Citation: | Mengyuan Li, Yanchao Zheng, Sha Deng, Tian Yu, Yucong Ma, Jiaming Ge, Jiarong Li, Xiankuan Li, Lin Ma. Potential therapeutic effects and applications of Eucommiae Folium in secondary hypertension[J]. Journal of Pharmaceutical Analysis, 2022, 12(5): 711-718. doi: 10.1016/j.jpha.2021.10.004 |
J.-R. Zhang, H.-J. Sun, Extracellular Vesicle-Mediated Vascular Cell Communications in Hypertension: Mechanism Insights and Therapeutic Potential of ncRNAs, Cardiovasc. Drugs. Ther. (2020) https://doi.org/10.1007/s10557-020-07080-z
|
T. Verma, M. Sinha, N. Bansal, et al., Plants Used as Antihypertensive, Nat. Prod. Bioprospect. 11 (2021) 155-184
|
M. Yousefi, M. Shadnoush, N. Khorshidian, et al., Insights to potential antihypertensive activity of berry fruits, Phytother. Res. 35 (2021) 846-863
|
B. Li, F. Li, L. Wang, et al., Fruit and vegetables consumption and risk of hypertension: A Meta-Analysis, J. Clin. Hypertens. (Greenwich) 18 (2016) 468-476
|
H. Hu, H. Xiao, H. Bao, et al., Tissue Distribution Comparison of Six Active Ingredients from an Eucommiae Cortex Extract between Normal and Spontaneously Hypertensive Rats, Evid. Based Complement. Alternat. Med. 2020 (2020), 2049059
|
National Pharmacopoeia Commission, Pharmacopoeia of the People Republic of China, Chemical Industry Press, Beijing, 2020, pp. 173
|
T. Yuan, L. Fang, Y. Lu, et al., Advances in studies on the pharmacological effects of Eucommiae folium, China J. Chin. Mater. Med. 38 (2013) 781-785
|
C.-Y. Wang, L. Tang, J.-W. He, et al., Ethnobotany, Phytochemistry and Pharmacological Properties of Eucommia ulmoides: A Review, Am. J. Chin. Med. 47 (2019) 259-300
|
Nanjing University of Traditional Chinese Medicine, Dictionary of Traditional Chinese Medicine, first ed., Shanghai Science and Technology Press, Shanghai, 2006, pp. 1518
|
L. Jiang, Y. Jiang, J. Guo, et al., Research progress of Eucommiae ulmoides Oliv. in the treatment of hypertension, Shandong J. Tradit. Chin. Med. 36 (2017) 249-252
|
Z. Qin, Y. Wu, Z. Yu, et al., Studies on the Eucomia cortex and leaves, West-North Univ. J. 7 (1977) 64-72
|
F. Greenway, Z. Liu, Y. Yu, et al., A clinical trial testing the safety and efficacy of a standardized Eucommia ulmoides Oliver bark extract to treat hypertension, Altern. Med. Rev. 16 (2011) 338-347
|
B. Liu, C.-P. Li, W.-Q. Wang, et al., Lignans Extracted from Eucommia Ulmoides Oliv. Protects Against AGEs-Induced Retinal Endothelial Cell Injury, Cell Physiol. Biochem. 39 (2016) 2044-2054
|
S. Hosoo, M. Koyama, M. Kato, et al., The Restorative Effects of Eucommia ulmoides Oliver Leaf Extract on Vascular Function in Spontaneously Hypertensive Rats, Molecules 20 (2015) 21971-21981
|
L. Xiao, R. Zhou, Research progress on the antihypertensive effect of Eucommia, Guid. Chin. Med. 11 (2013) 501-502
|
S. Hosoo, M. Koyama, A. Watanabe, et al., Preventive effect of Eucommia leaf extract on aortic media hypertrophy in Wistar-Kyoto rats fed a high-fat diet, Hypertens. Res. 40 (2017) 546-551
|
G.-H. Lee, H.-Y. Lee, M.-K. Choi, et al., Eucommia ulmoides leaf (EUL) extract enhances NO production in ox-LDL-treated human endothelial cells, Biomed. Pharmacother. 97 (2018) 1164-1172
|
Y. Zhang, Y. Zhang, D. Guo, et al., Experimental Study on Hypotensive Effect of Compound Folium Eucommiae Mixture on Body, Chin. Tradit. Patent Med. 23 (2001) 418-421
|
X. Li, T. Liu, S. Chen, et al., Optimization of Extraction Process for Chlorogenic Acid from Eucommiae folium and Its Hypotensive Effect on Spontaneously Hypertensive Rats, Food Sci. 34 (2013) 30-34
|
J. Lai, L. Xu, H. Rao, et al., General situation of research on chemical constituents and pharmacological effects of Eucommiae Folium, Pract. Clin. J. Integr. Tradit. Chin. West. Med. 4 (2004) 67-68+78
|
C.-L. Hsieh, G.-C. Yen, Antioxidant actions of du-zhong (Eucommia ulmoides Oliv.) toward oxidative damage in biomolecules, Life Sci. 66 (2000) 1387-1400
|
G.-C. Yen, C.-L. Hsieh, Inhibitory effect of Eucommia ulmoides Oliv. on oxidative DNA damage in lymphocytes induced by H2O2, Teratog. Carcinog. Mutagen. 1 (2003) 23-34
|
G.-C. Yen, C.-L. Hsieh, Reactive Oxygen Species Scavenging Activity of Du-zhong (Eucommia ulmoides Oliv.) and Its Active Compounds, J. Agric. Food Chem. 48 (2000) 3431-3436
|
X. Lan, X. Zhang, G. Gong, Research progress of chlorogenic acid in Eucommiae Folium, Chin. Agricult. Sci. Bullet. 25 (2009) 86-89
|
W. Mu, Q. Chen, C. Duan, et al., Research progress of active ingredients and pharmacokinetics of Eucommia ulmoides, Chin. J. Mod. Appl. Pharm. 36 (2019) 2598-2604
|
Y. Deng, T. Lu, P. Yang, et al., Extraction of Geniposide from Leaves of Eucommia, Technol. Development Chem. Indust. 48 (2019) 6-16
|
H. Shi, X. He, D. Ouyang, et al., Research progress in the pharmacodynamics of geniposide and its derivatives, Chin. Pharm. J. 41 (2006) 4-6
|
X. Jing, W.-H. Huang, Y.-J. Tang, et al., Eucommia ulmoides Oliv. (Du-Zhong) Lignans Inhibit Angiotensin II-Stimulated Proliferation by Affecting P21, P27, and Bax Expression in Rat Mesangial Cells, Evid. Based Complement Alternat. Med. 2015 (2015), 987973
|
L. Wen, Y. Jiang, J. Yang, et al., Structure, bioactivity, and synthesis of methylated flavonoids, Ann. N. Y. Acad. Sci. 1398 (2017) 120-129
|
J.M. Alves-Silva, M. Zuzarte, C. Marques, et al., Protective Effects of Phenylpropanoids and Phenylpropanoid-rich Essential Oils on the Cardiovascular System, Mini. Rev. Med. Chem. 19 (2019) 1459-1471
|
Study on antihypertensive effect and mechanism of Duzhongye granules [master’s thesis], Henan University, Henan.
|
M. Dong, B.P. Yan, J.K. Liao, et al., Rho-kinase inhibition: a novel therapeutic target for the treatment of cardiovascular diseases, Drug Discov. Today. 15 (2010) 622-629
|
P. Vabres, A. Sorlin, S.-S. Kholmanskikh, et al., Postzygotic inactivating mutations of RHOA cause a mosaic neuroectodermal syndrome, Nat. Genet. 51 (2019) 1438-1441
|
V. Ravarotto, E. Pagnin, A. Fragasso, et al., Angiotensin II and Cardiovascular-Renal Remodelling in Hypertension: Insights from a Human Model Opposite to Hypertension, High Blood Press. Cardiovasc. Prev. 22 (2015) 215-223
|
R.A. Elrashidy, J. Zhang, G. Liu, Long-term consumption of Western diet contributes to endothelial dysfunction and aortic remodeling in rats: Implication of Rho-kinase signaling, Clin. Exp. Hypertens. 41(2019) 174-180
|
R.V. Patel, B.M. Mistry, S.K. Shinde, et al., Therapeutic potential of quercetin as a cardiovascular agent, Eur. J. Med. Chem. 155 (2018) 889-904
|
M. Kondo, Y. Izawa-Ishizawa, M. Goda, et al., Preventive Effects of Quercetin against the Onset of Atherosclerosis-Related Acute Aortic Syndromes in Mice, Int. J. Mol. Sci. 21 (2020), 7226
|
Q. Deng, X.X. Li, Y. Fang, et al., Therapeutic Potential of Quercetin as an Antiatherosclerotic Agent in Atherosclerotic Cardiovascular Disease: A Review, Evid. Based Complement Alternat. Med. 2020 (2020), 5926381
|
K. Yamagata, Polyphenols Regulate Endothelial Functions and Reduce the Risk of Cardiovascular Disease, Curr. Pharm. Des. 25 (2019) 2443-2458
|
X.-M. Zhou, H. Yao, M.-L. Xia, et al., Comparison of vasodilatation effect between quercetin and rutin in the isolated rat thoracic aorta, Zhejiang Da Xue Xue Bao Yi Xue Ban 35 (2006) 29-33
|
S. Nishida, H. Satoh, Comparative vasodilating actions among terpenoids and flavonoids contained in Ginkgo biloba extract, Clin. Chim. Acta 339 (2004) 129-133
|
Y.-M. Zhang, Z.-Y. Zhang, R.-X. Wang, Protective Mechanisms of Quercetin Against Myocardial Ischemia Reperfusion Injury, Front. Physiol. 11 (2020) 956
|
M. Luo, R. Tian, N. Lu, Quercetin Inhibited Endothelial Dysfunction and Atherosclerosis in Apolipoprotein E-Deficient Mice: Critical Roles for NADPH Oxidase and Heme Oxygenase-1, J. Agric. Food Chem. 68 (2020) 10875-10883
|
X. Chen, H. Li, Z. Wang, et al., Quercetin protects the vascular endothelium against iron overload damages via ROS/ADMA/DDAHII/eNOS/NO pathway, Eur. J. Pharmacol. 868 (2020), 172885
|
M. Houston, L. Hays, Acute effects of an oral nitric oxide supplement on blood pressure, endothelial function, and vascular compliance in hypertensive patients, J. Clin. Hypertens. (Greenwich) 16 (2014) 524-529
|
D. Maaliki, A.A. Shaito, G. Pintus, et al., Flavonoids in hypertension: a brief review of the underlying mechanisms, Curr. Opin. Pharmacol. 45 (2019) 57-65
|
Y. Gao, T. Chen, J.U. Raj, Endothelial and smooth muscle cell interactions in the pathobiology of pulmonary hypertension, Am. J. Respir. Cell Mol. Biol. 54 (2016) 451-460
|
C.R. Kuhlmann, C.A. Schaefer, C. Kosok, et al., Quercetin-induced induction of the NO/cGMP pathway depends on Ca2+-activated K+ channel-induced hyperpolarization-mediated Ca2+-entry into cultured human endothelial cells, Planta Med. 71 (2005) 520-524
|
W. Aoi, N. Niisato, H. Miyazaki, et al., Flavonoid-induced reduction of ENaC expression in the kidney of Dahl salt-sensitive hypertensive rat, Biochem. Biophys. Res. Commun. 315 (2004) 892-896
|
P. Sandner, E.-M. Becker-Pelster, J.P. Stasch, Discovery and development of sGC stimulators for the treatment of pulmonary hypertension and rare diseases, Nitric Oxide 77 (2018) 88-95
|
S. Lei, F. Peng, M.-L. Li, et al., LncRNA-SMILR modulates RhoA/ROCK signaling by targeting miR-141 to regulate vascular remodeling in pulmonary arterial hypertension, Am. J. Physiol. Heart Circ. Physiol. 319 (2020) H377-H391
|
A. Rühle, C. Elgert, M.G. Hahn, et al., Tyrosine 135 of the β subunit as binding site of BAY-543: Importance of the Y-x-S-x-R motif for binding and activation by sGC activator drugs, Eur. J. Pharmacol. 881 (2020), 173203
|
J.S. Zhao, W. Deng, H.W. Liu, Effects of chlorogenic acid-enriched extract from Eucommia ulmoides leaf on performance, meatquality, oxidative stability, and fatty acid profile of meat in heat-stressed broilers, Poult. Sci. 98 (2019) 3040-3049
|
N. Liang, D.D. Kitts, Role of chlorogenic acids in controlling oxidative and inflammatory stress conditions, Nutrients 8 (2015) 16-36
|
Y. Kono, S. Kashine, T. Yoneyama, et al., Iron chelation by chlorogenic acid as a natural antioxidant, Biosci. Biotechnol. Biochem. 62 (1998) 22-27
|
S.J. Duthie, A.R. Collins, G.G. Duthie, et al., Quercetin and myricetin protect against hydrogen peroxide-induced DNA damage (strand breaks and oxidised pyrimidine) in human lymphocytes, Mutat. Res. 393 (1997) 223-231
|
H.-Y. Xue, G.-Z. Gao, Q.-Y. Lin, et al., Protective effects of aucubin on H2O2-induced apoptosis in PC12 cells, Phytother. Res. 26 (2012) 369-374
|
I.-C. Young, S.-T. Chuang, C.-H. Hsu, et al., Protective effects of aucubin on osteoarthritic chondrocyte model induced by hydrogen peroxide and mechanical stimulus, BMC Complement Altern. Med. 17 (2017), 91
|
J. Cheng, C.-C. Wu, K.H. Gotlinger, et al., 20-Hydroxy-5,8,11,14-eicosatetraenoic acid mediates endothelial dysfunction via IkappaB kinase-dependent endothelial nitric-oxide synthase uncoupling, J. Pharmacol. Exp. Ther. 332 (2010) 57-65
|
M. Zhang, L. Jiang, Oxidized low-density lipoprotein decreases VEGFR2 expression in HUVECs and impairs angiogenesis, Exp. Ther. Med. 12 (2016) 3742-3748
|
R. Kuroda, K. Kazumura, M. Ushikata, et al., Elucidating the improvement in vascular endothelial function from sakurajima daikon and its mechanism of action: a comparative study with raphanus sativus, J. Agric. Food Chem. 66 (2018) 8714-8721
|
X.-P. Lin, H.-J. Cui, A.-L. Yang, et al., Astragaloside IV improves vasodilatation function by regulating the PI3K/Akt/eNOS signaling pathway in rat aorta endothelial cells, J. Vasc. Res. 55 (2018) 169-176
|
E.-D. Harris, Regulation of antioxidant enzymes, FASEB J. 6 (1992) 2675-2683
|
B.C. Bai, Y.Y. Yang, Q. Wang, et al., NLRP3 inflammasome in endothelial dysfunction, Cell Death Dis. 11 (2020), 776
|
C.-Y. Kwan, C.-X. Chen, T. Deyama, et al., Endothelium dependent vasorelaxant effects of the aqueous extracts of the Eucommia ulmoides Oliv. leaf and bark: Implications on their antihypertensive action, Vasc. Pharmacol. 40 (2003) 229-235
|
S. Tsukamoto, Y. Yamaguchi, T. Ueda, et al., Hypotensive effects of beverage containing ‘Eucommia leaf glycoside’ on high normal blood pressure and mild hypertensive subjects, Int. Symp. Eucommia Ulmoides. 1 (2007) 47-54
|
J. Mei, F. Yang, Progress of Eucommia ulmoides in treatment of hypertension, World Latest Med. Inform (Electr. Vers.) 18 (2018) 35-36
|
E. Józefczuk, R. Nosalski, B. Saju, et al., Cardiovascular effects of pharmacological targeting of sphingosine kinase 1, Hypertens. 75 (2020) 383-392
|
J.-Y. Moon, Recent update of renin-angiotensin-aldosterone system in the pathogenesis of hypertension, Electrolyte. Blood Press. 11 (2013) 41-45
|
G. Edwards, K.A. Dora, M.J. Gardener, et al., K+ is an endothelium-derived hyperpolarizing factor in rat arteries, Nature 396 (1998) 269-272
|
X. Jin, K. Amitani, Y. Zamami, et al., Ameliorative effect of Eucommia ulmoides Oliv. leaves extract (ELE) on insulin resistance and abnormal perivascular innervation in fructose-drinking rats, J. Ethnopharmacol. 128 (2010) 672-678
|
H. Chen, W. Zhao, Y. Liu, et al., Effect of quercetin on calcium-activated potassium channels in mesenteric artery smooth muscle cells in essential hypertension patients, Chin. J. Hypertens. 16 (2008) 707-711
|
G. Mancia, G. Grassi. The autonomic nervous system and hypertension, Circ. Res. 114 (2014) 1804-1814
|
G. Seravalle, L. Lonati, S. Buzzi, et al., Sympathetic nerve traffic and baroreflex function in optimal, normal, and high-normal blood pressure states, J. Hypertens. 33 (2015) 1411-1417
|
D. Hering, T. Kara, W. Kucharska, et al., Longitudinal tracking of muscle sympathetic nerve activity and its relationship with blood pressure in subjects with prehypertension, Blood Press. 25 (2016) 184-192
|
T. Deyama, S. Nishibe, Y. Nakazawa, Constituents and pharmacological effects of Eucommia and Siberian ginseng, Acta. Pharm. Sin. 22 (2001) 1057-1070
|
T. Namba, M. Hattori, J. Yie, et al., Studies on Tu-Chung leaves (1): pharmacological effects of the water extract in vivo, J. Trad. Med. 3 (1986) 89-97
|
S. Takatori, Y. Zamami, M. Mio, et al., Chronic hyperinsulinemia enhances adrenergic vasoconstriction and decreases calcitonin gene-related peptide-containing nerve-mediated vasodilation in pithed rats, Hypertens. Res. 29 (2006) 361-368
|
Y. Zamami, S. Takatori, K. Yamawaki, et al., Acute hyperglycemia and hyperinsulinemia enhance adrenergic vasoconstriction and decrease calcitonin gene-related peptide-containing nerve-mediated vasodilation in pithed rats, Hypertens. Res. 31 (2008) 1033-1044
|
X. Wang, X. Zeng, W. Luo, et al., Antihypertensive and target organ protection effect of Eucommia ulmoides and its mechanism, Chin. J. Clin. Pharmacol. Ther. 21 (2016) 1429-1433
|
T. Fujikawa, T. Hirata, A. Wada, et al., Chronic administration of Eucommia leaf stimulates metabolic function of rats across several organs, Br. J. Nutr. 104 (2010) 1868-1877
|
S.A. Park, M.-S. Choi, U.J. Jung, et al., Eucommia ulmoides Oliver leaf extract increases endogenous antioxidant activity in type 2 diabetic mice, J. Med. Food 9 (2006) 474-479
|
D. Luo, T.C. Or, C.L. Yang, et al., Anti-inflammatory activity of iridoid and catechol derivatives from Eucommia ulmoides Oliver, ACS Chem. Neurosci. 5 (2014) 855-866
|
X.-R. Yu, G.-R. Jia, G.-D. Gao, et al., Neuroprotection of insulin against oxidative stress-induced apoptosis in cultured retinal neurons: involvement of phosphoinositide 3-kinase/Akt signal pathway, Acta. Biochim. Biophys. Sin (Shanghai) 38 (2006) 241-248
|
H. Sabbineni, A. Verma, S. Artham, Pharmacological inhibition of β-catenin prevents EndMT in vitro and vascular remodeling in vivo resulting from endothelial Akt1 suppression, Biochem. Pharmacol. 164 (2019) 205-215
|
H. Nakahara, J. Song, M. Sugimoto, Anti-interleukin-6 receptor antibody therapy reduces vascular endothelial growth factor production in rheumatoid arthritis, Arthritis. Rheum. 48 (2003) 1521-1529
|
M.K. Jones, H. Wang, B.M. Peskar, et al., Inhibition of angiogenesis by non-streoidal anti-inflammatory drugs: insight into mechanisms and implications for cancer growth and ulcer healing, Nat. Med. 5 (1999) 1418-1423
|
C.S. Williams, M. Tsujii, J. Reese, et al., Host cyclooxygenase-2 modulates carcinoma growth, J. Clin. Invest. 105 (2000) 1589-1594
|
C.C. Cechinel-Zanchett, RCMVAF da Silva, A. Tenfen, et al., Bauhinia forficata link, a Brazilian medicinal plant traditionally used to treat cardiovascular disorders, exerts endothelium-dependent and independent vasorelaxation in thoracic aorta of normotensive and hypertensive rats, J. Ethnopharmacol. 243 (2019), 112118
|
W. Wu, B. Yang, Y. Qiao, et al., Kaempferol protects mitochondria and alleviates damages against endotheliotoxicity induced by doxorubicin, Biomed. Pharmacother. 126 (2020), 110040
|
G. Vechi, P. de Souza, L.M. da Silva, et al., Eugenia mattosii Mechanisms underlying D. Legrand leaves extract, fractions and compounds induce relaxation of the aorta from normotensive and hypertensive rats, 3 Biotech. 9 (2019), 445
|
A.T. Fabro, J. Machado-Rugolo, C.M. Baldavira, et al., Circulating Plasma miRNA and Clinical/Hemodynamic Characteristics Provide Additional Predictive Information About Acute Pulmonary Thromboembolism, Chronic Thromboembolic Pulmonary Hypertension and Idiopathic Pulmonary Hypertension, Front. Pharmacol. 12 (2021), 648769
|
T.-Y. Wu, T.O. Khor, C.L. Saw, et al., Anti-inflammatory/Anti-oxidative stress activities and differential regulation of Nrf2-mediated genes by non-polar fractions of tea Chrysanthemum zawadskii and licorice Glycyrrhiza uralensis, AAPS J. 13 (2011) https://doi.org/10.1208/s12248-010-9239-4
|
H. Zhang, W. Huang, H. Liu, et al., Mechanical stretching of pulmonary vein stimulates matrix metalloproteinase-9 and transforming growth factor-β1 through stretch-activated channel/MAPK pathways in pulmonary hypertension due to left heart disease model rats, PLoS One 15 (2020), e0235824
|
Y. Yao, T. Liu, L. Yin, et al., Litchi chinensis Polyphenol-Rich Extract from Seeds Alleviates Hypertension-Induced Renal Damage in Rats, J. Agric. Food Chem. 69 (2021) 2138-2148
|
L. Chen, Y. Cui, B. Li, et al., Advanced glycation end products induce immature angiogenesis in in vivo and ex vivo mouse models, Am. J. Physiol. Heart Circ. Physiol. 318 (2020) H519-H533
|