Volume 12 Issue 3
Jun.  2022
Turn off MathJax
Article Contents
Divya S. Parimi, Yamini Gupta, Sreekar Marpu, Chandra S. Bhatt, Tharun K. Bollu, Anil K. Suresh. Nanomagnet-facilitated pharmaco-compatibility for cancer diagnostics:Underlying risks and the emergence of ultrasmall nanomagnets[J]. Journal of Pharmaceutical Analysis, 2022, 12(3): 365-379. doi: 10.1016/j.jpha.2021.11.002
Citation: Divya S. Parimi, Yamini Gupta, Sreekar Marpu, Chandra S. Bhatt, Tharun K. Bollu, Anil K. Suresh. Nanomagnet-facilitated pharmaco-compatibility for cancer diagnostics:Underlying risks and the emergence of ultrasmall nanomagnets[J]. Journal of Pharmaceutical Analysis, 2022, 12(3): 365-379. doi: 10.1016/j.jpha.2021.11.002

Nanomagnet-facilitated pharmaco-compatibility for cancer diagnostics:Underlying risks and the emergence of ultrasmall nanomagnets

doi: 10.1016/j.jpha.2021.11.002
Funds:

Anil K. Suresh would like to thank the Department of Biotechnology, Government of India, for financial support through Ramalinga Swami Fellowship Award, and the Science Education and Research Board, Department of Science and Technology, Government of India, New Delhi, for financial support through Early Career Research Award (Grant No.: ECR/2017/000339). The authors would like to thank Saptarshi Mazumder and Rajarshi Mazumder for making the 3-dimensional animations in the figures.

  • Received Date: May 26, 2021
  • Accepted Date: Nov. 04, 2021
  • Rev Recd Date: Oct. 21, 2021
  • Publish Date: Nov. 10, 2021
  • Cancer therapy is a fast-emerging biomedical paradigm that elevates the diagnostic and therapeutic potential of a nanovector for identification, monitoring, targeting, and post-treatment response analysis. Nanovectors of superparamagnetic iron oxide nanoparticles (SPION) are of tremendous significance in cancer therapy because of their inherited high surface area, high reactivity, biocompatibility, superior contrast, and magnetic and photo-inducibility properties. In addition to a brief introduction, we summarize various progressive aspects of nanomagnets pertaining to their production with an emphasis on sustainable biomimetic approaches. Post-synthesis particulate and surface alterations in terms of pharmaco-affinity, liquid accessibility, and biocompatibility to facilitate cancer therapy are highlighted. SPION parameters including particle contrast, core-fusions, surface area, reactivity, photosensitivity, photodynamics, and photothermal properties, which facilitate diverse cancer diagnostics, are discussed. We also elaborate on the concept of magnetism to selectively focus chemotherapeutics on tumors, cell sorting, purification of bioentities, and elimination of toxins. Finally, while addressing the toxicity of nanomaterials, the advent of ultrasmall nanomagnets as a healthier alternative with superior properties and compatible cellular interactions is reviewed. In summary, these discussions spotlight the versatility and integration of multi-tasking nanomagnets and ultrasmall nanomagnets for diverse cancer theragnostics.
  • loading
  • S.A. Kumar, M.I. Khan, Heterofunctional nanomaterials:Fabrication, properties and applications in nanobiotechnology, J. Nanosci. Nanotechnol. 7(2010)4124-4134
    A.K. Suresh, D.A. Pelletier, M.J. Doktycz, Relating nanomaterial properties and microbial toxicity, Nanoscale 5(2013)463-474
    S.A. Kumar, M.K. Abyaneh, S.W. Gosavi, et al., Sulfite reductase-mediated synthesis of gold nanoparticles capped with phytochelatin, Biotechnol. Appl. Biochem. 47(2007)191-195
    A.K. Suresh, D.A. Pelletier, W. Wang, et al., Silver Nanocrystallites:Biofabrication using Shewanella oneidensis, and an Evaluation of Their Comparative Toxicity on Gram-negative and Gram-positive Bacteria, Environ. Sci. Technol. 44(2010)5210-5215
    E.E. White, A. Pai, Y. Weng, et al., Functionalized iron oxide nanoparticles for controlling the movement of immune cells, Nanoscale 7(2015)7780-7789
    K. Hola, Z. Markova, G. Zoppellaro, et al., Tailored functionalization of iron oxide nanoparticles for MRI, drug delivery, magnetic separation and immobilization of biosubstances, Biotechnol. Adv. 33(2015)1162-1176
    S.M. Dadfar, K. Roemhild, N.I. Drude, et al., Iron oxide nanoparticles:Diagnostic, therapeutic and theranostic applications, Adv. Drug Deliv. Rev. 138(2019)302-325
    Y. Shi, M. Lin, X. Jiang, et al., Recent Advances in FePt Nanoparticles for Biomedicine, J. Nanomater. 2015(2015), 467873
    L. Mohammed, H.G. Gomaa, D. Ragab, et al., Magnetic nanoparticles for environmental and biomedical applications:A review, Particuology 30(2017)1-14
    S. Laurent, J.-L. Bridot, L.V. Elst, et al., Magnetic iron oxide nanoparticles for biomedical applications, Future Med. Chem. 2(2010)427-449
    D.K. Chatterjee, P. Diagaradjane, S. Krishnan, Nanoparticle-mediated hyperthermia in cancer therapy, Ther. Deliv. 2(2011)1001-1014
    P.D. Sawant, Nano-Theranostics for Cancer Management, J. Nanosci. Nanomed. Nanobio. 1(2016)001-009
    V. Frantellizzi, M. Conte, M. Pontico, et al., New Frontiers in Molecular Imaging with Superparamagnetic Iron Oxide Nanoparticles (SPIONs):Efficacy, Toxicity, and Future Applications, Nucl. Med. Mol. Imaging. 54(2020)65-80
    R.V.-Ghartavol, A.A. M.-Borojeni, Z.V.-Ghartavol, et al., Toxicity assessment of superparamagnetic iron oxide nanoparticles in different tissues, Artif. Cells Nanomed. Biotechnol. 48(2020)443-451
    Y. Xiao, J. Du, Superparamagnetic nanoparticles for biomedical applications, J. Mater. Chem. B. 8(2020)354-367
    D. Zhi, T. Yang, J. Yang, et al., Targeting strategies for superparamagnetic iron oxide nanoparticles in cancer therapy, Acta Biomater. 102(2020)13-34
    J. Wallyn, N. Anton, T.F. Vandamme, Synthesis, principles, and properties of magnetite nanoparticles for in vivo imaging applications-A review, Pharmaceutics 11(2019)601-630
    S. Talluri, R.R. Malla, Superparamagnetic Iron Oxide Nanoparticles (SPIONs) for Diagnosis and Treatment of Breast, Ovarian and Cervical Cancers, Curr. Drug Metab. 20(2020)942-945
    S. Palanisamy, Y.-M. Wang, Superparamagnetic iron oxide nanoparticulate system:synthesis, targeting, drug delivery and therapy in cancer, Dalton Trans. 48(2019)9490-9515
    M. Musielak, I. Piotrowski, W.M. Suchorska, Superparamagnetic iron oxide nanoparticles (SPIONs) as a multifunctional tool in various cancer therapies, Rep. Pract. Oncol. Radiother. 24(2019)307-314
    J.D.-Litewka, A. Lazarczyk, P. Halubiec, et al., Superparamagnetic Iron Oxide Nanoparticles-Current and Prospective Medical Applications, Materials 12(2019)617-643
    L. Zhu, D. Wang, X. Wei, et al., Multifunctional pH-sensitive superparamagnetic iron-oxide nanocomposites for targeted drug delivery and MR imaging, J. Control. Release 169(2013)228-238
    K. Fan, C. Cao, Y. Pan, et al., Magnetoferritin nanoparticles for targeting and visualizing tumor tissues, Nat. Nanotechnol. 7(2012)459-464
    M.K. Yu, D. Kim, I.-H. Lee, et al., Image-guided prostate cancer therapy using aptamer-functionalized thermally cross-linked superparamagnetic iron oxide nanoparticles, Small 7(2011)2241-2249
    R. Hufschmid, H. Arami, R.M. Ferguson, et al., Synthesis of phase-pure and monodisperse iron oxide nanoparticles by thermal decomposition, Nanoscale 7(2015)11142-11154
    S. Ge, X. Shi, K. Sun, et al., A Facile Hydrothermal Synthesis of Iron Oxide Nanoparticles with Tunable Magnetic Properties, J. Phys. Chem. C. 113(2009)13593-13599
    R.P. Blakemore, R.B. Frankel, Magnetic Navigation in Bacteria, Sci. Am. Inc. 245(1981)58-65
    I. Kolinko, A. Lohsse, S. Borg, et al., Biosynthesis of magnetic nanostructures in a foreign organism by transfer of bacterial magnetosome gene clusters, Nat. Nanotechnol. 9(2014)193-197
    A. Bharde, D. Rautaray, V. Bansal, et al., Extracellular biosynthesis of magnetite using fungi, Small 2(2006)135-141
    M. Mahdavi, F. Namvar, M.B. Ahmad, et al., Green Biosynthesis and Characterization of Magnetic Iron Oxide (Fe3O4) Nanoparticles Using Seaweed (Sargassum muticum) Aqueous Extract, Molecules 18(2013)5954-5964
    A. Miri, M. Khatami, M. Sarani, Biosynthesis, Magnetic and Cytotoxic Studies of Hematite Nanoparticles, J. Inorg. Organomet. Polym. Mater. 30(2019)767-774
    A. Van de Walle, A.P. Sangnier, A.A.-Hassan, et al., Biosynthesis of magnetic nanoparticles from nano-degradation products revealed in human stem cells, Proc. Natl. Acad. Sci. 116(2019)4044-4053
    K. Knop, R. Hoogenboom, D. Fischer, et al., Poly (ethylene glycol) in drug delivery:pros and cons as well as potential alternatives, Angew. Chem. Int. Ed. Engl. 49(2010)6288-6308
    J. Wang, B. Zhang, L. Wang, et al., One-pot synthesis of water-soluble superparamagnetic iron oxide nanoparticles and their MRI contrast effects in the mouse brains, Mater. Sci. Eng. C. 48(2015)416-423
    M.I. Majeed, Q. Lu, W. Yan, et al., Highly water-soluble magnetic iron oxide (Fe3O4) nanoparticles for drug delivery:enhanced in vitro therapeutic efficacy of doxorubicin and MION conjugates, J. Mater. Chem. B. 1(2013)2874-2884
    Z. Cheng, Y. Dai, X. Kang, et al., Gelatin-encapsulated iron oxide nanoparticles for platinum (IV) prodrug delivery, enzyme-stimulated release and MRI, Biomaterials 35(2014)6359-6368
    H. Xu, ZP. Aguilar, L. Yang, et al., Antibody conjugated magnetic iron oxide nanoparticles for cancer cell separation in fresh whole blood, Biomaterials 32(2011)9758-9765
    D. Smejkalova, K. Nesporova, G.H.-Angeles, et al., Selective in vitro anticancer effect of superparamagnetic iron oxide nanoparticles loaded in hyaluronan polymeric micelles, Biomacromolecules 15(2014)4012-4020
    S. Sulek, B. Mammadov, D.I. Mahcicek, et al., Peptide functionalized superparamagnetic iron oxide nanoparticles as MRI contrast agents, J. Mater. Chem. 21(2011)15157-15162
    G. Kandasamy, A. Sudame, T. Luthra, et al., Functionalized Hydrophilic Superparamagnetic Iron Oxide Nanoparticles for Magnetic Fluid Hyperthermia Application in Liver Cancer Treatment, ACS Omega. 3(2018)3991-4005
    D.K. Kim, M. Mikhaylova, F.H. Wang, et al., Starch-Coated Superparamagnetic Nanoparticles as MR Contrast Agents, Chem. Mater. 15(2003)4343-4351
    Z. Wang, L. Zhao, P. Yang, et al., Water-soluble amorphous iron oxide nanoparticles synthesized by a quickly pestling and nontoxic method at room temperature as MRI contrast agents, Chem. Eng. J. 235(2014)231-235
    H.L. Chee, C.R.R. Gan, M. Ng, et al., Biocompatible Peptide-Coated Ultrasmall Superparamagnetic Iron Oxide Nanoparticles for In Vivo Contrast-Enhanced Magnetic Resonance Imaging, ACS Nano. 12(2018)6480-6491
    H. Gu, K. Xu, Z. Yang, et al., Synthesis and cellular uptake of porphyrin decorated iron oxide nanoparticles-a potential candidate for bimodal anticancer therapy, Chem. Commun.(2005)4270-4272
    H. Chen, X. Wu, H. Duan, et al., Biocompatible Polysiloxane-Containing Diblock Copolymer PEO-b-PγMPS for Coating Magnetic Nanoparticles, ACS Appl. Mater. Interfaces 1(2009)2134-2140
    Q. Xia, Y. Zhang, Z. Li, et al., Red blood cell membrane-camouflaged nanoparticles:a novel drug delivery system for antitumor application, Acta Pharm. Sin. B. 9(2019)675-689
    L. Rao, B. Cai, L.-L. Bu, et al., Microfluidic Electroporation-Facilitated Synthesis of Erythrocyte Membrane-Coated Magnetic Nanoparticles for Enhanced Imaging-Guided Cancer Therapy, ACS Nano. 11(2017)3496-3505
    Q.-F. Meng, L. Rao, M. Zan, et al., Macrophage membrane-coated iron oxide nanoparticles for enhanced photothermal tumor therapy, Nanotechnology 29(2018), 134004
    A. Elfick, G. Rischitor, R. Mouras, et al., Biosynthesis of magnetic nanoparticles by human mesenchymal stem cells following transfection with the magnetotactic bacterial gene mms6, Sci. Rep. 7(2017)1-8
    A. Aires, S.M. Ocampo, B.M. Simoes, et al., Multifunctionalized iron oxide nanoparticles for selective drug delivery to CD44-positive cancer cells, Nanotechnol. 27(2016), 065103
    W.-J. Hsieh, C.-J. Liang, J.-J. Chieh, et al., In vivo tumor targeting and imaging with anti-vascular endothelial growth factor antibody-conjugated dextran-coated iron oxide nanoparticles, Int. J. Nanomed. 7(2012)2833-2842
    C.A. Quinto, P. Mohindra, S. Tong, et al., Multifunctional superparamagnetic iron oxide nanoparticles for combined chemotherapy and hyperthermia cancer treatment, Nanoscale 7(2015)12728-12736
    J. Huang, L. Wang, R. Lin, et al., Casein-Coated Iron Oxide Nanoparticles for High MRI Contrast Enhancement and Efficient Cell Targeting, ACS Appl. Mater. Interfaces 5(2013)4632-4639
    L. Qi, L. Wu, S. Zheng, et al., Cell-Penetrating Magnetic Nanoparticles for Highly Efficient Delivery and Intracellular Imaging of siRNA, Biomacromolecules 13(2012)2723-2730
    H.Y. Yang, M.-S. Jang, Y. Li, et al., Hierarchical tumor acidity-responsive self-assembled magnetic nanotheranostics for bimodal bioimaging and photodynamic therapy, J. Control. Release 301(2019)157-165
    M. Wu, D. Zhang, Y. Zeng, et al., Nanocluster of superparamagnetic iron oxide nanoparticles coated with poly (dopamine) for magnetic field-targeting, highly sensitive MRI and photothermal cancer therapy, Nanotechnology 26(2015), 115102
    J. Kim, S. Park, J.E. Lee, et al., Designed fabrication of multifunctional magnetic gold nanoshells and their application to magnetic resonance imaging and photothermal therapy, Angew. Chem. Int. Ed. Engl. 45(2006)7754-7758
    A. Espinosa, R.D Corato, J.K.-Tabi, et al., Duality of Iron Oxide Nanoparticles in Cancer Therapy:Amplification of Heating Efficiency by Magnetic Hyperthermia and Photothermal Bimodal Treatment, ACS Nano. 10(2016)2436-2446
    T. Sadhuka, T.S. Wiedmann, J. Panyam, Inhalable magnetic nanoparticles for targeted hyperthermia in lung cancer therapy, Biomaterials 34(2013)5163-5171
    B. Shapiro, Towards dynamic control of magnetic fields to focus magnetic carriers to targets deep inside the body, J. Magn. Magn. Mater. 321(2009)1594
    H. Xu, L. Cheng, C. Wang, et al., Polymer encapsulated upconversion nanoparticle/iron oxide nanocomposites for multimodal imaging and magnetic targeted drug delivery, Biomaterials 32(2011)9364-9373
    C.-Y. Wen, L.-L. Wu, Z.-L. Zhang, et al., Quick-Response Magnetic Nanospheres for Rapid, Efficient Capture and Sensitive Detection of Circulating Tumor Cells, ACS Nano. 8(2013)941-949
    J.-H. Lee, J. Jang, J. Choi, et al., Exchange-coupled magnetic nanoparticles for efficient heat induction, Nat. Nanotechnol. 6(2011)418-422
    N.K. Verma, K.C.-Staunton, A. Satti, et al., Magnetic core-shell nanoparticles for drug delivery by nebulization, J. Nanobiotechnol. 11(2013)1-12
    A. Curcio, A.K.A. Silva, S. Cabana, et al., Iron Oxide Nanoflowers@CuS Hybrids for Cancer Tri-Therapy:Interplay of Photothermal Therapy, Magnetic Hyperthermia and Photodynamic Therapy, Theranostics 9(2019)1288-1302
    M. Gorgizadeh, N. Behzadpour, F. Salehi, et al., A MnFe2O4/C nanocomposite as a novel theranostic agent in MRI, sonodynamic therapy and photothermal therapy of a melanoma cancer model, J. Alloys Compd. 816(2020), 152597
    G. Kandasamy, A. Sudame, P. Bhati, et al., Systematic magnetic fluid hyperthermia studies of carboxyl functionalized hydrophilic superparamagnetic iron oxide nanoparticles based ferrofluids, J. Colloid. Interface Sci. 514(2018)534-543
    C.J. Legge, H.E. Colley, M.A. Lawson, et al., Targeted magnetic nanoparticle hyperthermia for the treatment of oral cancer, J. Oral Pathol. Med. 48(2019)803-809
    P. Guardia, R.D. Corato, L. Lartigue, et al., Water-Soluble Iron Oxide Nanocubes with High Values of Specific Absorption Rate for Cancer Cell Hyperthermia Treatment, ACS Nano. 6(2012)3080-3091
    Z. Abed, J. Beik, S. Laurent, et al., Iron oxide-gold core-shell nano-theranostic for magnetically targeted photothermal therapy under magnetic resonance imaging guidance, J. Cancer Res. Clin. Oncol. 145(2019)1213-1219
    M. Baneshi, S. Dadfarnia, A.M.H. Shabani, et al., A novel theranostic system of AS1411 aptamer-functionalized albumin nanoparticles loaded on iron oxide and gold nanoparticles for doxorubicin delivery, Int. J. Pharm. 564(2019)145-152
    X. Song, H. Gong, S. Yin, et al., Ultra-Small Iron Oxide Doped Polypyrrole Nanoparticles for In Vivo Multimodal Imaging Guided Photothermal Therapy, Adv. Funct. Mater. 24(2014)1194-1201
    T. Liu, S. Shi, C. Liang, et al., Iron Oxide Decorated MoS2 Nanosheets with Double PEGylation for Chelator-Free Radiolabeling and Multimodal Imaging Guided Photothermal Therapy, ACS Nano. 9(2015)950-960
    P.J. Sugumaran, X.L. Liu, T.S. Herng, et al., GO-Functionalized Large Magnetic Iron Oxide Nanoparticles with Enhanced Colloidal Stability and Hyperthermia Performance, ACS Appl. Mater. Interfaces 11(2019)22703-22713
    Y. Cao, J. Min, D. Zheng, eat al., Vehicle-saving theranostic probes based on hydrophobic iron oxide nanoclusters using doxorubicin as a phase transfer agent for MRI and chemotherapy, Chem. Commun. 55(2019)9015-9018
    P. Wang, Y. Shi, S. Zhang, et al., Hydrogen Peroxide Responsive Iron-Based Nanoplatform for Multimodal Imaging-Guided Cancer Therapy, Small 15(2019), 1803791
    Z. Fan, M. Shelton, A.K. Singh, et al., Multifunctional Plasmonic Shell-Magnetic Core Nanoparticles for Targeted Diagnostics, Isolation, and Photothermal Destruction of Tumor Cells, ACS Nano. 6(2012)1065-1073
    N.-H. Cho, T.-C. Cheong, J.H. Min, et al., A multifunctional core-shell nanoparticle for dendritic cell-based cancer immunotherapy, Nat. Nanotechnol. 6(2011)675-682
    T. Zare, N. Sattarahmady, A Mini-Review of Magnetic Nanoparticles:Applications in Biomedicine., Basic Clin. Cancer Res. 7(2015)29-39
    J. Terrovitis, M. Stuber, A. Youssef, et al., Magnetic resonance imaging overestimates ferumoxide-labeled stem cell survival after transplantation in the heart, Circulation 117(2008)1555-1562
    H. Bae, T. Ahmad, I. Rhee, et al., Carbon-coated iron oxide nanoparticles as contrast agents in magnetic resonance imaging, Nanoscale Res. Lett. 7(2012)44-49
    H. Lee, E. Lee, D.K. Kim, et al., Antibiofouling Polymer-Coated Superparamagnetic Iron Oxide Nanoparticles as Potential Magnetic Resonance Contrast Agents for in Vivo Cancer Imaging, J. Am. Chem. Soc. 128(2006)7383-7389
    Z. Zhao, Z. Zhou, J. Bao, et al., Octapod iron oxide nanoparticles as high-performance T2 contrast agents for magnetic resonance imaging, Nat. Commun. 4(2013)1-7
    K.W.-Ciecwierz, M. Wis¨niewski, A.P. Terzyk, et al., The chemistry of bioconjugation in nanoparticles-based drug delivery system, Adv. Condens. Matter Phys. 2015(2015), 198175
    S.A. Kumar, Y.A. Peter, J.L. Nadeau, Facile biosynthesis, separation and conjugation of gold nanoparticles to doxorubicin, Nanotechnology 19(2008), 495101
    G.Y. Lee, W.P. Qian, L. Wang, et al., Theranostic Nanoparticles with Controlled Release of Gemcitabine for Targeted Therapy and MRI of Pancreatic Cancer, ACS Nano. 7(2013)2078-2089
    N. Gao, E.N. Bozeman, W. Qian, et al., Tumor Penetrating Theranostic Nanoparticles for Enhancement of Targeted and Image-guided Drug Delivery into Peritoneal Tumors following Intraperitoneal Delivery, Theranostics 7(2017)1689-1704
    C. Ansari, G.A. Tikhomirov, S.H. Hong, et al., Development of novel tumor-targeted theranostic nanoparticles activated by membrane-type matrix metalloproteinases for combined cancer magnetic resonance imaging and therapy, Small 10(2014)566-575
    F.M. Kievit, O. Veiseh, C. Fang, et al., Chlorotoxin Labeled Magnetic Nanovectors for Targeted Gene Delivery to Glioma, ACS Nano. 4(2010)4587-4594
    I. Gessner, X. Yu, C. Jungst, et al., Selective Capture and Purification of MicroRNAs and Intracellular Proteins through Antisense-vectorized Magnetic Nanobeads, Sci. Rep. 9(2019)1-10
    G.-Y. Liou, P. Storz, Reactive oxygen species in cancer, Free Radic. Res. 44(2010)479-496
    E. Paszko, C. Ehrhardt, M.O. Senge, et al., Nanodrug applications in photodynamic therapy, Photodiagnosis Photodyn. Ther. 8(2011)14-29
    A.B. Seabra, Iron Oxide Magnetic Nanoparticles in Photodynamic Therapy:A Promising Approach against Tumor Cells, Metal Nanoparticles in Pharma, Springer, Cham, 2017, pp. 3-20
    Z. Zhen, W. Tang, C. Guo, et al., Ferritin Nanocages to Encapsulate and Deliver Photosensitizers for Efficient Photodynamic Therapy against Cancer, ACS Nano. 7(2013)6988-6996
    D. Wang, B. Fei, L.V. Halig, et al., Targeted Iron-Oxide Nanoparticle for Photodynamic Therapy and Imaging of Head and Neck Cancer, ACS Nano. 8(2014)6620-6632
    J. Estelrich, M.A. Busquets, Iron Oxide Nanoparticles in Photothermal Therapy, Molecules 23(2018)1567-1593
    M. Zhang, Y. Cao, L. Wang, et al., Manganese Doped Iron Oxide Theranostic Nanoparticles for Combined T1 Magnetic Resonance Imaging and Photothermal Therapy, ACS Appl. Mater. Interfaces 7(2015)4650-4658
    X.-D. Li, X.-L. Liang, X.-L. Yue, et al., Imaging guided photothermal therapy using iron oxide loaded poly (lactic acid) microcapsules coated with graphene oxide, J. Mater. Chem. B. 2(2013)217-223
    H. Chen, J. Burnett, F. Zhang, et al., Highly crystallized iron oxide nanoparticles as effective and biodegradable mediators for photothermal cancer therapy, J. Mater. Chem. B. 2(2014)757-765
    S. Balivada, R.S. Rachakatla, H. Wang, et al., A/C magnetic hyperthermia of melanoma mediated by iron (0)/iron oxide core/shell magnetic nanoparticles:a mouse study, BMC Cancer 10(2010)1-9
    F. Mohammad, G. Balaji, A. Weber, et al., Influence of Gold Nanoshell on Hyperthermia of Super Paramagnetic Iron Oxide Nanoparticles (SPIONs), J. Phys. Chem. C. Nanomater. Interfaces 114(2010)19194-19201
    Z.-Q. Zhang, S.-C. Song, Thermosensitive/superparamagnetic iron oxide nanoparticle-loaded nanocapsule hydrogels for multiple cancer hyperthermia, Biomaterials 106(2016)13-23
    A.E. Beeran, F.B. Fernandez, P.R.H. Varma, Self-Controlled Hyperthermia& MRI Contrast Enhancement via Iron Oxide Embedded Hydroxyapatite Superparamagnetic particles for Theranostic Application, ACS Biomater. Sci. Eng. 5(2018)106-113
    S. Kossatz, J. Grandke, P. Couleaud, et al., Efficient treatment of breast cancer xenografts with multifunctionalized iron oxide nanoparticles combining magnetic hyperthermia and anti-cancer drug delivery, Breast Cancer Res. 17(2015)66-83
    A. Nacev, S.H. Kim, J. R.-Canales, et al., A dynamic magnetic shift method to increase nanoparticle concentration in cancer metastases:a feasibility study using simulations on autopsy specimens, Int. J. Nanomed. 6(2011)2907-2923
    F. Zhang, Y.-A. Lin, S. Kannan, et al., Targeting specific cells in the brain with nanomedicines for CNS therapies, J. Control. Release 240(2016)212-226
    B. Chertok, B.A. Moffat, A.E. David, et al., Iron Oxide Nanoparticles as a Drug Delivery Vehicle for MRI Monitored Magnetic Targeting of Brain Tumors, Biomaterials 29(2008)487-496
    R. Harrison, J. Luckett, S. Marsh, et al., Magnetically Assisted Control of Stem Cells Applied in 2D, 3D and In Situ Models of Cell Migration, Molecules 24(2019)1563-1579
    X. Ma, H. Tao, K. Yang, et al., A functionalized graphene oxide-iron oxide nanocomposite for magnetically targeted drug delivery, photothermal therapy, and magnetic resonance imaging, Nano. Res. 5(2012)199-212
    M.H. Chan, M.R. Hsieh, R.S. Liu, et al., Magnetically Guided Theranostics:Optimizing Magnetic Resonance Imaging with Sandwich-Like Kaolinite-Based Iron/Platinum Nanoparticles for Magnetic Fluid Hyperthermia and Chemotherapy, Chem. Mater. 32(2020)697-708
    M. Wierucka, M. Biziuk, Application of magnetic nanoparticles for magnetic solid-phase extraction in preparing biological, environmental and food samples, TrAC Trends. Analyt. Chem. 59(2014)50-58
    S. Tong, B. Ren, Z. Zheng, et al., Tiny Grains Give Huge Gains:Nanocrystal-Based Signal Amplification for Biomolecule Detection, ACS Nano. 7(2013)5142-5150
    I.K. Herrmann, M. Urner, F.M. Koehler, et al., Blood purification using functionalized core/shell nanomagnets, Small 6(2010)1388-1392
    W. Li, L. Yang, F. Wang, et al., Gas-Assisted Superparamagnetic Extraction for Potential Large-Scale Separation of Proteins, Ind. Eng. Chem. Res. 52(2013)4290-4296
    S. Mohapatra, D. Pal, S.K. Ghosh, et al., Design of superparamagnetic iron oxide nanoparticle for purification of recombinant proteins, J. Nanosci. Nanotechnol. 7(2007)3193-3199
    M.K. Moazen, H. A. Panahi, Magnetic iron oxide nanoparticles grafted N-isopropylacrylamide/chitosan copolymer for the extraction and determination of letrozole in human biological samples, J. Sep. Sci. 40(2017)1125-1132
    L. Sun, D.Y. Joh, A.A.-Zaki, et al., Theranostic Application of Mixed Gold and Superparamagnetic Iron Oxide Nanoparticle Micelles in Glioblastoma Multiforme, J. Biomed. Nanotechnol. 12(2016)347-356
    A.R.K. Sasikala, R.G. Thomas, A.R. Unnithan, et al., Multifunctional Nanocarpets for Cancer Theranostics:Remotely Controlled Graphene Nanoheaters for Thermo-Chemosensitisation and Magnetic Resonance Imaging, Sci. Rep. 6(2016), 20543
    Y.-N. Wu, L.-X. Yang, X.-Y. Shi, et al., The selective growth inhibition of oral cancer by iron core-gold shell nanoparticles through mitochondria-mediated autophagy, Biomaterials 32(2011)4565-4573
    N. Feliu, D. Docter, M. Heine, et al., In vivo degeneration and the fate of inorganic nanoparticles, Chem. Soc. Rev. 45(2016)2440-2457
    G. Kandasamy, D. Maity, Recent advances in superparamagnetic iron oxide nanoparticles (SPIONs) for in vitro and in vivo cancer nanotheranostics, Int. J. Pharm. 496(2015)191-218
    J. Oh, M.D. Feldman, J. Kim, et al., Detection of magnetic nanoparticles in tissue using magneto-motive ultrasound, Nanotechnology 17(2006)4183-4190
    M. Mahmoudi, H. Hofmann, B.R.-Rutishauser, et al., Assessing the In Vitro and In Vivo Toxicity of Superparamagnetic Iron Oxide Nanoparticles, Chem. Rev. 112(2011)2323-2338
    M. Shi, J. Zhang, J. Li, et al., Polydopamine-coated magnetic mesoporous silica nanoparticles for multimodal cancer theranostics, J. Mater. Chem. B. 7(2019)368-372
    H. Zhou, J. Tang, J. Li, et al., In vivo aggregation-induced transition between T1 and T2 relaxations of magnetic ultra-small iron oxide nanoparticles in tumor microenvironment, Nanoscale 9(2017)3040-3050
    Z. Shen, T. Chen, X. Ma, et al., Multifunctional Theranostic Nanoparticles Based on Exceedingly Small Magnetic Iron Oxide Nanoparticles for T1-Weighted Magnetic Resonance Imaging and Chemotherapy, ACS Nano. 11(2017)10992-11004
    Y. Zou, D. Li, Y. Wang, et al., Polyethylenimine Nanogels Incorporated with Ultrasmall Iron Oxide Nanoparticles and Doxorubicin for MR Imaging-Guided Chemotherapy of Tumors, Bioconjugate Chem. 31(2020)907-915
    N. Zhang, Y. Wang, C. Zhang, et al., LDH-stabilized ultrasmall iron oxide nanoparticles as a platform for hyaluronidase-promoted MR imaging and chemotherapy of tumors, Theranostics 10(2020)2791-2802
    X. Hao, B. Xu, H. Chen, et al., Stem cell-mediated delivery of nanogels loaded with ultrasmall iron oxide nanoparticles for enhanced tumor MR imaging, Nanoscale 11(2019)4904-4910
    N. Denora, C. Lee, R.M. lacobazzi, et al., TSPO-targeted NIR-fluorescent ultra-small iron oxide nanoparticles for glioblastoma imaging, Eur. J. Pharm. Sci. 139(2019), 105047
    S. Park, J.A. Sherwood, R.M. Hauser et al., Surface Effects of Ultrasmall Iron Oxide Nanoparticles on Cellular Uptake, Proliferation, and Multipotency of Neural Stem Cells, ACS Appl. Nano. Mater. 3(2020)1542-1552
    J.G.-Fernandez, D. Turiel, J. Bettmer, et al., In vitro and in situ experiments to evaluate the biodistribution and cellular toxicity of ultrasmall iron oxide nanoparticles potentially used as oral iron supplements, Nanotoxicology 14(2020)388-403
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (195) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return