Citation: | Umer Saeed, Syed Yaseen Shah, Jawad Ahmad, Muhammad Ali Imran, Qammer H. Abbasi, Syed Aziz Shah. Machine learning empowered COVID-19 patient monitoring using non-contact sensing: An extensive review[J]. Journal of Pharmaceutical Analysis, 2022, 12(2): 193-204. doi: 10.1016/j.jpha.2021.12.006 |
Report on coronavirus by World Health Organization (WHO). https://COVID19.who.int. (Accessed 15 November 2021)
|
J. Hellewell, S. Abbott, A. Gimma, et al., Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts, The Lan. Glob. Heal. 8 (2020) e488-e496
|
S. Jiang, S. Xia, T. Ying, et al., A novel coronavirus (2019-ncov) causing pneumonia-associated respiratory syndrome, Cell. Mol. Immunol. 17 (5) (2020) 554
|
M. A. Khan, A. Atangana, Modeling the dynamics of novel coronavirus (2019-ncov) with fractional derivative, Alex. Eng. J. 59 (2020) 2379-2389
|
H. Nishiura, N. M. Linton, A. R. Akhmetzhanov, Initial cluster of novel coronavirus (2019-ncov) infections in Wuhan, China is consistent with substantial human-to-human transmission, J. Clin. Med. 9 (2020) 488
|
N. Poyiadji, G. Shahin, D. Noujaim, et al., COVID-19-associated acute hemorrhagic necrotizing encephalopathy: imaging features, Radiology 296 (2020) e119-e120
|
Z. Xu, L. Shi, Y. Wang, et al., Pathological findings of COVID-19 associated with acute respiratory distress syndrome, Lancet Respir. Med. 8 (2020) 420-422
|
T. Singhal, A review of coronavirus disease-2019 (COVID-19), Indian J. Pediatr. 87 (4) (2020) 281-286
|
L. Pan, M. Mu, P. Yang, et al., Clinical characteristics of COVID-19 patients with digestive symptoms in Hubei, China: a descriptive, cross-sectional, multicenter study, Am. J. Gastroenterol. 115 (2020) 766-773
|
P. Dawson, E. M. Rabold, R. L. Laws, et al., Loss of taste and smell as distinguishing symptoms of coronavirus disease 2019, Clin. Infect. Dis. 72 (4) (2021) 682-685
|
World Health Organization, Considerations for Quarantine of Individuals in the Context of Containment for Coronavirus Disease (COVID-19): Interim Guidance, 19 March 2020. https://apps.who.int/iris/bitstream/handle/10665/331497/WHO-2019-nCoV-IHR_Quarantine-2020.2-eng.pdf?sequence=1&isAllowed=y. (Accessed 10 July 2021)
|
National Bureau of Economic Research, How are small businesses adjusting to COVID-19? Early evidence from a survey. https://www.nber.org/papers/w26989. (Accessed 15 July 2021).
|
LSE Business Review, How is Covid-19 affecting businesses in the UK? https://blogs.lse.ac.uk/businessreview/2020/05/07/how-is-covid-19-affecting-businesses-in-the-uk/. (Accessed 25 July 2021).
|
R. P. Singh, M. Javaid, A. Haleem, et al., Internet of things (iot) applications to fight against COVID-19 pandemic, Diabetes Metab. Syndr. Clin. Res. Rev. 14 (2020) 521-524
|
A. Haleem, M. Javaid, R. Vaishya, Effects of COVID-19 pandemic in daily life, Curr. Med. Res. Pract. 10 (2020) 78-79
|
J. Cai, W. Sun, J. Huang, et al., Indirect virus transmission in cluster of COVID-19 cases, Wenzhou, China, 2020, Emerg. Infect. Dis. 26 (2020) 1345
|
D. Dong, Z. Tang, S. Wang, et al., The role of imaging in the detection and management of COVID-19: a review, IEEE Rev. in Biomed. Eng. 14 (2021) 16-29
|
A. W. Lindsley, J. T. Schwartz, M. E. Rothenberg, Eosinophil responses during COVID-19 infections and coronavirus vaccination, J. Allergy Clin. Immunol. 146 (2020) 1-7
|
S. Loomba, A. de Figueiredo, S. J. Piatek, et al., Measuring the impact of COVID-19 vaccine misinformation on vaccination intent in the UK and USA, Nat. Hum. Behav. (2021) 337-348
|
V. Mazereel, K. van Assche, J. Detraux, et al., COVID-19 vaccination for people with severe mental illness: why, what, and how?, Lancet Psychiatry. 8 (2021) 444-450
|
J.-F. Daoust, Elderly people and responses to COVID-19 in 27 countries, PLoS One 15 (2020), e0235590
|
S. Kadambari, P. Klenerman, A. J. Pollard, Why the elderly appear to be more severely affected by COVID-19: The potential role of immunosenescence and CMV, Rev. Med. Virol. 30 (2020), e2144
|
W.-R. Zhang, K. Wang, L. Yin, et al., Mental health and psychosocial problems of medical health workers during the COVID-19 epidemic in China, Psychother. Psychosom. 89 (2020) 242-250
|
A. Haleem, M. Javaid, R. Vaishya, et al., Areas of academic research with the impact of COVID-19, Am. J. Emerg. Med. 38 (2020) 1524-1526
|
S. Feng, C. Shen, N. Xia, et al., Rational use of face masks in the COVID-19 pandemic, Lancet Respir. Med. 8 (2020) 434-436
|
J. Howard, A. Huang, Z. Li, et al., Face masks against COVID-19: an evidence review, (2020), doi: 10.1073/pnas.2014564118
|
M. Bakhit, N. Krzyzaniak, A. M. Scott, et al., Downsides of face masks and possible mitigation strategies: a systematic review and meta-analysis, BMJ Open 11 (2021), e044364
|
J. H. Kim, F. Marks, J. D. Clemens, Looking beyond COVID-19 vaccine phase 3 trials, Nat. Med. 27 (2021) 205-211
|
M. Wadman, Public needs to prep for vaccine side effects, Science 370 (2020) 1022
|
E. Mahase, COVID-19: Vaccine candidate may be more than 90% effective, interim results indicate, BMJ Clin. Res. Ed. 371 (2020), m4347
|
D. van Riel, E. de Wit, Next-generation vaccine platforms for COVID-19, Nat. Mater. 19 (2020) 810-812
|
M. Salathé, C. L. Althaus, R. Neher, et al., COVID-19 epidemic in Switzerland: on the importance of testing, contact tracing and isolation, Swiss Med. Week. 150 (2020), w20225
|
J. A. Lewnard, N. C. Lo, Scientific and ethical basis for social-distancing interventions against COVID-19, Lancet Infect. Dis. 20 (2020) 631-633
|
S. Brandstetter, S. Roth, S. Harner, et al., Symptoms and immunoglobulin development in hospital staff exposed to a SARS-CoV-2 outbreak, Pediatr. Allergy Immunol. 31 (2020) 841-847
|
S. Fill Malfertheiner, S. Brandstetter, S. Roth, et al., Immune response to SARS-CoV-2 in health care workers following a COVID-19 outbreak: a prospective longitudinal study, J. Clin. Virol. 130 (2020), 104575
|
R. Buselli, M. Corsi, S. Baldanzi, et al., Professional quality of life and mental health outcomes among health care workers exposed to SARS-CoV-2 (COVID-19), Int. J. Environ. Res. Public Heal. 17 (2020), 6180
|
J. Willan, A. J. King, K. Jeffery, et al., Challenges for NHS hospitals during COVID-19 epidemic, BMJ 368 (2020), m1117
|
J. Pandit, Demand-capacity modelling and COVID-19 disease: identifying themes for future NHS planning, Anaesthesia 75 (2020) 1278-1283
|
G. Manzano García, J. C. Ayala Calvo, The threat of COVID-19 and its influence on nursing staff burnout, J. Adv. Nurs. 77 (2021) 832-844
|
X. Yang, X. Ren, M. Chen, et al., Human posture recognition in intelligent healthcare, J. Phys.: Conf. Ser. 1437 (2020) 012014
|
Q. H. Abbasi, M. Ur Rehman, K. Qaraqe, et al., Advances in body-centric wireless communication: Applications and state-of-the-art, Institution of Engineering and Technology, 2016, https://digital-library.theiet.org/content/books/te/pbte065e
|
F. Li, M. Valero, H. Shahriar, et al., Wi-COVID: A COVID-19 symptom detection and patient monitoring framework using WIFI, Smart Health (Amst) 19 (2021), 100147
|
A. Kapoor, S. Guha, M. Kanti Das, et al., Digital healthcare: The only solution for better healthcare during COVID-19 pandemic?, Indian Heart J. 72 (2020) 61-64
|
J. Liu, G. Teng, F. Hong, Human activity sensing with wireless signals: a survey, Sensors 20 (2020), 1210
|
J. Ma, H. Wang, D. Zhang, et al., A survey on Wi-Fi based contactless activity recognition, 2016 Intl IEEE Conferences on Ubiquitous Intelligence & Computing, Advanced and Trusted Computing, Scalable Computing and Communications, Cloud and Big Data Computing, Internet of People, and Smart World Congress (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld), July 18-21, 2016, Toulouse, France, IEEE, 2016, pp. 1086-1091
|
W. Naudé, Artificial intelligence vs COVID-19: limitations, constraints and pitfalls, AI Soc. 35 (2020) 761-765
|
C. Massaroni, A. Nicolò, E. Schena, et al., Remote respiratory monitoring in the time of COVID-19, Front. Physiol. 11 (2020), 635
|
S. Elagan, S. F. Abdelwahab, E. Zanaty, et al., Remote diagnostic, and detection of coronavirus disease (COVID-19) system based on intelligent healthcare and Internet of Things, Results Phys. 22 (2021), 103910
|
C.-Y. Tsai, N.-C. Chang, H.-C. Fang, et al., A novel noncontact self-injection-locked radar for vital sign sensing and body movement monitoring in COVID-19 isolation ward, J. Med. Syst. 44 (2020) 1-4
|
A. Haleem, M. Javaid, Medical 4.0 and its role in healthcare during COVID-19 pandemic: A review, J. Ind. Intg. Mgmt. 5 (2020) 531-545
|
M. Javaid, A. Haleem, R. P. Singh, et al., Industry 5.0: potential applications in COVID-19, J. Ind. Intg. Mgmt. 5 (2020) 507-530
|
R. Kahankova, R. Martinek, R. Jaros, et al., A review of signal processing techniques for non-invasive fetal electrocardiography, IEEE Rev. Biomed. Eng. 13 (2019) 51-73
|
X. Ding, D. Clifton, N. Ji, et al., Wearable sensing and telehealth technology with potential applications in the coronavirus pandemic, IEEE Rev. Biomed. Eng. 14 (2020) 48-70
|
S. Ahmadzadeh, J. Luo, R. Wiffen, Review on biomedical sensors, technologies, and algorithms for diagnosis of sleep disordered breathing: Comprehensive survey, IEEE Rev. Biomed. Eng. 2020, doi: 10.1109/RBME.2020.3033930
|
L. Castera, Non-invasive tests for liver fibrosis in NAFLD: Creating pathways between primary healthcare and liver clinics, Liver Int. 40 (2020) 77-81
|
J. C. Winck, N. Ambrosino, COVID-19 pandemic and non-invasive respiratory management: every Goliath needs a David. An evidence-based evaluation of problems, Pulmonology 26 (2020) 213-220
|
G. Yang, G. Pang, Z. Pang, et al., Non-invasive flexible and stretchable wearable sensors with nano-based enhancement for chronic disease care, IEEE Rev. Biomed. Eng. 12 (2019) 34-71
|
F. Ali, S. El-Sappagh, S. R. Islam, et al., An intelligent healthcare monitoring framework using wearable sensors and social networking data, Futur. Gener. Comput. Syst.114 (2021) 23-43
|
R. Rucco, A. Sorriso, M. Liparoti, et al., Type and location of wearable sensors for monitoring falls during static and dynamic tasks in healthy elderly: a review, Sensors 18 (2018), 1613
|
A. Moin, A. Zhou, A. Rahimi, et al., A wearable biosensing system with in-sensor adaptive machine learning for hand gesture recognition, Nat. Electron. 4 (2021) 54-63
|
J. Wasserlauf, C. You, R. Patel, et al., Smartwatch performance for the detection and quantification of atrial fibrillation, Circ.: Arrhythmia Electrophysiol. 12 (2019), e006834
|
O. S. Hoilett, A. M. Twibell, R. Srivastava, et al., Kick LL: a smartwatch for monitoring respiration and heart rate using photoplethysmography, 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), July 18-21, 2018, Honolulu, HI, USA, IEEE, 2018, pp. 3821-3824
|
H. C. Irawan, T. Juhana, Heart rate monitoring using IoT wearable for ambulatory patient, 2017 11th International Conference on Telecommunication Systems Services and Applications (TSSA), October 26-27, 2017, Lombok, Indonesia, IEEE, 2017, pp. 1-4
|
W. Taylor, Q. H. Abbasi, K. Dashtipour, et al., A review of the state of the art in non-contact sensing for COVID-19, Sensors 20 (2020), 5665
|
M. B. Khan, Z. Zhang, L. Li, et al., A systematic review of non-contact sensing for developing a platform to contain COVID-19, Micromachines 11 (2020), 912
|
S. N. Avdeev, A. I. Yaroshetskiy, N. A. Tsareva, et al., Noninvasive ventilation for acute hypoxemic respiratory failure in patients with COVID-19, Am. J. Emerg. Med. 39 (2021) 154-157
|
Y.-X. Wang, H.-T. Guo, X.-W. Du, et al., Factors associated with post-traumatic stress disorder of nurses exposed to Corona virus disease 2019 in China, Medicine 99 (2020), e20965
|
M. Javaid, I. H. Khan, Internet of Things (IoT) enabled healthcare helps to take the challenges of COVID-19 pandemic, J. Oral Biol. Craniofacial Res. 11 (2021) 209-214
|
M. Javaid, A. Haleem, R. Vaishya, et al., Industry 4.0 technologies and their applications in fighting COVID-19 pandemic, Diabetes Metab. Syndr.: Clin. Res. Rev. 14 (2020) 419-422
|
J. S. Wadali, P. K. Khosla, Healthcare 4.0 in future capacity building for pandemic control, Predictive and Preventive Measures for Covid-19 Pandemic, Singapore: Springer Singapore, 2021, pp. 87-107
|
A. Rizwan, A. Zoha, I. Mabrouk, et al., A review on the state of the art in atrial fibrillation detection enabled by machine learning, IEEE Rev. Biomed. Eng. 14. (2020) 219-239
|
S. A. Shah, H. Abbas, M. A. Imran, et al., Rf Sensing for Healthcare Applications, Backscattering and RF Sensing for Future Wireless Communication, Wiley: Hoboken, NJ. ISBN 9781119695653
|
J. U. R. Kazim, T. J. Cui, A. Zoha, et al., Wireless on walls: Revolutionizing the future of health care, IEEE Antennas Propag. Mag., 2020
|
A. Alimadadi, S. Aryal, I. Manandhar, et al., Artificial intelligence and machine learning to fight COVID-19, Physiol. Genom. 52 (2020) 200-202
|
D. Fan, A. Ren, N. Zhao, et al., Breathing rhythm analysis in body centric networks, IEEE Access 6 (2018) 32507-32513
|
J. J. Marini, L. Gattinoni, Management of COVID-19 respiratory distress, JAMA 323 (2020) 2329-2330
|
Y.-Y. Zheng, Y.-T. Ma, J.-Y. Zhang, et al., COVID-19 and the cardiovascular system, Nat. Rev. Cardiol. 17 (2020) 259-260
|
J. He, Y. Guo, R. Mao, et al., Proportion of asymptomatic coronavirus disease 2019: A systematic review and meta-analysis, J. Med. Virol. 93 (2021) 820-830
|
S. K. Kunutsor, J. A. Laukkanen, Cardiovascular complications in COVID-19: a systematic review and meta-analysis, J. Infect. 81 (2020) e139-e141
|
C. Li, V. M. Lubecke, O. Boric-Lubecke, et al., A review on recent advances in Doppler radar sensors for noncontact healthcare monitoring, IEEE Trans. Microw. Theory Tech. 61 (2013) 2046-2060
|
C. Massaroni, D. S. Lopes, D. Lo Presti, et al., Contactless monitoring of breathing patterns and respiratory rate at the pit of the neck: A single camera approach, J. Sensor 2018 (2018) 1-13
|
L. Queiroz, H. Oliveira, S. Yanushkevich, et al., Video-based breathing rate monitoring in sleeping subjects, 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), October 11-14, 2020, Toronto, ON, Canada, IEEE, 2020, pp. 2458- 2464
|
Y. Nam, Y. Kong, B. Reyes, et al., Monitoring of heart and breathing rates using dual cameras on a smartphone, PLoS One 11 (2016), e0151013
|
A. Procházka, H. Charvátová, O. Vyšata, et al., Breathing analysis using thermal and depth imaging camera video records, Sensors 17 (2017), 1408
|
H. E. Elphick, A. H. Alkali, R. K. Kingshott, et al., Exploratory study to evaluate respiratory rate using a thermal imaging camera, Respiration 97 (2019) 205-212
|
J. Born, G. Brandle, M. Cossio, et al., PoCOVID-net: automatic detection of COVID-19 from a new lung ultrasound imaging dataset (POCUS), arXiv preprint arXiv:2004.12084 (2020)
|
C.-H. Tsai, J. van der Burgt, D. Vukovic, et al., Automatic deep learning based pleural effusion classification in lung ultrasound images for respiratory pathology diagnosis, Phys. Med. 83 (2021) 38-45
|
J. Rasheed, A. A. Hameed, C. Djeddi, et al., A machine learning-based framework for diagnosis of COVID-19 from chest X-ray images, Interdiscip. Sci. Comput. Life Sci. 13 (2021) 103-117
|
R. Jain, M. Gupta, S. Taneja, et al., Deep learning-based detection and analysis of COVID-19 on chest X-ray images, Appl. Intell. 51 (2021) 1690-1700
|
M. Barstugan, U. Ozkaya, S. Ozturk, Coronavirus (COVID-19) classification using CT images by machine learning methods, arXiv preprint arXiv:2003.09424 (2020)
|
F. Shan, Y. Gao, J. Wang, et al., Lung infection quantification of COVID-19 in CT images with deep learning, arXiv preprint arXiv:2003.04655 (2020)
|
H. Zhao, H. Hong, D. Miao, et al., A noncontact breathing disorder recognition system using 2.4-GHz digital-IF Doppler radar, IEEE J. Biomed. Heal. Informatics. 23 (2018) 208-217
|
A. M. Ashleibta, Q. H. Abbasi, S. A. Shah, et al., Non-invasive RF sensing for detecting breathing abnormalities using software defined radios, IEEE Sensor J., 21 (2020) 5111-5118
|
A. E. Powles, D. J. Martin, I. T. Wells, et al., Physics of ultrasound, Anaesth. Intensive Care Med. 19 (2018) 202-205
|
A. Genc, M. Ryk, M. Suwala, et al., Ultrasound imaging in the general practitioner’s office-a literature review, J. Ultrason. 16 (2016) 78-86
|
F. Mojoli, B. Bouhemad, S. Mongodi, et al., Lung ultrasound for critically ill patients, Am. J. Respir. Crit. Care Med. 199 (2019) 701-714
|
D. Buonsenso, D. Pata, A. Chiaretti, COVID-19 outbreak: less stethoscope, more ultrasound, Lanc. Resp. Med. 8 (5) (2020), e27
|
G. Soldati, A. Smargiassi, R. Inchingolo, et al., Is there a role for lung ultrasound during the COVID-19 pandemic?, J. Ultrasound Med. 39 (2020) 1459-1462
|
T. Wang, D. Zhang, L. Wang, et al., Contactless respiration monitoring using ultrasound signal with off-the shelf audio devices, IEEE Internet Things J. 6 (2018) 2959- 2973
|
N. Hilmizen, A. Bustamam, D. Sarwinda, the multimodal deep learning for diagnosing COVID-19 pneumonia from chest CT-scan and X-ray images, 2020 3rd International Seminar on Research of Information Technology and Intelligent Systems (ISRITI), December 10-11, 2020, Yogyakarta, Indonesia, IEEE, 2020, pp. 26-31
|
T. B. Chandra, K. Verma, B. K. Singh, et al., Coronavirus disease (COVID-19) detection in chest X-ray images using majority voting-based classifier ensemble, Expert. Syst. Appl. 165 (2021), 113909
|
A. M. Ismael, A. Sengur, Deep learning approaches for COVID-19 detection based on chest X-ray images, Expert. Syst. Appl. 164 (2021), 114054
|
S. R. Nayak, D. R. Nayak, U. Sinha, et al., Application of deep learning techniques for detection of COVID-19 cases using chest X-ray images: a comprehensive study, Biomed. Signal Process Control 64 (2021), 102365
|
S. Serte, H. Demirel, Deep learning for diagnosis of COVID-19 using 3D CT scans, Comput. Biol. Med. (2021), 104306
|
F. Shi, J. Wang, J. Shi, et al., Review of artificial intelligence techniques in imaging data acquisition, segmentation and diagnosis for COVID-19, IEEE Rev. Biomed. Eng.14 (2020) 4-15
|
I. Ozsahin, B. Sekeroglu, M. S. Musa, et al., Review on diagnosis of COVID-19 from chest CT images using artificial intelligence, Comput. Math. Methods Med. (2020) 1-10
|
S. Ahuja, B. K. Panigrahi, N. Dey, et al., Deep transfer learning-based automated detection of COVID-19 from lung CT scan slices, Appl. Intell. 51 (2021) 571-585
|
B. Udugama, P. Kadhiresan, H. N. Kozlowski, et al., Diagnosing COVID-19: the disease and tools for detection, ACS Nano 14 (2020) 3822-3835
|
S. A. Shah, X. Yang, Q. H. Abbasi, Cognitive health care system and its application in pill-rolling assessment, Int. J. Numer. Model. Electron. Networks Devices Fields 32 (2019), e2632
|
X. Yang, D. Fan, A. Ren, et al., Diagnosis of the hypopnea syndrome in the early stage, Neural Comput. Appl. 32 (2020) 855-866
|
S. A. Shah, A. Tahir, J. Ahmad et al., Sensor fusion for identification of freezing of gait episodes using Wi-Fi and radar imaging, IEEE Sensor J. 20 (2020) 14410-14422
|
C. Ding, Y. Zou, L. Sun, et al., Fall detection with multi-domain features by a portable FMCW radar, 2019 IEEE MTT-S International Wireless Symposium (IWS), May 19-22, 2019, Guangzhou, China, IEEE, 2019, pp. 1-3
|
S. A. Shah, F. Fioranelli, Human activity recognition: Preliminary results for dataset portability using FMCW radar, 2019 International Radar Conference (RADAR), September 23-27, 2019, Toulon, France, IEEE, 2019, pp. 1-4
|
F. Fioranelli, J. Le Kernec, S. A. Shah, Radar for health care: Recognizing human activities and monitoring vital signs, IEEE Potentials 38 (2019) 16-23
|
M. Alizadeh, G. Shaker, J. C. M. De Almeida, et al., Remote monitoring of human vital signs using mm-wave FMCW radar, IEEE Access 7 (2019) 54958-54968
|
G. Gennarelli, G. Ludeno, F. Soldovieri, Real-time through-wall situation awareness using a microwave Doppler radar sensor, Remote. Sens. 8 (2016), 621
|
X. Yang, S. A. Shah, A. Ren, et al., Detection of essential tremor at the S-band, IEEE J. Transl. Eng. Heal. Med. 6 (2018) 1-7
|
S. Kushwaha, S. Bahl, A. K. Bagha, et al., Significant applications of machine learning for COVID-19 pandemic, J. Ind. Intg. Mgmt. 5 (2020) 453-479
|
Q. Cai, H. Wang, Z. Li, et al., A survey on multimodal data-driven smart healthcare systems: approaches and applications, IEEE Access 7 (2019) 133583-133599
|
A. Dinh, S. Miertschin, A. Young, et al., A data-driven approach to predicting diabetes and cardiovascular disease with machine learning, BMC Med. Informatics Decis. Mak. 19 (2019) 1-15
|
Y.-J. Chang, K.-C. Hung, L.-K. Wang, et al., A real-time artificial intelligence-assisted system to predict weaning from ventilator immediately after lung resection surgery, Int. J. Environ. Res. Public Heal. 18 (2021), 2713
|
T. Ba, S. Li, Y. Wei, A data-driven machine learning integrated wearable medical sensor framework for elderly care service, Measurement 167 (2021), 108383.
|
H. Bhavsar, A. Ganatra, A comparative study of training algorithms for supervised machine learning, Int. J. Soft Comput. Eng. (IJSCE) 2 (4) (2012) 2231-2307
|
A. Singh, N. Thakur, A. Sharma, A review of supervised machine learning algorithms, 2016 3rd Int. Conf. Comput. Sustain. Glob. Dev. (INDIACom), IEEE, 2016, pp. 1310-1315
|
F.Y. Osisanwo, J.E.T. Akinsola, O. Awodele, et al., Supervised machine learning algorithms: classification and comparison, Int. J. Comput. Trends Technol. 48 (3) (2017) 128-138
|
X. Li, D. Zhang, J. Xiong, et al., Training-free human vitality monitoring using commodity Wi-Fi devices, Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2 (2018) 1-25
|
K. Qian, C. Wu, Z. Yang, et al., Enabling contactless detection of moving humans with dynamic speeds using CSI, ACM Trans. Embed. Comput. Syst. 17 (2018) 1-18
|
N. Damodaran, E. Haruni, M. Kokhkharova, et al., Device free human activity and fall recognition using WiFi channel state information (CSI), CCF Trans. Pervasive Comput. Interact. 2 (2020) 1-17
|
Z. Wang, K. Jiang, Y. Hou, et al., A survey on CSI-based human behavior recognition in through-the-wall scenario, IEEE Access 7 (2019) 78772-78793
|
L. Guo, L. Wang, C. Lin, et al., Wiar: a public dataset for WiFi-based activity recognition, IEEE Access 7 (2019) 154935-154945
|
S. Aziz Shah, J. Ahmad, A. Tahir, et al., Privacy-preserving non-wearable occupancy monitoring system exploiting Wi-Fi imaging for next-generation body centric communication, Micromachines 11 (2020), 379
|
S.-C. Kim, T. G. Kim, S. H. Kim, Human activity recognition and prediction based on Wi-Fi channel state information and machine learning, 2019 Int. Conf. Artif. Intell. Inf. Commun. (ICAIIC), IEEE, 2019, pp. 418-422
|
Y. Gu, Y. Wang, Z. Liu, et al., SleepGuardian: an RF-based healthcare system guarding your sleep from afar, IEEE Netw. 34 (2020) 164-171
|
S. Lee, Y.-D. Park, Y.-J. Suh, et al., Design and implementation of monitoring system for breathing and heart rate pattern using WiFi signals, 2018 15th IEEE Annual Consumer Communications & Networking Conference (CCNC), January 12-15, 2018, Las Vegas, NV, USA, (CCNC), IEEE, 2018, pp. 1-7
|
X. Wang, C. Yang, S. Mao, Resilient respiration rate monitoring with realtime bimodal CSI data, IEEE Sensor J. 20 (2020) 10187-10198
|
S. Zhu, J. Xu, H. Guo, et al., Indoor human activity recognition based on ambient radar with signal processing and machine learning, 2018 IEEE International Conference on Communications (ICC), May 20-24, 2018, Kansas City, MO, USA, IEEE, 2018, pp. 1-6
|
B. Çaǧliyan, S.Z. Gürbüz, Micro-Doppler-based human activity classification using the mote-scale BumbleBee radar, IEEE Geosci. Remote. Sens. Lett. 12 (2015) 2135-2139
|
W. Li, B. Tan, R. Piechocki, Passive radar for opportunistic monitoring in E-health applications, IEEE J. Transl. Eng. Heal. Med. 6 (2018) 1-10
|
W. Taylor, S. A. Shah, K. Dashtipour, et al., An intelligent non-invasive real-time human activity recognition system for next-generation healthcare, Sensors 20 (9) (2020), 2653
|
S. Sigg, M. Scholz, S. Shi, et al., RF-sensing of activities from non-cooperative subjects in device-free recognition systems using ambient and local signals, IEEE Trans. Mob. Comput. 13 (2014) 907-920
|
S. Sharma, H. Mohammadmoradi, M. Heydariaan, et al., Device free activity recognition using ultra-wideband radios, 2019 International Conference on Computing, Networking and Communications (ICNC), February 18-21, 2019, Honolulu, HI, USA, IEEE, 2019, pp. 1029-1033
|
R. Kumar, R. Arora, V. Bansal, et al., Accurate prediction of COVID-19 using chest X-ray images through deep feature learning model with SMOTE and machine learning classifiers, MedRxiv, 2020, doi: 10.1101/2020.04.13.20063461
|
S. H. Kassani, P. H. Kassasni, M. J. Wesolowski, et al., Automatic detection of coronavirus disease (COVID-19) in X-ray and CT images: A machine learning-based approach, Biocybern. Biomed. Eng. 41 (2021) 867-879
|
A. Saygili, A new approach for computer-aided detection of coronavirus (COVID-19) from CT and X-ray images using machine learning methods, Appl. Soft Comput. 105 (2021), 107323
|
J. Wu, P. Zhang, L. Zhang, et al., Rapid and accurate identification of COVID-19 infection through machine learning based on clinical available blood test results, MedRxiv, 2020, doi: 10.1101/2020.04.02.20051136
|
D. Brinati, A. Campagner, D. Ferrari, et al., Detection of COVID-19 infection from routine blood exams with machine learning: a feasibility study, J. Med. Syst. 44 (2020), 135
|
A. M. U. D. Khanday, S. T. Rabani, Q. R. Khan, et al., Machine learning based approaches for detecting COVID-19 using clinical text data, Int. J. Inf. Technol. 12 (2020) 731-739
|
M. Pahar, M. Klopper, R. Warren, et al., COVID-19 cough classification using machine learning and global smartphone recordings, Comput. Biol. Med. 135. (2021), 104572
|
N. E. M. Khalifa, M. H. N. Taha, A. E. Hassanien, et al., Detection of coronavirus (COVID-19) associated pneumonia based on generative adversarial networks and a fine-tuned deep transfer learning model using chest X-ray dataset, arXiv preprint arXiv:2004.01184 (2020)
|
S. Motamed, P. Rogalla, F. Khalvati, RANDGAN: Randomized generative adversarial network for detection of COVID-19 in chest X-ray, Sci. Rep. 11 (2021) 1-10
|
M. van der Schaar, A. M. Alaa, A. Floto, et al., How artificial intelligence and machine learning can help healthcare systems respond to COVID-19, Mach. Learn. 110 (2021) 1-14
|
I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, et al., Generative adversarial networks, Commun. ACM 63 (2020) 139-144
|
E. Choi, S. Biswal, B. Malin, et al., Generating multi-label discrete patient records using generative adversarial networks, Proceedings of Machine Learning for Healthcare, PMLR 68 (2017) 286-305
|
C. Iwendi, A. K. Bashir, A. Peshkar, et al., COVID-19 patient health prediction using boosted random forest algorithm, Front. Public Heal. 8 (2020), 357
|
P. Kaur, R. Kumar, M. Kumar, A healthcare monitoring system using random forest and Internet of Things (IoT), Multimed. Tools Appl. 78 (2019) 19905-19916
|
M. C. E. Simsekler, A. Qazi, M. A. Alalami, et al., Evaluation of patient safety culture using a random forest algorithm, Reliab. Eng. Syst. Saf. 204 (2020), 107186
|
G. Ogbuabor, R. La, Human activity recognition for healthcare using smartphones, Proceedings of the 2018 10th International Conference on Machine Learning and Computing, ACM, 2018, pp. 41-46
|
M. Z. Amin, A. Ali, Application of multilayer perceptron (MLP) for data mining in healthcare operations, Conference: 2017 3rd International Conference on Biotechnology, February 2017, Lahore, Pakistan, 2017, pp. 2-11
|
C. L. Krishna, P. V. S. Reddy, An efficient deep neural network multilayer perceptron based classifier in healthcare system, 2019 3rd International Conference on Computing and Communications Technologies (ICCCT), February 21-22, 2019, Chennai, India, IEEE, 2019, pp. 1-6
|
S. U. Jan, Y.-D. Lee, J. Shin, et al., Sensor fault classification based on support vector machine and statistical time-domain features, IEEE Access 5 (2017) 8682-8690
|
Z. Ahmad, A. Rai, A. S. Maliuk, et al., Discriminant feature extraction for centrifugal pump fault diagnosis, IEEE Access 8 (2020) 165512- 165528
|
S. U. Jan, Y. D. Lee, I. S. Koo, A distributed sensor-fault detection and diagnosis framework using machine learning, Inf. Sci. 547 (2021) 777-796
|
C. Venkatesan, P. Karthigaikumar, A. Paul, et al., ECG signal preprocessing and SVM classifier-based abnormality detection in remote healthcare applications, IEEE Access 6 (2018) 9767-9773
|
U. Saeed, S. U. Jan, Y.-D. Lee, et al., Fault diagnosis based on extremely randomized trees in wireless sensor networks, Reliab. Eng. Syst. Saf. 205 (2021), 107284
|
M. Soltaninejad, G. Yang, T. Lambrou, et al., Automated brain tumour detection and segmentation using superpixel-based extremely randomized trees in FLAIR MRI, Int. J. Comput. Assist. Radiol. Surg. 12 (2017) 183-203
|
B. Padmaja, V. Prasa, K. Sunitha, A novel random split point procedure using extremely randomized (extra) trees ensemble method for human activity recognition, EAI Endorsed Trans. Pervasive Heal. Technol. 6 (2020), 164824
|
U. Saeed, Y.-D. Lee, S.U. Jan, et al., CAFD: context-aware fault diagnostic scheme towards sensor faults utilizing machine learning, Sensors (Basel) 21 (2021), 617
|
W. Xing, Y. Bei, Medical health big data classification based on KNN classification algorithm, IEEE Access 8 (2019) 28808-28819
|
B. Venkataramanaiah, J. Kamala, ECG signal processing and KNN classifier based abnormality detection by VH-doctor for remote cardiac healthcare monitoring, Soft Comput. 24 (2020) 17457-17466
|
N. Khateeb, M. Usman, Efficient heart disease prediction system using k-nearest neighbor classification technique, Proceedings of the International Conference on Big Data and Internet of Thing - BDIOT2017, December 20-22, 2017, London, United Kingdom, New York: ACM Press, 2017, pp. 21-26
|