Citation: | Bhagat Singh, Dheer Singh, Vinod Verma, Ramakant Yadav, Raj Kumar. Angiotensin-converting enzyme 2 as a potential therapeutic target for COVID-19: A review[J]. Journal of Pharmaceutical Analysis, 2022, 12(2): 215-220. doi: 10.1016/j.jpha.2021.12.003 |
P. Zhou, X-L. Yang, X.-G. Wang, et al., A pneumonia outbreak associated with a new coronavirus of probable bat origin, Nature 579 (2020) 270-273
|
E. Cure, M.C. Cure, Angiotensin-converting enzyme inhibitors and angiotensin receptor blockers may be harmful in patients with diabetes during COVID-19 pandemic, Diabetes Metab. Syndr. 14 (2020) 349-350
|
W. Li, M.J. Moore, N. Vasilieva, et al., Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus, Nature 426 (2003) 450-454
|
M. Hoffmann, H. Kleine-Weber, S. Schroeder, et al., SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor, Cell 181(2020) 271-280.e1-e8
|
L. Fang, G. Karakiulakis, M. Roth, Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir. Med. 8 (2020), e21
|
J. Watkins, Preventing a COVID-19 pandemic, BMJ 368 (2020), m810
|
M. Esler, D. Esler, Can angiotensin receptor-blocking drugs perhaps be harmful in the COVID-19 pandemic? J. Hypertens. 38 (2020) 781-782
|
J. H. Diaz, Hypothesis: angiotensin-converting enzyme inhibitors and angiotensin receptor blockers may increase the risk of severe COVID-19, J. Travel Med. 27 (2020), taaa041
|
W. Li, C. Zhang, J. Sui, et al., Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2, EMBO J. 24 (2005) 1634-1643
|
W. Ni, X. Yang, D. Yang, et al., Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19, Crit. Care. 24 (2020), 422
|
I. Hamming, W. Timens, M.L.C. Bulthuis, et al., Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis, J. Pathol. 203 (2004) 631-637
|
A.H. J. Danser, M. Epstein, D. Batle, Renin-Angiotensin System Blockers and the COVID-19: At Present There Is No Evidence to Abandon Renin-Angiotensin System Blockers, Hypertension, 75 (2020) 1382-1385
|
R.A.S. Santos, W.O. Sampaio, A.C. Alzamora, et al., The ACE2/angiotensin-(1-7)/MAS axis of the renin-angiotensin system: focus on angiotensin (1-7), Physiol. Rev. 98 (2018) 505-553
|
S. Keidar, M. Kaplan, A. Gamliel-Lazarovich, ACE2 of the heart: from angiotensin I to angiotensin (1-7), Cardiovasc. Res. 73 (2007) 463-469
|
H.E. Yim, K.H. Yoo, Renin-angiotensin system - considerations for hypertension and kidney, 6, Electrol. Blood Pres., 2008, pp. 42–50
|
S.R. Tipnis, N.M. Hooper, R. Hyde, et al., A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase, J. Biol. Chem. 275 (2000) 33238-33243
|
S. Patel, A. Rauf, H. Khan, et al., Renin-angiotensin-aldosterone (RAAS): the ubiquitous system for homeostasis and pathologies, Biomed. Pharmacother, 94 (2017) 317-325
|
C. Liu, Q. Zhou, Y. Li, et al., Research and development on therapeutic agents and vaccines for COVID-19 and related human coronavirus diseases, ACS Cent. Sci. 6 (2020) 315-331
|
M. Ye, J. Wysocki, J. William, et al, Glomerular localization and expression of angiotensin-converting enzyme 2 and angiotensin-converting enzyme: Implications for albuminuria in diabetes, J. Am. Soc. Nephrol. 17 (2006) 3067-3075
|
M. Horiuchi, M. Akishita, V.J. Dzau, Recent progress in angiotensin II type 2 receptor research in the cardiovascular system, Hypertension 33 (1999) 613-621
|
T. Kawai, T. Takayanagi, S.J. Forrester, et al., Vascularadam17 (a disintegrin and metalloproteinase domain 17) is required for angiotensin ii/beta-aminopropionitrile-induced abdominal aortic aneurysm, Hypertension. 70 (2017) 959-963
|
T. Takayanagi, S.J. Forrester, T. Kawai, et al., Vascularadam17 as a novel therapeutic target in mediating cardiovascular hypertrophy and perivascular fibrosis induced by angiotensin ii, Hypertension 68 (2016) 949-955
|
K. Kuba, Y. Imai, S. Rao, et al., A crucial role of angiotensin-converting enzyme 2 (ace2) in sars coronavirus induced lung injury, Nat. Med. 11 (2005) 875-879
|
X. Zou, K. Chen, J. Zou, et al., The single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to Wuhan 2019-nCoV infection, Front. Med. 14 (2020) 185-192
|
D. Wrapp, N. Wang, K.S. Corbett, et al., Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation, Science 367 (2020) 1260-1263
|
F. Zhou, T. Yu, R. Du, et al., Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study, Lancet 395 (2020) 1054-1062
|
K. Kuba, Y. Imai, T. Ohto-Nakanishi, et al., Trilogy of ACE2: a peptidase in the renin-angiotensin system, a SARS receptor, and a partner for amino acid transporters, Pharmacol. Ther. 128 (2010) 119-128
|
F. Li, W. Li, M. Farzan, et al., Structure of SARS coronavirus spike receptor-binding domain complexed with a receptor, Science 309 (2005) 1864-1868
|
H.P. Jia, D.C. Look, P. Tan, et al., Ectodomain shedding of angiotensin-converting enzyme 2 in human airway epithelia, Am. J. Physiol. Lung Cell. Mol. Physiol. 297 (2009) L84-L96
|
A. Heurich, H. Hofmann-Winkler, S. Gierer, et al., TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by TMPRSS2 augments entry driven by the severe acute respiratory syndrome coronavirus spike protein, J. Virol. 88 (2014) 1293-1307
|
F. Li, Structure, function, and evolution of coronavirus spike proteins, Annu. Rev. Virol. 3 (2016) 237-261
|
Y.T.-C. Yu, S.-C. Chien, I.-Y. Chen, et al., Surface vimentin is critical for the cell entry of SARS-CoV, J. Biomed. Sci. 23 (2016), 14
|
Y. Inoue, N. Tanaka, Y. Tanaka, et al., Clathrin dependent entry of severe acute respiratory syndrome coronavirus into target cells expressing ACE2 with the cytoplasmic tail deleted, J. Virol. 81 (2007) 8722-8729
|
J. Wysocki, A. Goodling, M. Burgaya, et al., Urine RAS components in mice and people with type 1 diabetes and chronic kidney disease, Am. J. Physiol. Renal. Physiol. 313 (2017) F487-F494
|
L. Bitker, L.M. Burrell, Classic and non-classic renin-angiotensin systems in the critically ill, Crit. Care Clin. 35 (2019) 213-227
|
M. Alimian, A. Pournajafian, A. Kholdebarin, et al., Analgesic effects of paracetamol and morphine after elective laparotomy surgeries, Anesth. Pain Med. 4 (2014), e12912
|
D. Gurwitz, Angiotensin receptor blockers as tentative SARS-CoV-2 therapeutics, Drug Dev. Res. 81 (2020) 537-540
|
C.M. Ferrario, J. Jessup, M.C. Chappell, et al., Effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockers on cardiac angiotensin-converting enzyme 2, Circulation 111 (2005) 2605-2610
|
E.M. Mortensen, B. Nakashima, J. Cornell, et al., Population-based study of statins, angiotensin II receptor blockers, and angiotensin-converting enzyme inhibitors on pneumonia-related outcomes, Clin. Infect. Dis. 55 (2012) 1466-1473
|
M.R. Deshotels, H. Xia, S. Sriramula, et al., Angiotensin II mediates angiotensin-converting enzyme type 2 internalization and degradation through an angiotensin II type I receptor-dependent mechanism, Hypertension 64 (2014) 1368-1375
|
Y. Imai, K. Kuba, S. Rao, et al., Angiotensin-converting enzyme 2 protects from severe acute lung failure, Nature 436 (2005) 112-116
|
Y.-M. Yan, X. Shen, Y.-K. Cao, et al., Discovery of anti-2019-nCoV agents from Chinese patent drugs toward respiratory diseases via docking screening, Preprints. https://www.preprints.org/manuscript/202002.0254/v1.
|
C. Börner, V. Höllt, J. Kraus. Mechanisms of the inhibition of nuclear factor kappab by morphine in neuronal cells, Mol. Pharmacol. 81 (2012) 587-597
|
H. Zhang, A. Baker. Recombinant human ace2: acing out angiotensin ii in ards therapy, Crit. Care 21 (2017), 305
|
J. Guo, Z. Huang, L. Lin, et al., Coronavirus disease 2019 (covid-19) and cardiovascular disease: a viewpoint on the potential influence of angiotensin-converting enzyme inhibitors/angiotensin receptor blockers on onset and severity of severe acute respiratory syndrome coronavirus 2 infection, J. Am. Heart Assoc. 9 (2020), e016219
|
K.M.M. Colafella, E. Uijl, J. Danser, Interference with the Renin-Angiotensin Aystem (RAS): Classical Inhibitors and Novel Approaches, in: Encyclopedia of Endocrine Diseases, 2nd Edition, Vol. 3, Elsevier, 2018, pp XXX-XXX
|
M. Haschke, M. Schuster, M. Poglitsch, et al., Pharmacokinetics and pharmacodynamics of recombinant human angiotensin-converting enzyme 2 in healthy human subjects, Clin. Pharmacokinet. 52 (2013) 783-792
|
A. Khan, C. Benthin, B. Zeno, et al., A pilot clinical trial of recombinant human angiotensin-converting enzyme 2 in acute respiratory distress syndrome, Crit. Care 21 (2017), 234
|
S. Krishnamurthy, R.F. Luckey, N. Kolliputi, Soluble ACE2 as a potential therapy for COVID-19, Am. J. Physiol. Cell Physiol. 320 (2021) C279-C281
|
H. Gu, Z. Xie, T. Li, et al., Angiotensin-converting enzyme 2 inhibits lung injury induced by respiratory syncytial virus, Sci. Rep. 6 (2016), 19840
|
Z. Zou, Y. Yan, Y. Shu, et al., Angiotensin-converting enzyme 2 protects from lethal avian influenza a H5N1 infections, Nat. Commun. 5 (2014), 3594
|
S. Shi, M. Qin, B. Shen, et al., Association of Cardiac Injury with Mortality in Hospitalized Patients With COVID-19 in Wuhan, China, JAMA Cardiol. 5 (2020) 802-810
|
G.Y. Oudit, Z. Kassiri, C. Jiang, et al., SARS-coronavirus modulation of myocardial ACE2 expression and inflammation in patients with SARS, Eur. J. Clin. Invest. 39 (2009) 618-625
|
R. Basu, M. Poglitsch, H. Yogasundaram, et al., Roles of angiotensin peptides and recombinant human ACE2 in heart failure, J. Am. Coll. Cardiol. 69 (2017) 805-819
|
X. Zhang, S. Li, S. Niu, ACE2 and COVID-19 and the resulting ARDS, Postgrad. Med. J. 96 (2020) 403-407
|
Y. Liu, Y. Yang, C. Zhang, et al., Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury, Sci. China Life Sci. 63 (2020) 364-374
|
T.T. Choksi, H. Zhang, T. Chen, et al., Outcomes of Hospitalized COVID-19 Patients Receiving Renin-Angiotensin System Blockers and Calcium Channel Blockers. Am. J. Nephrol. 52 (2021) 250-260
|
R. Dijkman, M.F. Jebbink, M. Deijs, et al., Replication-dependent downregulation of cellular angiotensin-converting enzyme 2 protein expression by human coronavirus NL63, J. Gen. Virol. 93 (2012) 1924-1929
|
B. Singh, C. Ram, R. Singh, Angiotensin-1 converting enzyme (ACE) inhibitory activity of peptides isolated from bovine milk fermented with Lactobacillus helveticus NCDC 288, Milchwissenschaft. 66 (2011) 429-432
|
B. Singh, C. Ram, D. Singh, et al., Potential of Novel Bioactive Peptides as Functional Food Ingredients in Preventing Cardiovascular Disease, in: Alternative and Replacement Foods, Vol. 17, Elsevier, 2018, pp. 411-431
|
C. Huang, Y. Wang, X. Li, et al., Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395 (2020) 497-506
|
L.G. Gilstrap, G.C. Fonarow, A.S. Desai, et al., Initiation, Continuation, or Withdrawal of Angiotensin-Converting Enzyme Inhibitors/Angiotensin Receptor Blockers and Outcomes in Patients Hospitalized with Heart Failure with Reduced Ejection Fraction, J. Am. Heart Assoc. 6 (2017), e004675
|
K. Matsushita, N. Ding, M. Kou, et al., The Relationship of COVID-19 Severity with Cardiovascular Disease and Its Traditional Risk Factors: A Systematic Review and Meta-Analysis, Glob. Heart 15 (2020), 64
|
C. Savoia, M. Volpe, R. Kreutz, Hypertension, a Moving Target in COVID-19: Current Views and Perspectives, Circ. Res. 128 (2021) 1062-1079
|
S. Singh, A.K. Offringa-Hup, S.J.J. Logtenberg, et al., Discontinuation of Antihypertensive Medications on the Outcome of Hospitalized Patients with Severe Acute Respiratory- Coronavirus 2, Hypertension 78 (2021) 165-173
|
B. Singh, D. Singh, K. Pant, et al., A Review on Current Status of SARS-CoV-2 (2019-nCoV): Its Diagnosis and Challenges, in: Highlights on Medicine and Medical Science, Vol.14, Book Publisher International, India, 2021, pp. 142-158
|
C. Lei, K. Qian, T. Li, et al., Neutralization of SARS-CoV-2 spike pseudotyped virus by recombinant ACE2-Ig, Nat. Commun. 11 (2020), 2070
|
X. Tian, C. Li, A. Huang, et al., Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody, Emerg. Microbes Infect. 9 (2020) 382-385
|
A.-W. Struck, M. Axmann, S. Pfefferle, et al, hexapeptide of the receptor-binding domain of SARS coronavirus spike protein blocks viral entry into host cells via the human receptor ACE2, Antiviral Res. 94 (2012) 288-296
|
J. Cohen, Vaccine designers take first shots at COVID-19, Science 368 (2020) 14-16
|