies for screening of MicroRNA-21 small-molecule inhibitors, Biotechnol. Appl. Biochem. 66 (2019) 755-762
|
T. Felicetti, V. Cecchetti, G. Manfroni, Modulating microRNA Processing:Enoxacin, the Progenitor of a New Class of Drugs, J. Med. Chem. 63 (2020) 12275-12289
|
S. Melo, A. Villanueva, C. Moutinho, et al., Small molecule enoxacin is a cancer-specific growth inhibitor that acts by enhancing TAR RNA-binding protein 2-mediated microRNA processing, Proc. Natl. Acad. Sci. U.S.A. 108 (2011) 4394-4399
|
E. Sousa, I. Graca, T. Baptista, et al., Enoxacin inhibits growth of prostate cancer cells and effectively restores microRNA processing, Epigenetics 8 (2013) 548-558
|
G. Shan, Y. Li, J. Zhang, et al., A small molecule enhances RNA interference and promotes microRNA processing, Nat. Biotechnol. 26 (2008) 933-940
|
Y. Zhou, X. Xu, Y. Sun, et al., Synthesis, cytotoxicity and topoisomerase II inhibitory activity of lomefloxacin derivatives, Bioorg. Med. Chem. Lett. 23 (2013) 2974-2978
|
S.P. Velagapudi, S.M. Gallo, M.D. Disney, Sequence-based design of bioactive small molecules that target precursor microRNAs, Nat. Chem. Biol. 10 (2014) 291-297
|
M. Maiti, K. Nauwelaerts, P. Herdewijn, Pre-microRNA binding aminoglycosides and antitumor drugs as inhibitors of Dicer catalyzed microRNA processing, Bioorg. Med. Chem. Lett. 22 (2012) 1709-1711
|
B. Meeusen, V. Janssens, Tumor suppressive protein phosphatases in human cancer:Emerging targets for therapeutic intervention and tumor stratification, Int. J. Biochem. Cell Biol. 96 (2018) 98-134
|