Citation: | Łukasz Sobczak, Dominika Kołodziej, Krzysztof Goryński. Modifying current thin-film microextraction (TFME) solutions for analyzing prohibited substances:Evaluating new coatings using liquid chromatography[J]. Journal of Pharmaceutical Analysis, 2022, 12(3): 470-480. doi: 10.1016/j.jpha.2021.12.007 |
N. Reyes-Garces, E. Gionfriddo, G.A. Gomez-Rios, et al., Advances in solid phase microextraction and perspective on future directions, Anal. Chem. 90(2018)302-360
|
K. Gorynski, A critical review of solid-phase microextraction applied in drugs of abuse determinations and potential applications for targeted doping testing, Trac Trends Anal. Chem. 112(2019)135-146
|
N. de Giovanni, D. Marchetti, A systematic review of solid-phase microextraction applications in the forensic context, J. Anal. Toxicol. 44(2020)268-297
|
C.L. Arthur, J. Pawliszyn, Solid phase microextraction with thermal desorption using fused silica optical fibers, Anal. Chem. 62(1990)2145-2148
|
D. Vuckovic, R. Shirey, Y. Chen, et al., In vitro evaluation of new biocompatible coatings for solid-phase microextraction:Implications for drug analysis and in vivo sampling applications, Anal. Chimica Acta 638(2009)175-185
|
M. Sajid, M. Khaled Nazal, M. Rutkowska, et al., Solid phase microextraction:apparatus, sorbent materials, and application, Crit. Rev. Anal. Chem. 49(2019)271-288
|
I. Bruheim, X.C. Liu, J. Pawliszyn, Thin-film microextraction, Anal. Chem. 75(2003)1002-1010
|
F.S. Mirnaghi, D. Hein, J. Pawliszyn, Thin-film microextraction coupled with mass spectrometry and liquid chromatography-mass spectrometry, Chromatographia 76(2013)1215-1223
|
E. Gionfriddo, E. Boyaci, J. Pawliszyn, New generation of solid-phase microextraction coatings for complementary separation approaches:a step toward comprehensive metabolomics and multiresidue analyses in complex matrices, Anal. Chem. 89(2017)4046-4054
|
D. Vuckovic, E. Cudjoe, D. Hein, et al., Automation of solid-phase microextraction in high-throughput format and applications to drug analysis, Anal. Chem. 80(2008)6870-6880
|
E. Cudjoe, D. Vuckovic, D. Hein, et al., Investigation of the effect of the extraction phase geometry on the performance of automated solid-phase microextraction, Anal. Chem. 81(2009)4226-4232
|
F.S. Mirnaghi, Y. Chen, L.M. Sidisky, et al., Optimization of the coating procedure for a high-throughput 96-blade solid phase microextraction system coupled with LC-MS/MS for analysis of complex samples, Anal. Chem. 83(2011)6018-6025
|
F.S. Mirnaghi, M.R.N. Monton, J. Pawliszyn, Thin-film octadecyl-silica glass coating for automated 96-blade solid-phase microextraction coupled with liquid chromatography-tandem mass spectrometry for analysis of benzodiazepines, J. Chromatogr. A 1246(2012)2-8
|
T. Vasiljevic, G.A. Gomez-Rios, F. Li, et al., High-throughput quantification of drugs of abuse in biofluids via 96-solid-phase microextraction-transmission mode and direct analysis in real time mass spectrometry, Rapid Commun. Mass Spectrom. 33(2019)1423-1433
|
V. Bessonneau, E. Boyaci, M. Maciazek-Jurczyk, et al., In vivo solid phase microextraction sampling of human saliva for non-invasive and on-site monitoring, Anal. Chim. Acta 856(2015)35-45
|
L. Sobczak, D. Kolodziej, K. Gorynski, Benefits of innovative and fully water-compatible stationary phases of thin-film microextraction (TFME) blades, Molecules 26(2021)4413
|
K. Gorynski, A. Kiedrowicz, B. Bojko, Development of SPME-LC-MS method for screening of eight beta-blockers and bronchodilators in plasma and urine samples, J. Pharm. Biomed. Anal. 127(2016)147-155
|
F.S. Mirnaghi, J. Pawliszyn, Development of coatings for automated 96-blade solid phase microextraction-liquid chromatography-tandem mass spectrometry system, capable of extracting a wide polarity range of analytes from biological fluids, J. Chromatogr. A 1261(2012)91-98
|
N. Reyes-Garces, B. Bojko, J. Pawliszyn, High throughput quantification of prohibited substances in plasma using thin film solid phase microextraction, J. Chromatogr. A 1374(2014)40-49
|
E. Boyaci, K. Gorynski, A. Rodriguez-Lafuente, et al., Introduction of solid-phase microextraction as a high-throughput sample preparation tool in laboratory analysis of prohibited substances, Anal. Chim. Acta 809(2014)69-81
|
J.W. Liu, K. Murtada, N. Reyes-Garces, et al., Systematic evaluation of different coating chemistries used in thin-film microextraction, Molecules 25(2020), 3448
|
A. Aly, T. Gorecki, Green approaches to sample preparation based on extraction techniques, Molecules 25(2020), 1719
|
K.M. Billiard, A.R. Dershem, E. Gionfriddo, Implementing green analytical methodologies using solid-phase microextraction:a review, Molecules 25(2020), 5297
|
2018 National Survey on Drug Use and Health, Substance Abuse and Mental Health Services Administration (SAMHSA). https://www.samhsa.gov/data/report/2018-nsduh-detailed-tables.(Accessed 13 May 2021)
|
European Drug Report 2020:Trends and Developments, European Monitoring Centre for Drugs and Drug Addiction (EMCDDA). https://www.emcdda.europa.eu/publications/edr/trends-developments/2020_en.(Accessed 13 May 2021)
|
Anti-Doping Testing Figures, The World Anti-Doping Agency (WADA). https://www.wada-ama.org/en/resources/laboratories/anti-doping-testing-figures-report.(Accessed 13 May 2021)
|
2021 Prohibited List, The World Anti-Doping Agency (WADA). https://www.wada-ama.org/en/resources/science-medicine/prohibited-list-documents.(Accessed 13 May 2021)
|
L. Sobczak, K. Gorynski, Evaluation of swabs from 15 commercially available oral fluid sample collection devices for the analysis of commonly abused substances:doping agents and drugs of abuse, Analyst 145(2020)7279-7288
|
N. Reyes-Garces, M.N. Alam, J. Pawliszyn, The effect of hematocrit on solid-phase microextraction, Anal. Chimica Acta 1001(2018)40-50
|
D.V. McCalley, Comparison of conventional microparticulate and a monolithic reversed-phase column for high-efficiency fast liquid chromatography of basic compounds, J. Chromatogr. A 965(2002)51-64
|
K. Croes, A. Steffens, D.H. Marchand, et al., Relevance of π-π and dipole-dipole interactions for retention on cyano and phenyl columns in reversed-phase liquid chromatography, J. Chromatogr. A 1098(2005)123-130
|
L.R. Snyder, J.W. Dolan, P.W. Carr, The hydrophobic-subtraction model of reversed-phase column selectivity, J. Chromatogr. A 1060(2004)77-116
|
N.S. Wilson, M.D. Nelson, J.W. Dolan, et al., Column selectivity in reversed-phase liquid chromatography:I. A general quantitative relationship, J. Chromatogr. A 961(2002)171-193
|
N.S. Wilson, M.D. Nelson, J.W. Dolan, et al., Column selectivity in reversed-phase liquid chromatography:II. Effect of a change in conditions, J. Chromatogr. A 961(2002)195-215
|
N.S. Wilson, J.W. Dolan, L.R. Snyder, et al., Column selectivity in reversed-phase liquid chromatography:III. The physico-chemical basis of selectivity, J. Chromatogr. A 961(2002)217-236
|
P.W. Carr, J.W. Dolan, U.D. Neue, et al., Contributions to reversed-phase column selectivity. I. Steric interaction, J. Chromatogr. A 1218(2011)1724-1742
|
D.H. Marchand, P.W. Carr, D.V. McCalley, et al., Contributions to reversed-phase column selectivity. II. Cation exchange, J. Chromatogr. A 1218(2011)7110-7129
|
P.W. Carr, J.W. Dolan, J.G. Dorsey, et al., Contributions to reversed-phase column selectivity:III. Column hydrogen-bond basicity, J. Chromatogr. A 1395(2015)57-64
|
HPLC Columns database, D. Stoll, P. Boswell. http://hplccolumns.org/database/compare.php.(Accessed 13 May 2021)
|
D.S. Wishart, Y.D. Feunang, A. Marcu, et al., HMDB 4.0:the human metabolome database for 2018, Nucleic Acids Res. 46(2018) D608-D617
|
J.C. Ma, D.A. Dougherty, The cation-π interaction, Chem. Rev. 97(1997)1303-1324
|
C.F. Poole, H. Ahmed, W. Kiridena, et al., Contribution of steric repulsion to retention on an octadecylsiloxane-bonded silica stationary phase in reversed-phase liquid chromatography, Chromatographia 62(2005)553-561
|
C.F. Poole, W. Kiridena, C. DeKay, et al., Insights into the retention mechanism on an octadecylsiloxane-bonded silica stationary phase (HyPURITY C18) in reversed-phase liquid chromatography, J. Chromatogr. A 1115(2006)133-141
|
P. Nikitas, A. Pappa-Louisi, P. Agrafiotou, New insights on the retention mechanism of non-polar solutes in reversed-phase liquid chromatographic columns, J. Chromatogr. A 1034(2004)41-54
|
ChemSpider database, Royal Society of Chemistry. http://www.chemspider.com.(Accessed 13 May 2021)
|
PubChem database, National Library of Medicine (NLM), National Center for Biotechnology Information (NCBI). https://pubchem.ncbi.nlm.nih.gov.(Accessed 13 May 2021)
|
J.M. Herrero-Martínez, A. Mendez, E. Bosch, et al., Characterization of the acidity of residual silanol groups in microparticulate and monolithic reversed-phase columns, J. Chromatogr. A 1060(2004)135-145
|
E. Lesellier, C. West, A. Tchapla, Classification of special octadecyl-bonded phases by the carotenoid test, J. Chromatogr. A 1111(2006)62-70
|
F. Gritti, G. Guiochon, Heterogeneity of the adsorption mechanism of low molecular weight compounds in reversed-phase liquid chromatography, Anal. Chem. 78(2006)5823-5834
|
J. Dai, P.W. Carr, Effect of mobile phase anionic additives on selectivity, efficiency, and sample loading capacity of cationic drugs in reversed-phase liquid chromatography, J. Chromatogr. A 1216(2009)6695-6705
|
F. Gritti, G. Guiochon, Effect of the density of the C18 surface coverage on the adsorption mechanism of a cationic compound and on the silanol activity of the stationary phase in reversed phase liquid chromatography, J. Chromatogr. A 1132(2006)51-66
|
J. Nawrocki, The silanol group and its role in liquid chromatography, J. Chromatogr. A 779(1997)29-71
|
F. Gritti, G. Guiochon, Adsorption mechanism in reversed-phase liquid chromatography:Effect of the surface coverage of a monomeric C18-silica stationary phase, J. Chromatogr. A 1115(2006)142-163
|