Volume 12 Issue 4
Sep.  2022
Turn off MathJax
Article Contents
Rui-Lin Liu, Ru-Qian Cai. Recent advances in ultrasound-controlled fluorescence technology for deep tissue optical imaging[J]. Journal of Pharmaceutical Analysis, 2022, 12(4): 530-540. doi: 10.1016/j.jpha.2021.10.002
Citation: Rui-Lin Liu, Ru-Qian Cai. Recent advances in ultrasound-controlled fluorescence technology for deep tissue optical imaging[J]. Journal of Pharmaceutical Analysis, 2022, 12(4): 530-540. doi: 10.1016/j.jpha.2021.10.002

Recent advances in ultrasound-controlled fluorescence technology for deep tissue optical imaging

doi: 10.1016/j.jpha.2021.10.002
Funds:

This review was supported by the National Natural Science Foundation of China (Grant No.: 81703466), the Outstanding Talents Research Start-up Fund of Xuzhou Medical University, China (Grant No.: RC20552107), and Xuzhou Science and Technology Bureau, China (Grant No.: KC21292).

  • Received Date: May 07, 2021
  • Accepted Date: Oct. 09, 2021
  • Rev Recd Date: Sep. 13, 2021
  • Publish Date: Oct. 11, 2021
  • Fluorescence imaging is a noninvasive and dynamic real-time imaging technique; however, it exhibits poor spatial resolution in centimeter-deep tissues because biological tissues are highly scattering media for optical radiation. The recently developed ultrasound-controlled fluorescence (UCF) imaging is a novel imaging technique that can overcome this bottleneck. Previous studies suggest that the effective contrast agent and sensitive imaging system are the two pivotal factors for generating high-resolution UCF images ex vivo and/or in vivo. Here, this review highlights the recent advances (2015-2020) in the design and synthesis of contrast agents and the improvement of imaging systems to realize high-resolution UCF imaging of deep tissues. The imaging performances of various UCF systems, including the signal-to-noise ratio, imaging resolution, and imaging depth, are specifically discussed. In addition, the challenges and prospects are highlighted. With continuously increasing research interest in this field and emerging multidisciplinary applications, UCF imaging with higher spatial resolution and larger imaging depth may be developed shortly, which is expected to have a far-reaching impact on disease surveillance and/or therapy.
  • loading
  • J. Qi, C. Sun, D. Li, et al., Aggregation-induced emission luminogen with near-infrared-II excitation and near infrared-I emission for ultra-deep intravital two-photon microscopy, ACS Nano. 12 (2018) 7936-7945
    S. He, J. Song, J. Qu, et al., Crucial breakthrough of second near-infrared biological window fluorophores:design and synthesis toward multimodal imaging and theranostics, Chem. Soc. Rev. 47 (2018) 4258-4278
    E. Hemmer, A. Benayas, F. Legare, et al., Exploiting the biological windows:current perspectives on fluorescent bioprobes emitting above 1000 nm, Nanoscale Horiz. 1 (2016) 168-184
    S. Yu, D. Tu, W. Lian, et al., Lanthanide-doped near-infrared II luminescent nanoprobes for bioapplications, Sci. China Mater. 62 (2019) 1071-1086
    D. Kim, N. Lee, Y. Park, et al., Recent Advances in inorganic nanoparticle-based NIR luminescence imaging:semiconductor nanoparticles and lanthanide nanoparticles, Bioconjugate Chem. 28 (2017) 115-123
    G. Hong, A.L. Antaris, H. Dai, Near-infrared fluorophores for biomedical imaging, Nat. Biomed. Eng. 1 (2017), 0010
    J.A. Carr, D. Franke, J.R. Caram, et al., Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green, Proc. Natl. Acad. Sci., USA. 115 (2018) 4465-4470
    J.V. Frangioni, In vivo near-infrared fluorescence imaging, Curr. Opin. Chem. Biol. 7 (2003) 626-634
    B. Yuan, Y. Liu, P. Mehl, et al., Microbubble-enhanced ultrasound modulated fluorescence in a turbid medium, Appl. Phys. Lett. 95 (2009), 181113
    N.T. Huynh, B.R. Hayes-Gill, F. Zhang, et al., Ultrasound modulated imaging of luminescence generated within a scattering medium, J. Biomed. Opt. 18 (2013), 20505
    Y. Lin, L. Bolisay, M. Ghijsen, et al., Temperature modulated fluorescence tomography in a turbid media, Appl. Phys. Lett. 100 (2012) 73702-737024
    Y. Lin, T.C. Kwong, L. Bolisay, et al., Temperature-modulated fluorescence tomography based on both concentration and lifetime contrast, J. Biomed. Opt. 17 (2012), 056007
    B. Yuan, S. Uchiyama, Y. Liu, et al., High-resolution imaging in a deep turbid medium based on an ultrasound-switchable fluorescence technique, Appl. Phys. Lett. 101 (2012), 33703
    J. Ahmad, B. Jayet, P.J. Hill, Ultrasound-mediation of self-illuminating reporters improves imaging resolution in optically scattering media, Biomed. Opt. Express. 9 (2018) 1664-1679
    X. Xu, H.L. Liu, L.V. Wang, Time-reversed ultrasonically encoded optical focusing into scattering media, Nat. Photonics. 5 (2011) 154-157
    B. Cheng, V. Bandi, S. Yu, et al., The mechanisms and biomedical applications of an NIR BODIPY-based switchable fluorescent probe, Int. J. Mol. Sci. 18 (2017), 384
    R. Liu, T. Yao, Y. Liu, et al., Temperature-sensitive polymeric nanogels encapsulating with β-cyclodextrin and ICG complex for high-resolution deep-tissue ultrasound-switchable fluorescence imaging, Nano Res. 13 (2020) 1100-1110
    S. Yu, B. Cheng, T. Yao, et al., New generation ICG-based contrast agents for ultrasound-switchable fluorescence imaging, Sci. Rep. 6 (2016), 35942
    T.C. Kwong. A new modality for high resolution diffuse optical imaging:Temperature modulated fluorescence tomography[dissertation].[USA]:University of California, Irvine; 2017
    T. Yao, S. Yu, Y. Liu, et al., Ultrasound-switchable fluorescence imaging via an EMCCD camera and a Z-scan method, IEEE J. Sel. Top. Quantum Electron. 25 (2019), 7102108
    Y. Pei, M.-Y. Wei, Newly-engineered materials for bio-Imaging technology:a focus on the hybrid system of ultrasound and fluorescence, Front. Bioeng. Biotech. 7 (2019), 88
    Z. Ma, H. Wan, W. Wang, et al., A theranostic agent for cancer therapy and imaging in the second near infrared window, Nano Res. 12 (2019) 273-279
    A.L. Antaris, H. Chen, K. Cheng, et al., A small-molecule dye for NIR-II imaging, Nat. Mater. 15 (2016) 235-242
    G. Hong, J.C. Lee, J.T. Robinson, et al., Multifunctional in vivo vascular imaging using near-infrared II fluorescence, Nat. Med. 18 (2012) 1841-1846
    Y. Fan, F. Zhang, A new generation of NIR-II probes:lanthanide-based nanocrystals for bioimaging and biosensing, Adv. Optical. Mater. 7 (2019), 1801417
    Q. Zhang, H. Zhou, H. Chen, et al., Hierarchically nanostructured hybrid platform for tumor delineation and image-guided surgery via NIR-II fluorescence and PET bimodal imaging, Small 15 (2019), 1903382
    H. Wan, H. Du, F. Wang, et al., Molecular imaging in the second near-infrared window, Adv. Funct. Mater. 29 (2019), 1900566
    F. Ding, Y. Fan, Y. Sun, et al., Beyond 1000 nm emission wavelength:recent advances in organic and inorganic emitters for deep-tissue molecular imaging, Adv. Healthc. Mater. 8 (2019), 1900260
    M. Kobayashi, T. Mizumoto, Y. Shibuya, et al., Fluorescence tomography in turbid media based on acousto-optic modulation imaging, Appl. Phys. Lett. 89 (2006), 181102
    J.Y. Zhao, D. Zhong, S.B. Zhou, NIR-I-to-NIR-II fluorescent nanomaterials for biomedical imaging and cancer therapy, J. Mater. Chem. B 6 (2018) 349-365
    A. Yuan, J.H. Wu, X.L. Tang, et al., Application of near-infrared dyes for tumor imaging, photothermal, and photodynamic therapies, J. Pharm. Sci. 102 (2013) 6-28
    U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, et al., Quantum dots versus organic dyes as fluorescent labels, Nat. Methods. 5 (2008) 763-775
    R. Bhavane, Z. Starosolski, I. Stupin, et al., NIR-II fluorescence imaging using indocyanine green nanoparticles, Sci. Rep. 8 (2018), 14455
    Y.F. Wang, G.Y. Liu, L.D. Sun, et al., Nd3+-sensitized upconversion nanophosphors:efficient in vivo bioimaging probes with minimized heating effect, ACS Nano. 7 (2013) 7200-7206
    G.Y. Chen, J. Shen, T.Y. Ohulchanskyy, et al., (α-NaYbF4:Tm3+)/CaF2 core/shell nanoparticles with efficient nearinfrared to near-infrared upconversion for high-contrast deep tissue bioimaging, ACS Nano. 6 (2012) 8280-8287
    C. Liu, X. Wang, J. Liu, et al., Near-infrared AIE dots with chemiluminescence for deep-tissue imaging, Adv. Mater. 32 (2020), 2004685
    Y. Pei, M.-Y. Wei, B. Cheng, et al., High resolution imaging beyond the acoustic diffraction limit in deep tissue via ultrasound-switchable NIR fluorescence, Sci. Rep. 4 (2014), 4690
    B. Cheng, V. Bandi, M.Y. Wei, et al., High-resolution ultrasound-switchable fluorescence imaging in centimeter-deep tissue phantoms with high signal-to-noise ratio and high sensitivity via novel contrast agents, PloS One 11 (2016), e0165963
    Y. Liu, T. Yao, W. Cai, et al., A biocompatible and near-infrared liposome for in vivo ultrasound-switchable fluorescence imaging, Adv. Healthc. Mater. 9 (2020), 1901457
    T. Yao, S. Yu, Y. Liu, et al., In vivo ultrasound-switchable fluorescence imaging, Sci. Rep. 9 (2019), 9855
    Q. Zhang, S.P. Morgan, M.L. Mathe, et al., Nanoscale ultrasound-switchable FRET-based liposomes for near-infrared fluorescence imaging in optically turbid media, Small 13 (2017), 1602895
    H. Boll, G. Figueiredo, T. Fiebig, et al., Comparison of fenestra LC, exitron nano 6000, and exitron nano 12000 for micro-CT imaging of liver and spleen in mice, Acad. Radiol. 20 (2013) 1137-1143
    A.S. Wadajkar, B. Koppolu, M. Rahimi, et al., Cytotoxic evaluation of N-isopropylacrylamide monomers and temperature-sensitive poly(N-isopropylacrylamide) nanoparticles, J. Nanopart. Res. 11 (2009) 1375-1382
    H. Chen, S. Kim, W. He, et al., Fast release of lipophilic agents from circulating PEG-PDLLA micelles revealed by in vivo forster resonance energy transfer imaging, Langmuir. 24 (2008) 5213-5217
    M.A. Aghdam, R. Bagheri, J. Mosafer, et al., Recent advances on thermosensitive and pH-sensitive liposomes employed in controlled release, J. Control. Release. 315 (2019) 1-22
    B. Kneidl, M. Peller, G. Winter, et al., Thermosensitive liposomal drug delivery systems:state of the art review, Int. J. Nanomedicine 9 (2014) 4387-4398
    M.L. Etheridge, S.A. Campbell, A.G. Erdman, et al., The big picture on nanomedicine:the state of investigational and approved nanomedicine products, Nanomedicine. 9 (2013) 1-14
    L. Sercombe, T. Veerati, F. Moheimani, et al., Advances and challenges of liposome assisted drug delivery, Front. Pharmacol. 6 (2015), 286
    Q. Zhang, S.P. Morgan, P. O'Shea, et al., Ultrasound induced fluorescence of nanoscale liposome contrast agents, PloS One. 11 (2016), e0159742
    J. Kandukuri, S. Yu, B. Cheng, et al., A dual-modality system for both multi-color ultrasound-switchable fluorescence and ultrasound imaging, Int. J. Mol. Sci. 18 (2017), 323
    S. Yu, T. Yao, B. Yuan, An ICCD camera-based time-domain ultrasound-switchable fluorescence imaging system, Sci. Rep. 9 (2019), 10552
    S. Yu, T. Yao, Y. Liu, et al., In vivo ultrasound-switchable fluorescence imaging using a camera-based system, Biomed. Opt. Express. 11 (2020) 1517-1538
    T. Yao, Y. Liu, L. Ren, et al., Improving sensitivity and imaging depth of ultrasound-switchable fluorescence via an EMCCD-gain-controlled system and a liposome-based contrast agent, Quant. Imaging Med. Surg. 11 (2021) 957-968
    K. Si, R. Fiolka, M. Cui, Fluorescence imaging beyond the ballistic regime by ultrasound-pulse-guided digital phase conjugation, Nat. Photonics 6 (2012) 657-661
    M. Takezaki, R. Kawakami, S. Onishi, et al., Integrated fluorescent nanoprobe design for high-speed in vivo two-photon microscopic imaging of deep-brain vasculature in mice, Adv. Funct. Mater. 31 (2021), 2010698
    X. Zhou, Q. Liu, W. Yuan, et al., Ultrabright NIR-II emissive polymer dots for metastatic ovarian cancer detection, Adv. Sci. 8 (2021), 2000441
    J. Gunther, A. Walther, L. Rippe, et al., Deep tissue imaging with acousto-optical tomography and spectral hole burning with slow light effect:a theoretical study, J. Biomed. Opt. 23 (2018), 071209
    J. Liu, F. Hu, M. Wu, et al., Bioorthogonal coordination polymer nanoparticles with aggregation-induced emission for deep tumor-penetrating radio-and radiodynamic therapy, Adv. Mater. 33 (2021), 2007888
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (216) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return