Volume 12 Issue 3
Jun.  2022
Turn off MathJax
Article Contents
Aïda Adjali, Igor Clarot, Zilin Chen, Eric Marchioni, Ariane Boudier. Physicochemical degradation of phycocyanin and means to improve its stability:A short review[J]. Journal of Pharmaceutical Analysis, 2022, 12(3): 406-414. doi: 10.1016/j.jpha.2021.12.005
Citation: Aïda Adjali, Igor Clarot, Zilin Chen, Eric Marchioni, Ariane Boudier. Physicochemical degradation of phycocyanin and means to improve its stability:A short review[J]. Journal of Pharmaceutical Analysis, 2022, 12(3): 406-414. doi: 10.1016/j.jpha.2021.12.005

Physicochemical degradation of phycocyanin and means to improve its stability:A short review

doi: 10.1016/j.jpha.2021.12.005
Funds:

The authors would like to thank Université de Lorraine for the grants provided on the project “Manger Droit” whose coordinator is François Allard-Huver.

  • Received Date: Oct. 08, 2021
  • Accepted Date: Dec. 26, 2021
  • Rev Recd Date: Dec. 22, 2021
  • Publish Date: Dec. 28, 2021
  • The cyanobacterium Arthrospira platensis, spirulina, is a source of pigments such as phycobiliprotein and phycocyanin. Phycocyanin is used in the food, cosmetics, and pharmaceutical industries because of its antioxidant, anti-inflammatory, and anticancer properties. The different steps involved in extraction and purification of this protein can alter the final properties. In this review, the stability of phycocyanin (pH, temperature, and light) is discussed, considering the physicochemical parameters of kinetic modeling. The optimal working pH range for phycocyanin is between 5.5 and 6.0 and it remains stable up to 45 ℃; however, exposure to relatively high temperatures or acidic pH decreases its half-life and increases the degradation kinetic constant. Phycobiliproteins are sensitive to light; preservatives such as mono- and di-saccharides, citric acid, or sodium chloride appear to be effective stabilizing agents. Encapsulation within nano- or micro-structured materials such as nanofibers, microparticles, or nanoparticles, can also preserve or enhance its stability.
  • loading
  • R.R. Siva Kiran, G.M. Madhu, S.V. Satyanarayana, Spirulina in combating protein energy malnutrition (PEM) and protein energy wasting (PEW)-A review, J. Nut. Res. 3(2016)62-79
    P. Jaouen, B. Lepine, N. Rossignol, et al., Clarification and concentration with membrane technology of a phycocyanin solution extracted from Spirulina platensis, Biotechnol. Tech. 13(1999)877-881
    L.V. Venkataraman, Spirulina platensis (Arthrospira):physiology, cell biology and biotechnologym, J. Appl. Phycol. 9(1997)295-296
    P. Bermejo, E. Pinero, A.M. Villar, Iron-chelating ability and antioxidant properties of phycocyanin isolated from a protean extract of Spirulinaplatensis, Food Chem. 110(2008)436-445
    L. Fang, C. Zhou, P. Cai, et al., Binding characteristics of copper and cadmium by cyanobacterium Spirulina platensis, J. Hazard. Mater. 190(2011)810-815
    R. Chaiklahan, N. Chirasuwan, B. Bunnag, Stability of phycocyanin extracted from Spirulina sp.:Influence of temperature, pH and preservatives, Process Biochem. 47(2012)659-664
    S.T. Silveira, J.F.M. Burkert, J.A.V. Costa, et al., Optimization of phycocyanin extraction from Spirulina platensis using factorial design, Bioresour. Technol. 98(2007)1629-1634
    Q. Liu, Y. Huang, R. Zhang, et al., Medical application of Spirulina platensis derived C-phycocyanin, Evid. Based Complement. Alternat. Med. 2016(2016), 7803846
    M.K. Saini, K. Vaiphei, S.N. Sanyal, Chemoprevention of DMH-induced rat colon carcinoma initiation by combination administration of piroxicam and C-phycocyanin, Mol. Cell. Biochem. 361(2012)217-228
    M. Gantar, S. Dhandayuthapani, A. Rathinavelu, Phycocyanin induces apoptosis and enhances the effect of topotecan on prostate cell Line LNCaP, J. Med. Food. 15(2012)1091-1095
    R.P. Nishanth, B.S. Ramakrishna, R.G. Jyotsna, et al., C-Phycocyanin inhibits MDR1 through reactive oxygen species and cyclooxygenase-2 mediated pathways in human hepatocellular carcinoma cell line, Eur. J. Pharmacol. 649(2010)74-83
    J.P. Kehrer, L.-O. Klotz, Free radicals and related reactive species as mediators of tissue injury and disease:implications for Health, Crit. Rev. Toxicol. 45(2015)765-798
    I. Michalak, K. Chojnacka, Algae as production systems of bioactive compounds, Eng. Life Sci. 15(2015)160-176
    P. Yu, Y. Wu, G. Wang, et al., Purification and bioactivities of phycocyanin, Crit. Rev. Food Sci. Nutr. 57(2017)3840-3849
    N.T. Eriksen, Production of phycocyanin:a pigment with applications in biology, biotechnology, foods and medicine, Appl. Microbiol. Biotechnol. 80(2008)1-14
    G. Patil, S. Chethana, A.S. Sridevi, et al., Method to obtain C-phycocyanin of high purity, J. Chromatogr. A. 1127(2006)76-81
    P.S. Correa, W.G. Morais Jr., A.A. Martins, et al., Microalgae biomolecules:extraction, separation and purification methods, Processes 9(2021), 10
    M. Hsieh-Lo, G. Castillo, M. Alberto Ochoa-Becerra, et al., Phycocyanin and phycoerythrin:Strategies to improve production yield and chemical stability, Algal Res. 42(2019), 101600
    I. Ilter, S. Akyil, Z. Demirel, et al., Optimization of phycocyanin extraction from Spirulina platensis using different techniques, J. Food Compos. Anal. 70(2018)78-88
    D. Berns, R. MacColl, Phycocyanin in physical-chemical studies, Chem. Rev. 89(1989)807-825
    L.M. Colla, C.D. Bertol, D.J. Ferreira, et al., Thermal and photo-stability of the antioxidant potential of Spirulina platensis powder, Braz. J. Biol. 77(2017)332-339
    D. Dutta, A. Dutta, U. Raychaudhuri, et al., Rheological characteristics and thermal degradation kinetics of beta-carotene in pumpkin puree, J. Food Eng. 76(2006)538-546
    D. Pez Jaeschke, I. Rocha Teixeira, L. Damasceno Ferreira Marczak, et al., Phycocyanin from Spirulina:A review of extraction methods and stability, Food Res. Int. 143(2021), 110314
    X.-J. Wu, H. Yang, Y.-T. Chen, et al., Biosynthesis of fluorescent β subunits of C-phycocyanin from Spirulina subsalsa in Escherichia coli, and their antioxidant properties, Molecules. 23(2018), 1369
    M.F. Falkeborg, M.C. Roda-Serrat, K.L. Burnaes, et al., Stabilising phycocyanin by anionic micelles, Food Chem. 239(2018)771-780
    M.C.A. de Amarante, L.C.S. Correa Jr., L. Sala, et al., Analytical grade C-phycocyanin obtained by a single-step purification process, Process. Biochem. 90(2020)215-222
    H. Scheer, W. Kufer, Conformational studies on C-phycocyanin from Spirulina platensis, Zeitschrift Fur Naturforschung C. 32(1977)513-519
    F.S. Antelo, J.A.V. Costa, S.J. Kalil, Thermal degradation kinetics of the phycocyanin from Spirulina platensis, Biochem. Eng. J. 41(2008)43-47
    L. Bocker, S. Ortmann, J. Surber, et al., Biphasic short time heat degradation of the blue microalgae protein phycocyanin from Arthrospira platensis, Innov. Food Sci. Emerg. Technol. 52(2019)116-121
    A. Patel, R. Pawar, S. Mishra, et al., Kinetic studies on thermal denaturation of C-phycocyanin, Indian J. Biochem. Biophys. 41(2004)254-257
    M. Faieta, L. Neri, G. Sacchetti, et al., Role of saccharides on thermal stability of phycocyanin in aqueous solutions, Food Res. Int. 132(2020), 109093
    I. Chentir, M. Hamdi, S.M. Li, et al., Stability, bio-functionality and bio-activity of crude phycocyanin from a two-phase cultured Saharian Arthrospira sp. strain, Algal Res. 35(2018)395-406
    C. Couteau, S. Baudry, C. Roussakis, et al., Study of thermodegradation of phycocyanin from Spirulina platensis, Sci. Aliments. 24(2004)415-421
    V.K. Kannaujiya, R.P. Sinha, Thermokinetic stability of phycocyanin and phycoerythrin in food-grade preservatives, J. Appl. Phycol. 28(2016)1063-1070
    S.K. Mishra, A. Shrivastav, S. Mishra, Effect of preservatives for food grade C-PC from Spirulina platensis, Process Biochem. 43(2008)339-345
    H.-L. Wu, G.-H. Wang, W.-Z. Xiang, et al., Stability and Antioxidant Activity of Food-Grade Phycocyanin Isolated from Spirulina platensis, Int. J. Food Prop. 19(2016)2349-2362
    J. Aoki, D. Sasaki, M. Asayama, Development of a method for phycocyanin recovery from filamentous cyanobacteria and evaluation of its stability and antioxidant capacity, BMC Biotechnol. 21(2021), 40
    W.Y. Choi, H.Y. Lee, Kinetic analysis of stabilizing C-phycocyanin in the Spirulina platensis extracts from ultrasonic process associated with effects of light and temperature, Appl. Sci. 8(2018), 1662
    F.M.E. Escalante, D.A. Perez-Rico, J.L. Alarcon-Jimenez, et al., Phycocyanin thermo-photostability:An accelerated life-test analysis, J. Mex. Chem. Soc. 64(2020)218-229
    T. Saito, H. Ishikura, Y. Hada, et al., Photostabilization of phycocyanin and anthocyanin in the presence of biopterin-α-glucoside from Spirulina platensis under ultraviolet ray, Dye. Pigment. 56(2003)203-207
    J.B. Moreira, A.L.M. Terra, J.A.V. Costa, et al., Development of pH indicator from PLA/PEO ultrafine fibers containing pigment of microalgae origin, Int. J. Biol. Macromol. 118(2018)1855-1862
    M. Debreczeny, Z. Gombos, V. Csizmadia, et al., Chromophore conformational-analysis in phycocyanin and in related chromopeptides by surface enhanced Raman-spectroscopy, Biochem. Biophys. Res. Commun. 159(1989)1227-1232
    European Medicines Agency, ICH Q1B photostability testing of new active Substances and medicinal products, https://www.ema.europa.eu/en/ich-q1b-photostability-testing-new-active-substances-medicinal-products. Accessed on December 13th 2021
    M. Kissoudi, I. Sarakatsianos, V. Samanidou, Isolation and purification of food-grade C-phycocyanin from Arthrospira platensis and its determination in confectionery by HPLC with diode array detection, J. Sep. Sci. 41(2018)975-981
    Y. Li, G. Aiello, C. Bollati, et al, Phycobiliproteins from Arthrospira platensis (Spirulina):A new source of peptides with dipeptidyl peptidase-IV inhibitory activity, Nutrients. 12(2020), 794
    C. Simo, M. Herrero, C. Neususs, et al., Characterization of proteins from Spirulina platensis microalga using capillary electrophoresis-ion trap-mass spectrometry and capillary electrophoresis-time of flight-mass spectrometry, Electrophoresis 26(2005)2674-2683
    Z. Zhang, Y. Li, A. Abbaspourrad, Improvement of the colloidal stability of phycocyanin in acidified conditions using whey protein-phycocyanin interactions, Food Hydrocoll. 105(2020), 105747
    K. Fukui, T. Saito, Y. Noguchi, et al., Relationship between color development and protein conformation in the phycocyanin molecule, Dye Pigment. 63(2004)89-94
    A.R.C. Braga, F.D.S. Figueira, J.T.D. Silveira, et al., Improvement of thermal stability of C-phycocyanin by nanofiber and preservative agents, J. Food Process. Preserv. 40(2016)1264-1269
    G. Martelli, C. Folli, L. Visai, et al., Thermal stability improvement of blue colorant C-Phycocyanin from Spirulina platensis for food industry applications, Process. Biochem. 49(2014)154-159
    Hadiyanto, M. Christwardana, H. Sutanto, et al., Kinetic study on the effects of sugar addition on the thermal degradation of phycocyanin from Spirulina sp., Food Biosci. 22(2018)85-90
    Y. Li, H. Yang, F.M. Cao, et al., The stability of C-phycocyanin doped silica biomaterials in UV irradiation, J. Wuhan Univ. Technol.-Mater. Sci. Ed. 24(2009), 852
    A. Gustiningtyas, I. Setyaningsih, S.D. Hardiningtyas, et al., Improvement stability of phycocyanin from Spirulina platensis encapsulated by water soluble chitosan nanoparticles, IOP Conf. Ser.:Earth Environ. Sci. 414(2020), 012005
    A. Chandralekha, H.S. Prashanth, H. Tavanandi, et al., A novel method for double encapsulation of C-phycocyanin using aqueous two phase systems for extension of shelf life, J. Food Sci. Technol.-Mysore. 58(2021)1750-1763
    Z. Zhang, S. Cho, Y. Dadmohammadi, et al., Improvement of the storage stability of C-phycocyanin in beverages by high-pressure processing, Food Hydrocoll. 110(2021), 106055
    J.B. Moreira, L.-T. Lim, E.D. Rosa Zavareze, et al., Antioxidant ultrafine fibers developed with microalga compounds using a free surface electrospinning, Food Hydrocoll. 93(2019)131-136
    F. da Silva Figueira, J. Garcia Gettens, J.A. Vieira Costa, et al., Production of nanofibers containing the bioactive compound C-phycocyanin, J. Nanosci. Nanotechnol. 16(2016)944-949
    M. Yan, B. Liu, X. Jiao, et al., Preparation of phycocyanin microcapsules and its properties, Food Bioprod. Process. 92(2014)89-97
    H. Hadiyanto, M. Christwardana, M. Suzery, et al., Effects of carrageenan and chitosan as coating materials on the thermal degradation of microencapsulated phycocyanin from Spirulina sp., Int. J. Food Eng. 15(2019), 20180290
    W. Pan-utai, S. Iamtham, Enhanced microencapsulation of C-phycocyanin from Arthrospira by freeze-drying with different wall materials, Food Technol. Biotechnol. 58(2020)423-432
    D.A. Schmatz, D.J. da Silveira Mastrantonio, J.A. Vieira Costa, et al., Encapsulation of phycocyanin by electrospraying:A promising approach for the protection of sensitive compounds, Food Bioprod. Process 119(2020)206-215
    H.N. Pradeep, C.A. Nayak, Enhanced stability of C-phycocyanin colorant by extrusion encapsulation, J. Food Sci. Technol.-Mysore. 56(2019)4526-4534
    I. Ilter, M. Koc, Z. Demirel, et al., Improving the stability of phycocyanin by spray dried microencapsulation, J. Food Process. Preserv. 45(2021), e15646
    P.V.F. Lemos, L.C.F. Opretzka, L.S. Almeida, et al., Preparation and characterization of C-phycocyanin coated with STMP/STPP cross-linked starches from different botanical sources, Int. J. Biol. Macromol. 159(2020)739-750
    A.M. Nilamsari, A. Yunanda, H. Hadiyanto, Thermal degradation kinetics of phycocyanin encapsulation as an antioxidant agent, IOP Conference Series:Earth and Environmental Science Vol. 102,International Symposium on Food and Agro-biodiversity (ISFA), September 26-27, 2017, Semarang, Indonesia (2018), 012055
    L. Wu, C. Zhang, Y. Long, et al., Food additives:From functions to analytical methods, Crit. Rev. Food Sci. Nutr.(2021) https://doi.org/10.1080/10408398.2021.1929823
    Annex to the European Commission guideline on'Excipients in the labelling and package leaflet of medicinal products for human use'(SANTE-2017-11668), https://www.ema.europa.eu/en/documents/scientific-guideline/annex-european-commission-guideline-excipients-labelling-package-leaflet-medicinal-products-human_en.pdf.(Accessed 21 September 2021)
    Y. Zhong, L. Wu, X. Chen, et al., Effects of food-additive-information on consumers'willingness to accept food with additives, Int. J. Environ. Res. Public. Heal. 15(2018), 2394
    P. Varela, S.M. Fiszman, Exploring consumers'knowledge and perceptions of hydrocolloids used as food additives and ingredients, Food Hydrocoll. 30(2013)477-484
    L. Shan, Q. Zang, L. Xu, et al., A literature review of public perception of food additive safety, Agro Food Ind. Hi-Tech. 26(2015)49-51
    P. Miao, S. Chen, J. Li, et al., Decreasing consumers'risk perception of food additives by knowledge enhancement in China, Food Qual. Prefer. 79(2020), 103781
    A. Bearth, M.-E. Cousin, M. Siegrist, The consumer's perception of artificial food additives:Influences on acceptance, risk and benefit perceptions, Food Qual. Prefer. 38(2014)14-23
    W. Wang, S. Ohtake, Science and art of protein formulation development, Int. J. Pharm. 568(2019), 118505
    G. Manu, N. Firdose, M.K. Jayanthi, et al., Current status and perspectives of oral therapeutic protein and peptide formulations:A review, J. Pharm. Res. Int. 33(2021)117-137
    S. He, N. Joseph, S. Feng, et al., Application of microfluidic technology in food processing, Food Funct. 11(2020)5726-5737
    S.P. Cape, J.A. Villa, E.T.S. Huang, et al., Preparation of active proteins, vaccines and pharmaceuticals as fine powders using supercritical or near-critical fluids, Pharm. Res. 25(2008)1967-1990
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (224) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return