Citation: | Hao Cheng, Juan Liu, Yuzhu Tan, Wuwen Feng, Cheng Peng. Interactions between gut microbiota and berberine, a necessary procedure to understand the mechanisms of berberine[J]. Journal of Pharmaceutical Analysis, 2022, 12(4): 541-555. doi: 10.1016/j.jpha.2021.10.003 |
M.A. Neag, A. Mocan, J. Echeverría, et al., Berberine:Botanical occurrence, traditional uses, extraction methods, and relevance in cardiovascular, metabolic, hepatic, and renal disorders, Front. Pharmacol. 9(2018), 557.
|
Z.L. Fang, Y.Q. Tang, J.M. Ying, et al., Traditional Chinese medicine for antiAlzheimer's disease:Berberine and evodiamine from Evodia rutaecarpa, Chin. Med. 15(2020), 82.
|
Y. Gao, F. Wang, Y. Song, et al., The status of and trends in the pharmacology of berberine:A bibliometric review[19852018], Chin. Med. 15(2020), 7.
|
L. Song, Y. Luo, X.Y. Wang, et al., Exploring the active mechanism of berberine against HCC by systematic pharmacology and experimental validation, Mol. Med. Rep. 20(2019) 4654-4664.
|
M. Li, M. Zhang, Z.L. Zhang, et al., Induction of apoptosis by berberine in hepatocellular carcinoma HepG2 cells via downregulation of NF-kB, Oncol. Res. 25(2017) 233-239.
|
Y.H. Li, W. Sun, B.J. Zhou, et al., iTRAQ-based pharmacoproteomics reveals potential targets of berberine, a promising therapy for ulcerative colitis, Eur. J. Pharmacol. 850(2019) 167-179.
|
J.Q. Tan, J. Wang, C. Yang, et al., Antimicrobial characteristics of berberine against prosthetic joint infection-related Staphylococcus aureus of different multi-locus sequence types, BMC Compl. Alternative Med. 19(2019), 218.
|
W.D. Yao, X. Wang, K. Xiao, Protective effect of berberine against cardiac ischemia/reperfusion injury by inhibiting apoptosis through the activation of Smad7, Mol. Cell. Probes 38(2018) 38-44.
|
L. Zhao, Z. Cang, H. Sun, et al., Berberine improves glucogenesis and lipid metabolism in nonalcoholic fatty liver disease, BMC Endocr. Disord. 17(2017), 13.
|
C.-S. Liu, Y.-R. Zheng, Y.-F. Zhang, et al., Research progress on berberine with a special focus on its oral bioavailability, Fitoterapia 109(2016) 274-282.
|
W. Chen, Y.-Q. Miao, D.-J. Fan, et al., Bioavailability study of berberine and the enhancing effects of TPGS on intestinal absorption in rats, AAPS PharmSciTech 12(2011) 705-711.
|
R. Feng, Z.-X. Zhao, S.-R. Ma, et al., Gut microbiota-regulated pharmacokinetics of berberine and active metabolites in beagle dogs after oral administration, Front. Pharmacol. 9(2018), 214.
|
F. Chen, Q. Wen, J. Jiang, et al., Could the gut microbiota reconcile the oral bioavailability conundrum of traditional herbs? J. Ethnopharmacol. 179(2016) 253-264.
|
A. Pascale, N. Marchesi, C. Marelli, et al., Microbiota and metabolic diseases, Endocrine 61(2018) 357-371.
|
B. Schmidt, I.E. Mulder, C.C. Musk, et al., Establishment of normal gut microbiota is compromised under excessive hygiene conditions, PLoS One 6(2011), e28284.
|
E. Patterson, P.M. Ryan, J.F. Cryan, et al., Gut microbiota, obesity and diabetes, Postgrad. Med. J. 92(2016) 286-300.
|
N. Eliakim-Raz, J. Bishara, Prevention and treatment of Clostridium difficile associated diarrhea by reconstitution of the microbiota, Hum. Vaccines Immunother. 15(2019) 1453-1456.
|
X.Y. Guo, X.J. Liu, J.Y. Hao, Gut microbiota in ulcerative colitis:Insights on pathogenesis and treatment, J. Dig. Dis. 21(2020) 147-159.
|
A.R. Weingarden, B.P. Vaughn, Intestinal microbiota, fecal microbiota transplantation, and inflammatory bowel disease, Gut Microb. 8(2017) 238-252.
|
F. Angelucci, K. Cechova, J. Amlerova, et al., Antibiotics, gut microbiota, and Alzheimer's disease, J. Neuroinflammation 16(2019), 108.
|
J.H. Zhang, J.M. Zhang, R. Wang, Gut microbiota modulates drug pharmacokinetics, Drug Metab. Rev. 50(2018) 357-368.
|
H.I. Swanson, Drug metabolism by the host and gut microbiota:A partnership or rivalry? Drug Metab. Dispos. 43(2015) 1499-1504.
|
K. Noh, Y.R. Kang, M.R. Nepal, et al., Impact of gut microbiota on drug metabolism:An update for safe and effective use of drugs, Arch. Pharm. Res. 40(2017) 1345-1355.
|
W. Feng, H. Ao, C. Peng, et al., Gut microbiota, a new frontier to understand traditional Chinese medicines, Pharm. Res. 142(2019) 176-191.
|
S. Habtemariam, Berberine pharmacology and the gut microbiota:A hidden therapeutic link, Pharmacol. Res. 155(2020), 104722.
|
R. Feng, J.-W. Shou, Z.-X. Zhao, et al., Transforming berberine into its intestine-absorbable form by the gut microbiota, Sci. Rep. 5(2015), 12155.
|
Y. Ji, Y. Yin, Z.R. Li, et al., Gut microbiota-derived components and metabolites in the progression of non-alcoholic fatty liver disease (NAFLD), Nutrients 11(2019), 1712.
|
F. Brial, A.L. Lay, M. Dumas, et al., Implication of gut microbiota metabolites in cardiovascular and metabolic diseases, Cell. Mol. Life Sci. 75(2018) 3977-3990.
|
Y. Tian, J.W. Cai, W. Gui, et al., Berberine directly affects the gut microbiota to promote intestinal farnesoid X receptor activation, Drug Metab. Dispos. 47(2019) 86-93.
|
S.-J. Yue, J. Liu, A.-T. Wang, et al., Berberine alleviates insulin resistance by reducing peripheral branched-chain amino acids, Am. J. Physiol. Endocrinol. Metab. 316(2019) E73eE85.
|
K. Wang, X.C. Feng, L.W. Chai, et al., The metabolism of berberine and its contribution to the pharmacological effects, Drug Metab. Rev. 49(2017) 139-157.
|
N.M. Koropatkin, E.A. Cameron, E.C. Martens, How glycan metabolism shapes the human gut microbiota, Nat. Rev. Microbiol. 10(2012) 323-335.
|
P. Dey, Gut microbiota in phytopharmacology:A comprehensive overview of concepts, reciprocal interactions, biotransformations and mode of actions, Pharmacol. Res. 147(2019), 104367.
|
Y. Li, Y.M. Yin, X.Y. Wang, et al., Evaluation of berberine as a natural fungicide:Biodegradation and antimicrobial mechanism, J. Asian Nat. Prod. Res. 20(2018) 148-162.
|
L.C. Peng, S. Kang, Z.Q. Yin, et al., Antibacterial activity and mechanism of berberine against Streptococcus agalactiae, Int. J. Clin. Exp. Pathol. 8(2015) 5217-5223.
|
X.X. Huang, M.Y. Zheng, Y.L. Yi, et al., Inhibition of berberine hydrochloride on Candida albicans biofilm formation, Biotechnol. Lett. 42(2020) 2263-2269.
|
X.J. Zhang, X.Y. Sun, J.X. Wu, et al., Berberine damages the cell surface of methicillin-resistant Staphylococcus aureus, Front. Microbiol. 11(2020), 621.
|
N. Budeyri Gokgoz, F.G. Avci, K.K. Yoneten, et al., Response of Escherichia coli to prolonged berberine exposure, Microb. Drug Resist. 23(2017) 531-544.
|
D. Wultanska, M. Piotrowski, H. Pituch, The effect of berberine chloride and/ or its combination with vancomycin on the growth, biofilm formation, and motility of Clostridioides difficile, Eur. J. Clin. Microbiol. Infect. Dis. 39(2020) 1391-1399.
|
S. Kang, Z.W. Li, Z.Q. Yin, et al., The antibacterial mechanism of berberine against Actinobacillus pleuropneumoniae, Nat. Prod. Res. 29(2015) 2203-2206.
|
W.J. Kong, X.Y. Xing, X.H. Xiao, et al., Effect of berberine on Escherichia coli, Bacillus subtilis, and their mixtures as determined by isothermal microcalorimetry, Appl. Microbiol. Biotechnol. 96(2012) 503-510.
|
H.J. Pan, Z.F. Li, J. Xie, et al., Berberine influences blood glucose via modulating the gut microbiome in grass carp, Front. Microbiol. 10(2019), 1066.
|
Y. Guo, Y.C. Zhang, W.H. Huang, et al., Dose-response effect of berberine on bile acid profile and gut microbiota in mice, BMC Compl. Alternative Med. 16(2016), 394.
|
D. Liu, Y.Y. Zhang, Y.H. Liu, et al., Berberine modulates gut microbiota and reduces insulin resistance via the TLR4 signaling pathway, Exp. Clin. Endocrinol. Diabetes 126(2018) 513-520.
|
L. Zhu, D.Y. Zhang, H. Zhu, et al., Berberine treatment increases Akkermansia in the gut and improves high-fat diet-induced atherosclerosis in ApoE-/- mice, Atherosclerosis 268(2018) 117-126.
|
Y.F. Shi, J.X. Hu, J. Geng, et al., Berberine treatment reduces atherosclerosis by mediating gut microbiota in ApoE-/- mice, Biomed. Pharmacother. 107(2018) 1556-1563.
|
M. Wu, S.J. Yang, S.Z. Wang, et al., Effect of berberine on atherosclerosis and gut microbiota modulation and their correlation in high-fat diet-fed ApoE-/- mice, Front. Pharmacol. 11(2020), 223.
|
Y.Z. Wang, J.M. Zheng, H.T. Hou, et al., Effects of berberine on intestinal flora of non-alcoholic fatty liver induced by high-fat diet through 16S rRNA gene segmentation, J. King Saud Univ. Sci. 32(2020) 2603-2609.
|
D.H. Li, J.M. Zheng, Y.T. Hu, et al., Amelioration of intestinal barrier dysfunction by berberine in the treatment of nonalcoholic fatty liver disease in rats, Pharmacogn. Mag. 13(2017) 677-682.
|
Z.Q. Liao, Y.Z. Xie, B.J. Zhou, et al., Berberine ameliorates colonic damage accompanied with the modulation of dysfunctional bacteria and functions in ulcerative colitis rats, Appl. Microbiol. Biotechnol. 104(2020) 1737-1749.
|
H.T. Cui, Y.Z. Cai, L. Wang, et al., Berberine regulates Treg/Th17 balance to treat ulcerative colitis through modulating the gut microbiota in the colon, Front. Pharmacol. 9(2018), 571.
|
H.T. Chen, F. Zhang, J. Zhang, et al., A holistic view of berberine inhibiting intestinal carcinogenesis in conventional mice based on microbiomemetabolomics analysis, Front. Immunol. 11(2020), 588079.
|
Y. Wang, J.W. Shou, X.Y. Li, et al., Berberine-induced bioactive metabolites of the gut microbiota improve energy metabolism, Metabolism 70(2017) 72-84.
|
C.N. Li, X. Wang, L. Lei, et al., Berberine combined with stachyose induces better glycometabolism than berberine alone through modulating gut microbiota and fecal metabolomics in diabetic mice, Phytother. Res. 34(2020) 1166-1174.
|
W. Zhang, J.-H. Xu, T. Yu, et al., Effects of berberine and metformin on intestinal inflammation and gut microbiome composition in db/db mice, Biomed. Pharmacother. 118(2019), 109131.
|
M.F. Yue, Y. Tao, Y.L. Fang, et al., The gut microbiota modulator berberine ameliorates collagen-induced arthritis in rats by facilitating the generation of butyrate and adjusting the intestinal hypoxia and nitrate supply, Faseb. J. 33(2019) 12311-12323.
|
X. Jia, L. Jia, L. Mo, et al., Berberine ameliorates periodontal bone loss by regulating gut microbiota, J. Dent. Res. 98(2019) 107-116.
|
X. Zhang, Y.F. Zhao, M.H. Zhang, et al., Structural changes of gut microbiota during berberine-mediated prevention of obesity and insulin resistance in high-fat diet-fed rats, PLoS One 7(2012), e42529.
|
Z. Du, Q. Wang, X. Huang, et al., Effect of berberine on spleen transcriptome and gut microbiota composition in experimental autoimmune uveitis, Int. Immunopharm. 81(2020), 106270.
|
S. Li, N. Wang, H.-Y. Tan, et al., Modulation of gut microbiota mediates berberine-induced expansion of immuno-suppressive cells to against alcoholic liver disease, Clin. Transl. Med. 10(2020), e112.
|
Y. Yao, H. Chen, L. Yan, et al., Berberine alleviates type 2 diabetic symptoms by altering gut microbiota and reducing aromatic amino acids, Biomed. Pharmacother. 131(2020), 110669.
|
Q. Jia, L. Zhang, J. Zhang, et al., Fecal microbiota of diarrhea-predominant irritable bowel syndrome patients causes hepatic inflammation of germ-free rats and berberine reverses it partially, BioMed Res. Int. 2019(2019), 4530203.
|
H.L. Sun, N.J. Wang, Z. Cang, et al., Modulation of microbiota-gut-brain axis by berberine resulting in improved metabolic status in high-fat diet-fed rats, Obes. Facts 9(2016) 365-378.
|
J.H. Xu, X.Z. Liu, W. Pan, et al., Berberine protects against diet-induced obesity through regulating metabolic endotoxemia and gut hormone levels, Mol. Med. Rep. 15(2017) 2765-2787.
|
X. Zhang, Y.F. Zhao, J. Xu, et al., Modulation of gut microbiota by berberine and metformin during the treatment of high-fat diet-induced obesity in rats, Sci. Rep. 5(2015), 14405.
|
M. Li, X. Shu, H. Xu, et al., Integrative analysis of metabolome and gut microbiota in diet-induced hyperlipidemic rats treated with berberine compounds, J. Transl. Med. 14(2016), 237.
|
H. Chen, F. Zhang, R. Li, et al., Berberine regulates fecal metabolites to ameliorate 5-fluorouracil induced intestinal mucositis through modulating gut microbiota, Biomed. Pharmacother. 124(2020), 109829.
|
W. Cao, L. Hu, H. Chen, et al., Berberine alleviates chronic inflammation of mouse model of type 2 diabetes by adjusting intestinal microbes and inhibiting TLR4 signaling pathway, Int. J. Clin. Exp. Med. 10(2017) 10267-10276.
|
H.-X. Cui, Y.-N. Hu, J.-W. Li, et al., Hypoglycemic mechanism of the berberine organic acid salt under the synergistic effect of intestinal flora and oxidative stress, Oxid. Med. Cell. Longev. 2018(2018), 8930374.
|
H. Wang, L. Guan, J. Li, et al., The effects of berberine on the gut microbiota in Apc min/þ mice fed with a high fat diet, Molecules 23(2018), 2298.
|
Q. Feng, W.-D. Chen, Y.-D. Wang, Gut microbiota:An integral moderator in health and disease, Front. Microbiol. 9(2018), 151.
|
E.S. Chambers, T. Preston, G. Frost, et al., Role of gut microbiota-generated short-chain fatty acids in metabolic and cardiovascular health, Curr. Nutr. Rep. 7(2018) 198-206.
|
E.E. Canfora, R.C.R. Meex, K. Venema, et al., Gut microbial metabolites in obesity, NAFLD and T2DM, Nat. Rev. Endocrinol. 15(2019) 261-273.
|
Z.H. Zhao, J.K.L. Lai, L. Qiao, et al., Role of gut microbial metabolites in nonalcoholic fatty liver disease, J. Dig. Dis. 20(2019) 181-188.
|
T. Doifode, V.V. Giridharan, J.S. Generoso, et al., The impact of the microbiotagut-brain axis on Alzheimer's disease pathophysiology, Pharmacol. Res. 24(2020), 105314.
|
M.A.G. Hernandez, E.E. Canfora, J.W.E. Jocken, et al., The short-chain fatty acid acetate in body weight control and insulin sensitivity, Nutrients 11(2019), 1943.
|
P. Sittipo, J.-W. Shim, Y.K. Lee, Microbial metabolites determine host health and the status of some diseases, Int. J. Mol. Sci. 20(2019), 5296.
|
H. Ohira, W. Tsutsui, Y. Fujioka, Are short chain fatty acids in gut microbiota defensive players for inflammation and atherosclerosis? J. Atherosclerosis Thromb. 24(2017) 660-672.
|
D.J. Morrison, T. Preston, Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism, Gut Microb. 7(2016) 189-200.
|
J.M. Hu, S.L. Lin, B.D. Zheng, et al., Short-chain fatty acids in control of energy metabolism, Crit. Rev. Food Sci. Nutr. 58(2018) 1243-1249.
|
J. Tan, C. McKenzie, M. Potamitis, et al., The role of short-chain fatty acids in health and disease, Adv. Immunol. 121(2014) 91-119.
|
T. Ulven, Short-chain free fatty acid receptors FFA2/GPR43 and FFA3/GPR41 as new potential therapeutic targets, Front. Endocrinol. 3(2012), 111.
|
W. Feng, H. Ao, C. Peng, Gut microbiota, short-chain fatty acids, and herbal medicines, Front. Pharmacol. 9(2018), 1354.
|
K.J. Falkenberg, R.W. Johnstone, Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders, Nat. Rev. Drug Discov. 13(2014) 673-691.
|
M.S. Alavi, A. Shamsizadeh, H. Azhdari-Zarmehri, et al., Orphan G proteincoupled receptors:The role in CNS disorders, Biomed. Pharmacother. 98(2018) 222-232.
|
C. Recio, D. Lucy, P. Iveson, et al., The role of metabolite-sensing G proteincoupled receptors in inflammation and metabolic disease, Antioxidants Redox Signal. 29(2018) 237-256.
|
J. Wang, C. Gareri, A.H. Rockman, G-protein-coupled receptors in heart disease, Circ. Res. 123(2018) 716-735.
|
P. Melbye, A. Olsson, T.H. Hansen, et al., Short-chain fatty acids and gut microbiota in multiple sclerosis, Acta Neurol. Scand. 139(2019) 208-219.
|
B.J.H. Verhaar, A. Prodan, M. Nieuwdorp, et al., Gut microbiota in hypertension and atherosclerosis:A review, Nutrients 12(2020), 2982.
|
G. Wang, Y. Yu, Y.Z. Wang, et al., Role of SCFAs in gut microbiome and glycolysis for colorectal cancer therapy, J. Cell. Physiol. 234(2019) 17023-17049.
|
D.P. Venegas, M.K. De la Fuente, G. Landskron, et al., Corrigendum:Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases, Front. Immunol. 10(2019), 1486.
|
D.K. Mandaliya, S. Seshadri, Short chain fatty acids, pancreatic dysfunction and type 2 diabetes, Pancreatology 19(2019) 280-284.
|
S. Xiao, Z. Zhang, M. Chen, et al., Xiexin Tang ameliorates dyslipidemia in high-fat diet-induced obese rats via elevating gut microbiota-derived short chain fatty acids production and adjusting energy metabolism, J. Ethnopharmacol. 241(2019), 112032.
|
I. Khan, S. Pathan, X.A. Li, et al., Far infrared radiation induces changes in gut microbiota and activates GPCRs in mice, J. Adv. Res. 22(2019) 145-152.
|
M. Vital, A.C. Howe, J.M. Tiedje, Revealing the bacterial butyrate synthesis pathways by analyzing (meta)genomic data, mBio 5(2014), e00889.
|
M. Sun, W. Wu, Z. Liu, et al., Microbiota metabolite short chain fatty acids, GPCR, and inflammatory bowel diseases, J. Gastroenterol. 52(2017) 1-8.
|
L.L. Wang, H.H. Guo, S. Huang, et al., Comprehensive evaluation of SCFA production in the intestinal bacteria regulated by berberine using gaschromatography combined with polymerase chain reaction, J. Chromatogr. B. 1057(2017) 70-80.
|
J.J.G. Marin, R.I. Macias, O. Briz, et al., Bile acids in physiology, pathology and pharmacology, Curr. Drug Metabol. 17(2015) 4-29.
|
S.L. Long, C.G.M. Gahan, S.A. Joyce, Interactions between gut bacteria and bile in health and disease, Mol. Aspect. Med. 56(2017) 54-65.
|
E.F. Enright, B.T. Griffin, C.G.M. Gahan, et al., Microbiome-mediated bile acid modification:Role in intestinal drug absorption and metabolism, Pharmacol. Res. 133(2018) 170-186.
|
J.M. Ridlon, D.J. Kang, P.B. Hylemon, et al., Bile acids and the gut microbiome, Curr. Opin. Gastroenterol. 30(2014) 332-338.
|
K.C. Doerner, F. Takamine, C.P. LaVoie, et al., Assessment of fecal bacteria with bile acid 7 alpha-dehydroxylating activity for the presence of Bai-like genes, Appl. Environ. Microbiol. 63(1997) 1185-1188.
|
M.D. Chow, Y.H. Lee, G.L. Guo, The role of bile acids in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis, Mol. Aspect. Med. 56(2017) 34-44.
|
C. Wang, C. Zhu, L. Shao, et al., Role of bile acids in dysbiosis and treatment of nonalcoholic fatty liver disease, Mediators Inflamm. 2019(2019), 7659509.
|
Y. Li, R.Q. Tang, P.S.C. Leung, et al., Bile acids and intestinal microbiota in autoimmune cholestatic liver diseases, Autoimmun. Rev. 16(2017) 885-896.
|
J.A. Gonz alez-Regueiro, L. Moreno-Castaneda, M. Uribe, et al., The role of bile~acids in glucose metabolism and their relation with diabetes, Ann. Hepatol. 16(2017) 16-21.
|
E. Martinot, L. Sedes, M. Baptissart, et al., Bile acids and their receptors, Mol. Aspect. Med. 56(2017) 2-9.
|
J.Y. Chiang, Bile acid metabolism and signaling, Comp. Physiol. 3(2013) 1191-1212.
|
S. Fiorucci, M. Biagioli, A. Zampella, et al., Bile acids activated receptors regulate innate immunity, Front. Immunol. 9(2018), 1853.
|
R. Sun, N. Yang, B. Kong, et al., Orally administered berberine modulates hepatic lipid metabolism by altering microbial bile acid metabolism and the intestinal FXR signaling pathway, Mol. Pharmacol. 91(2017) 110-122.
|
M.T. Velasquez, A. Ramezani, A. Manal, et al., Trimethylamine N-oxide:The good, the bad and the unknown, Toxins 8(2016), 326.
|
S. Rath, B. Heidrich, D.H. Pieper, et al., Uncovering the trimethylamine-producing bacteria of the human gut microbiota, Microbiome 5(2017), 54.
|
J. Chhibber-Goel, A. Gaur, V. Singhal, et al., The complex metabolism of trimethylamine in humans:Endogenous and exogenous sources, Expert Rev. Mol. Med. 18(2016), e8.
|
D. Fennema, I.R. Phillips, E.A. Shephard, Trimethylamine and trimethylamine N-oxide, a flavin-containing monooxygenase 3(FMO3)-mediated hostmicrobiome metabolic axis implicated in health and disease, Drug Metab. Dispos. 44(2016) 1839-1850.
|
S. Subramaniam, C. Fletcher, Trimethylamine N-oxide:Breathe new life, Br. J. Pharmacol. 175(2018) 1344-1353.
|
A. Wilson, C. McLean, R.B. Kim, Trimethylamine-N-oxide:A link between the gut microbiome, bile acid metabolism, and atherosclerosis, Curr. Opin. Lipidol. 27(2016) 148-154.
|
A.U. Din, A. Hassan, Y. Zhu, et al., Amelioration of TMAO through probiotics and its potential role in atherosclerosis, Appl. Microbiol. Biotechnol. 103(2019) 9217-9228.
|
J.J. DiNicolantonio, M. McCarty, J. OKeefe, Association of moderately elevated trimethylamine N-oxide with cardiovascular risk:Is TMAO serving as a marker for hepatic insulin resistance, Open Heart 6(2019), e000890.
|
C.W.H. Chan, B.M.H. Law, M.M.Y. Waye, et al., Trimethylamine-N-oxide as one hypothetical link for the relationship between intestinal microbiota and cancer-where we are and where shall we go? J. Cancer 10(2019) 5874-5882.
|
J. Oellgaard, S.A. Winther, T.S. Hansen, et al., Trimethylamine N-oxide (TMAO) as a new potential therapeutic target for insulin resistance and cancer, Curr. Pharm. Des. 23(2017) 3699-3712.
|
Z. Li, Z. Wu, J. Yan, et al., Gut microbe-derived metabolite trimethylamine Noxide induces cardiac hypertrophy and fibrosis, Lab. Invest. 99(2019) 346-357.
|
X. Li, J. Geng, J. Zhao, et al., Trimethylamine N-oxide exacerbates cardiac fibrosis via activating the NLRP3 inflammasome, Front. Physiol. 10(2019), 866.
|
X. Sun, X. Jiao, Y. Ma, et al., Trimethylamine N-oxide induces inflammation and endothelial dysfunction in human umbilical vein endothelial cells via activating ROS-TXNIP-NLRP3 inflammasome, Biochem. Biophys. Res. Commun. 481(2016) 63-70.
|
M.-L. Chen, X.-H. Zhu, L. Ran, et al., Trimethylamine-N-oxide induces vascular inflammation by activating the NLRP3 inflammasome through the SIRT3-SOD2-mtROS signaling pathway, J. Am. Heart. Assoc. 6(2017), e006347.
|
K.M. Boini, T. Hussain, P.-L. Li, et al., Trimethylamine-N-oxide instigates NLRP3 inflammasome activation and endothelial dysfunction, Cell. Physiol. Biochem. 44(2017) 152-162.
|
Z. Yang, S. Huang, D.Y. Zou, et al., Metabolic shifts and structural changes in the gut microbiota upon branched-chain amino acid supplementation in middle-aged mice, Amino Acids 48(2016) 2731-2745.
|
T.M.A. Franco, J.S. Blanchard, Bacterial branched-chain amino acid biosynthesis:Structures, mechanisms, and drugability, Biochemistry 56(2017) 5849-5865.
|
H.K. Pedersen, V. Gudmundsdottir, H.B. Nielsen, et al., Human gut microbes impact host serum metabolome and insulin sensitivity, Nature 535(2016) 376-381.
|
E.P. Neis, C.H. Dejong, S.S. Rensen, The role of microbial amino acid metabolism in host metabolism, Nutrients 7(2015) 2930-2946.
|
Z.-L. Dai, G.Y. Wu, W.-Y. Zhu, Amino acid metabolism in intestinal bacteria:Links between gut ecology and host health, Front. Biosci. (Landmark Ed). 16(2011) 1768-1786.
|
S.-K. Hwang, H.-H. Kim, The functions of mTOR in ischemic diseases, BMB Rep. 44(2011) 506-511.
|
H. Hua, Q. Kong, H. Zhang, et al., Targeting mTOR for cancer therapy, J. Hematol. Oncol. 12(2019), 71.
|
M.-S. Yoon, The emerging role of branched-chain amino acids in insulin resistance and metabolism, Nutrients 8(2016), 405.
|
E. Blomstrand, J. Eliasson, H.K. Karlsson, et al., Branched-chain amino acids activate key enzymes in protein synthesis after physical exercise, J. Nutr. 136(2006) 269Se273S.
|
Y. Shimomura, Y. Kitaura, Physiological and pathological roles of branchedchain amino acids in the regulation of protein and energy metabolism and neurological functions, Pharmacol. Res. 133(2018) 215-217.
|
J.D. Berke, What does dopamine mean? Nat. Neurosci. 21(2018) 787-793.
|
A. Moreira da Silva Santos, J.P. Kelly, P. Dockery, et al., Effect of a binge-like dosing regimen of methamphetamine on dopamine levels and tyrosine hydroxylase expressing neurons in the rat brain, Prog. Neuropsychopharmacol. Biol. Psychiatry 89(2019) 303-309.
|
J. Belik, Y. Shifrin, E. Arning, et al., Corrigendum:Intestinal microbiota as a tetrahydrobiopterin exogenous source in hph-1 mice, Sci. Rep. 7(2017), 44161.
|
Y. Wang, Q. Tong, S.-R. Ma, et al., Oral berberine improves brain dopa/dopamine levels to ameliorate Parkinson's disease by regulating gut microbiota, Signal Transduct Target. Ther. 6(2021), 77.
|
M. Modoux, N. Rolhion, S. Mani, et al., Tryptophan metabolism as a pharmacological target, Trends Pharmacol. Sci. 42(2021) 60-73.
|
J. Zhang, S. Zhu, N. Ma, et al., Metabolites of microbiota response to tryptophan and intestinal mucosal immunity:A therapeutic target to control intestinal inflammation, Med. Res. Rev. 41(2021) 1061-1088.
|
W. Jing, S. Dong, X. Luo, et al., Berberine improves colitis by triggering AHR activation by microbial tryptophan catabolites, Pharmacol. Res. 64(2021), 105358.
|
F. Di Lorenzo, C. De Castro, A. Silipo, et al., Lipopolysaccharide structures of Gram-negative populations in the gut microbiota and effects on host interactions, FEMS Microbiol. Rev. 43(2019) 257-272.
|
J.B. Soares, P. Pimentel-Nunes, R. Roncon-Albuquerque, et al., The role of lipopolysaccharide/toll-like receptor 4 signaling in chronic liver diseases, Hepatol. Int. 4(2010) 659-672.
|
L.G. Hersoug, P. Møller, S. Loft, Gut microbiota-derived lipopolysaccharide uptake and trafficking to adipose tissue:Implications for inflammation and obesity, Obes. Rev. 17(2016) 297-312.
|
E. Bianconi, A. Piovesan, F. Facchin, et al., An estimation of the number of cells in the human body, Ann. Hum. Biol. 40(2013) 463-471.
|
C.A. Lozupone, J.I. Stombaugh, J.I. Gordon, et al., Diversity, stability and resilience of the human gut microbiota, Nature 489(2012) 220-230.
|
X.C. Morgan, N. Segata, C. Huttenhower, Biodiversity and functional genomics in the human microbiome, Trends Genet. 29(2013) 51-58.
|
C. Pan, Q. Guo, N. Lu, Role of gut microbiota in the pharmacological effects of natural products, Evid. Based Complement. Alternat. Med. 2019(2019), 2682748.
|
L. Tan, Y. Wang, G. Ai, et al., Dihydroberberine, a hydrogenated derivative of berberine firstly identified in Phellodendri Chinese Cortex, exerts anti-inflammatory effect via dual modulation of NF-kB and MAPK signaling pathways, Int. Immunopharm. 75(2019), 105802.
|
C. Bryant, L. Hubbard, W.D. McElroy, Cloning, nucleotide sequence, and expression of the nitroreductase gene from Enterobacter cloacae, J. Biol. Chem. 266(1991) 4126-4130.
|
J. Song, S. Zhang, L. Lu, Fungal cytochrome P450 protein cyp51:What we can learn from its evolution, regulons and cyp51-based azole resistance, Fungal Biol. Rev. 32(2018) 131-142.
|
Z.-W. Zhang, L. Cong, R. Peng, et al., Transformation of berberine to its demethylated metabolites by the CYP51 enzyme in the gut microbiota, J. Pharm. Anal. 11(2021) 628-637.
|
X.-T. Yu, Y.-F. Xu, Y.-F. Huang, et al., Berberrubine attenuates mucosal lesions and inflammation in dextran sodium sulfate-induced colitis in mice, PLoS One 13(2018), e0194069.
|
L. Zhu, P. Gu, H. Shen, Protective effects of berberine hydrochloride on DSSinduced ulcerative colitis in rats, Int. Immunopharm. 68(2019) 242-251.
|
Z. Zhao, Q. Wei, W. Hua, et al., Hepatoprotective effects of berberine on acetaminophen-induced hepatotoxicity in mice, Biomed. Pharmacother. 103(2018) 1319-1326.
|
M. Abd El-Salama, H. Mekky, E.M.B. El-Naggar, et al., Hepatoprotective properties and biotransformation of berberine and berberrubine by cell suspension cultures of dodonaea viscosa and ocimum basilicum, South Afr. J. Bot. 97(2015) 191-195.
|
Y.T. Liu, H.P. Hao, H.G. Xie, et al., Extensive intestinal first-pass elimination and predominant hepatic distribution of berberine explain its low plasma levels in rats, Drug Metab. Dispos. 38(2010) 1779-1784.
|
X. Wang, S. Wang, J. Ma, et al., Pharmacokinetics in rats and tissue distribution in mouse of berberrubine by UPLC-MS/MS, J. Pharm. Biomed. Anal.115(2015) 368-374.
|
H. Wu, K. He, Y. Wang, et al., The antihypercholesterolemic effect of jatrorrhizine isolated from Rhizoma Coptidis, Phytomedicine 21(2014) 1373-1381.
|
P. Wang, X.Y. Gao, S.Q. Yang, et al., Jatrorrhizine inhibits colorectal carcinoma proliferation and metastasis through Wnt/b-catenin signaling pathway and epithelial-mesenchymal transition, Drug Des. Dev. Ther. 13(2019) 2235-2247.
|
J. Hallajzadeh, P. Maleki Dana, M. Mobini, et al., Targeting of oncogenic signaling pathways by berberine for treatment of colorectal cancer, Med. Oncol. 37(2020), 49.
|
S.F. Dong, Y. Hong, M. Liu, et al., Berberine attenuates cardiac dysfunction in hyperglycemic and hypercholesterolemic rats, Eur. J. Pharmacol. 660(2011) 368-374.
|
R. Shi, H. Zhou, B. Ma, et al., Pharmacokinetics and metabolism of jatrorrhizine, a gastric prokinetic drug candidate, Biopharm Drug Dispos. 33(2012) 135-145.
|
M.Y. Zhang, Y.Y. Yu, S.F. Wang, et al., Cardiotoxicity evaluation of nine alkaloids from Rhizoma Coptis, Hum. Exp. Toxicol. 37(2018) 185-195.
|
C. Li, G. Ai, Y. Wang, et al., Oxyberberine, a novel gut microbiota-mediated metabolite of berberine, possesses superior anti-colitis effect:Impact on intestinal epithelial barrier, gut microbiota profile and TLR4-MyD88-NF-kB pathway, Pharmacol. Res. 152(2020), 104603.
|
Y. Dou, R. Huang, Q. Li, et al., Oxyberberine, an absorbed metabolite of berberine, possess superior hypoglycemic effect via regulating the PI3K/Akt and Nrf2 signaling pathways, Biomed. Pharmacother. 137(2021), 111312.
|
C.L. Li, L.H. Tan, Y.F. Wang, et al., Comparison of anti-inflammatory effects of berberine, and its natural oxidative and reduced derivatives from Rhizoma Coptidis in vitro and in vivo, Phytomedicine 52(2019) 272-283.
|
P. Dey, Targeting gut barrier dysfunction with phytotherapies:Effective strategy against chronic diseases, Pharmacol. Res. 161(2020), 105135.
|
U. Heinemann, A. Schuetz, Structural features of tight-junction proteins, Int. J. Mol. Sci. 20(2019), 6020.
|
Z.M. Slifer, A.T. Blikslager, The integral role of tight junction proteins in the repair of injured intestinal epithelium, Int. J. Mol. Sci. 21(2020), 972.
|
S.C. Bischoff, G. Barbara, W. Buurman, et al., Intestinal permeability a new target for disease prevention and therapy, BMC Gastroenterol. 14(2014), 189.
|
V. Schüppel, D. Haller, Intestinal microbiome in chronic diseases:Relevance of gut bacteria in inflammatory bowel diseases and metabolic disorders, Diabetologe 12(2016) 420-427.
|
M. Julio-Pieper, J.A. Bravo, E. Aliaga, et al., Review article:Intestinal barrier dysfunction and central nervous system disorders e a controversial association, Aliment. Pharmacol. Ther. 40(2014) 1187-1201.
|
C. Matuchansky, Food and intestinal barrier function in irritable bowel syndrome, Neurogastroenterol. Motil. 24(2012), 888.
|
A. Michielan, R. D'Inca, Intestinal permeability in in flammatory bowel disease:Pathogenesis, clinical evaluation, and therapy of leaky gut, Mediators Inflamm. 2015(2015), 628157.
|
G. Rogler, G. Rosano, The heart and the gut, Eur. Heart J. 35(2014) 426-430.
|
B. Meijers, R. Farre, S. Dejongh, et al., Intestinal barrier function in chronic kidney disease, Toxins 10(2018), 298.
|
G.R. Sharmila, G. Venkateswaran, Bacillus subtilis CFR5 isolated from fermented soybean attenuates the chronic pancreatitis, J. Funct. Foods 40(2018) 197-206.
|
G.L. Klein, B.W. Petschow, A.L. Shaw, et al., Gut barrier dysfunction and microbial translocation in cancer cachexia:A new therapeutic target, Curr. Opin. Support. Palliat. Care 7(2013) 361-367.
|
J.M. Natividad, E.F. Verdu, Modulation of intestinal barrier by intestinal microbiota:Pathological and therapeutic implications, Pharmacol. Res. 69(2013) 42-51.
|
J. Li, S. Lin, P.M. Vanhoutte, et al., Akkermansia muciniphila protects against atherosclerosis by preventing metabolic endotoxemia-induced inflammation in ApoE-/- mice, Circulation 133(2016) 2434-2446.
|
X. Bian, W. Wu, L. Yang, et al., Administration of Akkermansia muciniphila ameliorates dextran sulfate sodium-induced ulcerative colitis in mice, Front. Microbiol. 10(2019), 2259.
|
D.R. Donohoe, N. Garge, X. Zhang, et al., The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon, Cell Metabol. 13(2011) 517-526.
|
C.J. Kelly, L. Zheng, E.L. Campbell, et al., Crosstalk between microbiotaderived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function, Cell Host Microbe 17(2015) 662-671.
|
W. Liu, X. Luo, J. Tang, et al., A bridge for short-chain fatty acids to affect inflammatory bowel disease, type 1 diabetes, and non-alcoholic fatty liver disease positively:By changing gut barrier, Eur. J. Nutr. 60(2020) 2317-2330.
|
P. Hegyi, J. Maleth, J.R. Walters, et al., Guts and gall:Bile acids in regulation of intestinal epithelial function in health and disease, Physiol. Rev. 98(2018) 1983-2023.
|
S.A. Scott, J. Fu, P.V. Chang, Microbial tryptophan metabolites regulate gut barrier function via the aryl hydrocarbon receptor, Proc. Natl. Acad. Sci. U S A117(2020) 19376-19387.
|
Y.-Y. Chen, R.-Y. Li, M.-J. Shi, et al., Demethyleneberberine alleviates inflammatory bowel disease in mice through regulating NF-kB signaling and Thelper cell homeostasis, Inflamm. Res. 66(2017) 187-196.
|
S. Mollazadeh, A. Sahebkar, F. Hadizadeh, et al., Structural and functional aspects of P-glycoprotein and its inhibitors, Life Sci. 214(2018) 118-123.
|
R. Silva, V. Vilas-Boas, H. Carmo, et al., Modulation of P-glycoprotein efflux pump:Induction and activation as a therapeutic strategy, Pharmacol. Ther.149(2015) 1-123.
|
F.J. Sharom, The P-glycoprotein multidrug transporter, Essays Biochem. 50(2011) 161-178.
|
Q.-S. Xie, J.-X. Zhang, M. Liu, et al., Short-chain fatty acids exert opposite effects on the expression and function of P-glycoprotein and breast cancer resistance protein in rat intestine, Acta Pharmacol. Sin. 42(2021) 470-481.
|
J. Zhang, Q. Xie, W. Kong, et al., Short-chain fatty acids oppositely altered expressions and functions of intestinal cytochrome P4503A and P-glycoprotein and affected pharmacokinetics of verapamil following oral administration to rats, J. Pharm. Pharmacol. 72(2020) 448-460.
|
R. Mazzanti, O. Fantappie, Y. Kamimoto, et al., Bile acid inhibition of P- glycoprotein-mediated transport in multidrug-resistant cells and rat liver canalicular membrane vesicles, Hepatology 20(1994) 170-176.
|
W. Zha, G. Wang, W. Xu, et al., Inhibition of P-glycoprotein by HIV protease inhibitors increases intracellular accumulation of berberine in murine and human macrophages, PLoS One 8(2013), e54349.
|
A. Kumar, Ekavali, J. Mishra, et al., Possible role of P-glycoprotein in the neuroprotective mechanism of berberine in intracerebroventricular streptozotocin-induced cognitive dysfunction, Psychopharmacology (Berl) 233(2016) 137-152.
|
S.M. Jandhyala, R. Talukdar, C. Subramanyam, et al., Role of the normal gut microbiota, World J. Gastroenterol. 21(2015) 8787-8803.
|
J. Gagniere, J. Raisch, J. Veziant, et al., Gut microbiota imbalance and colo- rectal cancer, World J. Gastroenterol. 22(2016) 501-518.
|
K. Lange, M. Buerger, A. Stallmach, et al., Effects of antibiotics on gut microbiota, Dig. Dis. 34(2016) 260-268.
|
J. Ramirez, F. Guarner, L. Bustos Fernandez, et al., Antibiotics as major disruptors of gut microbiota, Front. Cell. Infect. Microbiol. 10(2020), 572912.
|
J. Yin, H. Xing, J. Ye, Efficacy of berberine in patients with type 2 diabetes mellitus, Metabolism 57(2008) 712-717.
|
S.-J. Yue, J. Liu, W.-X. Wang, et al., Berberine treatment-emergent mild diarrhea associated with gut microbiota dysbiosis, Biomed. Pharmacother. 116(2019), 109002.
|
B.S. Wong, M. Camilleri, P. Carlson, et al., Increased bile acid biosynthesis is associated with irritable bowel syndrome with diarrhea, Clin. Gastroenterol. Hepatol. 10(2012), 10091015.e1-3.
|
D. Bornigen, X.C. Morgan, E.A. Franzosa, et al., Functional pro € filing of the gut microbiome in disease-associated inflammation, Genome Med. 5(2013), 65.
|
W. Feng, J. Liu, H. Ao, et al., Targeting gut microbiota for precision medicine:Focusing on the efficacy and toxicity of drugs, Theranostics 10(2020) 11278-11301.
|
P. Dey, The pharmaco-toxicological conundrum of oleander:Potential role of gut microbiome, Biomed. Pharmacother. 129(2020), 110422.
|
Y. Wang, Q. Tong, J.W. Shou, et al., Gut microbiota-mediated personalized treatment of hyperlipidemia using berberine, Theranostics 7(2017) 2443-2451.
|
Z. Zhang, H. Zhang, B. Li, et al., Berberine activates thermogenesis in white and brown adipose tissue, Nat. Commun. 5(2014), 5493.
|
N. Turner, J.-Y. Li, A. Gosby, et al., Berberine and its more biologically available derivative, dihydroberberine, inhibit mitochondrial respiratory complex I:A mechanism for the action of berberine to activate AMP-activated protein kinase and improve insulin action, Diabetes 57(2008) 1414-1418.
|
M. Zimmermann, M. Zimmermann-Kogadeeva, R. Wegmann, et al., Separating host and microbiome contributions to drug pharmacokinetics and toxicity, Science 363(2019), eaat9931.
|