Citation: | Rui-Lin Liu, Ru-Qian Cai. Recent advances in ultrasound-controlled fluorescence technology for deep tissue optical imaging[J]. Journal of Pharmaceutical Analysis, 2022, 12(4): 530-540. doi: 10.1016/j.jpha.2021.10.002 |
J. Qi, C. Sun, D. Li, et al., Aggregation-induced emission luminogen with near-infrared-II excitation and near infrared-I emission for ultra-deep intravital two-photon microscopy, ACS Nano. 12 (2018) 7936-7945
|
S. He, J. Song, J. Qu, et al., Crucial breakthrough of second near-infrared biological window fluorophores:design and synthesis toward multimodal imaging and theranostics, Chem. Soc. Rev. 47 (2018) 4258-4278
|
E. Hemmer, A. Benayas, F. Legare, et al., Exploiting the biological windows:current perspectives on fluorescent bioprobes emitting above 1000 nm, Nanoscale Horiz. 1 (2016) 168-184
|
S. Yu, D. Tu, W. Lian, et al., Lanthanide-doped near-infrared II luminescent nanoprobes for bioapplications, Sci. China Mater. 62 (2019) 1071-1086
|
D. Kim, N. Lee, Y. Park, et al., Recent Advances in inorganic nanoparticle-based NIR luminescence imaging:semiconductor nanoparticles and lanthanide nanoparticles, Bioconjugate Chem. 28 (2017) 115-123
|
G. Hong, A.L. Antaris, H. Dai, Near-infrared fluorophores for biomedical imaging, Nat. Biomed. Eng. 1 (2017), 0010
|
J.A. Carr, D. Franke, J.R. Caram, et al., Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green, Proc. Natl. Acad. Sci., USA. 115 (2018) 4465-4470
|
J.V. Frangioni, In vivo near-infrared fluorescence imaging, Curr. Opin. Chem. Biol. 7 (2003) 626-634
|
B. Yuan, Y. Liu, P. Mehl, et al., Microbubble-enhanced ultrasound modulated fluorescence in a turbid medium, Appl. Phys. Lett. 95 (2009), 181113
|
N.T. Huynh, B.R. Hayes-Gill, F. Zhang, et al., Ultrasound modulated imaging of luminescence generated within a scattering medium, J. Biomed. Opt. 18 (2013), 20505
|
Y. Lin, L. Bolisay, M. Ghijsen, et al., Temperature modulated fluorescence tomography in a turbid media, Appl. Phys. Lett. 100 (2012) 73702-737024
|
Y. Lin, T.C. Kwong, L. Bolisay, et al., Temperature-modulated fluorescence tomography based on both concentration and lifetime contrast, J. Biomed. Opt. 17 (2012), 056007
|
B. Yuan, S. Uchiyama, Y. Liu, et al., High-resolution imaging in a deep turbid medium based on an ultrasound-switchable fluorescence technique, Appl. Phys. Lett. 101 (2012), 33703
|
J. Ahmad, B. Jayet, P.J. Hill, Ultrasound-mediation of self-illuminating reporters improves imaging resolution in optically scattering media, Biomed. Opt. Express. 9 (2018) 1664-1679
|
X. Xu, H.L. Liu, L.V. Wang, Time-reversed ultrasonically encoded optical focusing into scattering media, Nat. Photonics. 5 (2011) 154-157
|
B. Cheng, V. Bandi, S. Yu, et al., The mechanisms and biomedical applications of an NIR BODIPY-based switchable fluorescent probe, Int. J. Mol. Sci. 18 (2017), 384
|
R. Liu, T. Yao, Y. Liu, et al., Temperature-sensitive polymeric nanogels encapsulating with β-cyclodextrin and ICG complex for high-resolution deep-tissue ultrasound-switchable fluorescence imaging, Nano Res. 13 (2020) 1100-1110
|
S. Yu, B. Cheng, T. Yao, et al., New generation ICG-based contrast agents for ultrasound-switchable fluorescence imaging, Sci. Rep. 6 (2016), 35942
|
T.C. Kwong. A new modality for high resolution diffuse optical imaging:Temperature modulated fluorescence tomography[dissertation].[USA]:University of California, Irvine; 2017
|
T. Yao, S. Yu, Y. Liu, et al., Ultrasound-switchable fluorescence imaging via an EMCCD camera and a Z-scan method, IEEE J. Sel. Top. Quantum Electron. 25 (2019), 7102108
|
Y. Pei, M.-Y. Wei, Newly-engineered materials for bio-Imaging technology:a focus on the hybrid system of ultrasound and fluorescence, Front. Bioeng. Biotech. 7 (2019), 88
|
Z. Ma, H. Wan, W. Wang, et al., A theranostic agent for cancer therapy and imaging in the second near infrared window, Nano Res. 12 (2019) 273-279
|
A.L. Antaris, H. Chen, K. Cheng, et al., A small-molecule dye for NIR-II imaging, Nat. Mater. 15 (2016) 235-242
|
G. Hong, J.C. Lee, J.T. Robinson, et al., Multifunctional in vivo vascular imaging using near-infrared II fluorescence, Nat. Med. 18 (2012) 1841-1846
|
Y. Fan, F. Zhang, A new generation of NIR-II probes:lanthanide-based nanocrystals for bioimaging and biosensing, Adv. Optical. Mater. 7 (2019), 1801417
|
Q. Zhang, H. Zhou, H. Chen, et al., Hierarchically nanostructured hybrid platform for tumor delineation and image-guided surgery via NIR-II fluorescence and PET bimodal imaging, Small 15 (2019), 1903382
|
H. Wan, H. Du, F. Wang, et al., Molecular imaging in the second near-infrared window, Adv. Funct. Mater. 29 (2019), 1900566
|
F. Ding, Y. Fan, Y. Sun, et al., Beyond 1000 nm emission wavelength:recent advances in organic and inorganic emitters for deep-tissue molecular imaging, Adv. Healthc. Mater. 8 (2019), 1900260
|
M. Kobayashi, T. Mizumoto, Y. Shibuya, et al., Fluorescence tomography in turbid media based on acousto-optic modulation imaging, Appl. Phys. Lett. 89 (2006), 181102
|
J.Y. Zhao, D. Zhong, S.B. Zhou, NIR-I-to-NIR-II fluorescent nanomaterials for biomedical imaging and cancer therapy, J. Mater. Chem. B 6 (2018) 349-365
|
A. Yuan, J.H. Wu, X.L. Tang, et al., Application of near-infrared dyes for tumor imaging, photothermal, and photodynamic therapies, J. Pharm. Sci. 102 (2013) 6-28
|
U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, et al., Quantum dots versus organic dyes as fluorescent labels, Nat. Methods. 5 (2008) 763-775
|
R. Bhavane, Z. Starosolski, I. Stupin, et al., NIR-II fluorescence imaging using indocyanine green nanoparticles, Sci. Rep. 8 (2018), 14455
|
Y.F. Wang, G.Y. Liu, L.D. Sun, et al., Nd3+-sensitized upconversion nanophosphors:efficient in vivo bioimaging probes with minimized heating effect, ACS Nano. 7 (2013) 7200-7206
|
G.Y. Chen, J. Shen, T.Y. Ohulchanskyy, et al., (α-NaYbF4:Tm3+)/CaF2 core/shell nanoparticles with efficient nearinfrared to near-infrared upconversion for high-contrast deep tissue bioimaging, ACS Nano. 6 (2012) 8280-8287
|
C. Liu, X. Wang, J. Liu, et al., Near-infrared AIE dots with chemiluminescence for deep-tissue imaging, Adv. Mater. 32 (2020), 2004685
|
Y. Pei, M.-Y. Wei, B. Cheng, et al., High resolution imaging beyond the acoustic diffraction limit in deep tissue via ultrasound-switchable NIR fluorescence, Sci. Rep. 4 (2014), 4690
|
B. Cheng, V. Bandi, M.Y. Wei, et al., High-resolution ultrasound-switchable fluorescence imaging in centimeter-deep tissue phantoms with high signal-to-noise ratio and high sensitivity via novel contrast agents, PloS One 11 (2016), e0165963
|
Y. Liu, T. Yao, W. Cai, et al., A biocompatible and near-infrared liposome for in vivo ultrasound-switchable fluorescence imaging, Adv. Healthc. Mater. 9 (2020), 1901457
|
T. Yao, S. Yu, Y. Liu, et al., In vivo ultrasound-switchable fluorescence imaging, Sci. Rep. 9 (2019), 9855
|
Q. Zhang, S.P. Morgan, M.L. Mathe, et al., Nanoscale ultrasound-switchable FRET-based liposomes for near-infrared fluorescence imaging in optically turbid media, Small 13 (2017), 1602895
|
H. Boll, G. Figueiredo, T. Fiebig, et al., Comparison of fenestra LC, exitron nano 6000, and exitron nano 12000 for micro-CT imaging of liver and spleen in mice, Acad. Radiol. 20 (2013) 1137-1143
|
A.S. Wadajkar, B. Koppolu, M. Rahimi, et al., Cytotoxic evaluation of N-isopropylacrylamide monomers and temperature-sensitive poly(N-isopropylacrylamide) nanoparticles, J. Nanopart. Res. 11 (2009) 1375-1382
|
H. Chen, S. Kim, W. He, et al., Fast release of lipophilic agents from circulating PEG-PDLLA micelles revealed by in vivo forster resonance energy transfer imaging, Langmuir. 24 (2008) 5213-5217
|
M.A. Aghdam, R. Bagheri, J. Mosafer, et al., Recent advances on thermosensitive and pH-sensitive liposomes employed in controlled release, J. Control. Release. 315 (2019) 1-22
|
B. Kneidl, M. Peller, G. Winter, et al., Thermosensitive liposomal drug delivery systems:state of the art review, Int. J. Nanomedicine 9 (2014) 4387-4398
|
M.L. Etheridge, S.A. Campbell, A.G. Erdman, et al., The big picture on nanomedicine:the state of investigational and approved nanomedicine products, Nanomedicine. 9 (2013) 1-14
|
L. Sercombe, T. Veerati, F. Moheimani, et al., Advances and challenges of liposome assisted drug delivery, Front. Pharmacol. 6 (2015), 286
|
Q. Zhang, S.P. Morgan, P. O'Shea, et al., Ultrasound induced fluorescence of nanoscale liposome contrast agents, PloS One. 11 (2016), e0159742
|
J. Kandukuri, S. Yu, B. Cheng, et al., A dual-modality system for both multi-color ultrasound-switchable fluorescence and ultrasound imaging, Int. J. Mol. Sci. 18 (2017), 323
|
S. Yu, T. Yao, B. Yuan, An ICCD camera-based time-domain ultrasound-switchable fluorescence imaging system, Sci. Rep. 9 (2019), 10552
|
S. Yu, T. Yao, Y. Liu, et al., In vivo ultrasound-switchable fluorescence imaging using a camera-based system, Biomed. Opt. Express. 11 (2020) 1517-1538
|
T. Yao, Y. Liu, L. Ren, et al., Improving sensitivity and imaging depth of ultrasound-switchable fluorescence via an EMCCD-gain-controlled system and a liposome-based contrast agent, Quant. Imaging Med. Surg. 11 (2021) 957-968
|
K. Si, R. Fiolka, M. Cui, Fluorescence imaging beyond the ballistic regime by ultrasound-pulse-guided digital phase conjugation, Nat. Photonics 6 (2012) 657-661
|
M. Takezaki, R. Kawakami, S. Onishi, et al., Integrated fluorescent nanoprobe design for high-speed in vivo two-photon microscopic imaging of deep-brain vasculature in mice, Adv. Funct. Mater. 31 (2021), 2010698
|
X. Zhou, Q. Liu, W. Yuan, et al., Ultrabright NIR-II emissive polymer dots for metastatic ovarian cancer detection, Adv. Sci. 8 (2021), 2000441
|
J. Gunther, A. Walther, L. Rippe, et al., Deep tissue imaging with acousto-optical tomography and spectral hole burning with slow light effect:a theoretical study, J. Biomed. Opt. 23 (2018), 071209
|
J. Liu, F. Hu, M. Wu, et al., Bioorthogonal coordination polymer nanoparticles with aggregation-induced emission for deep tumor-penetrating radio-and radiodynamic therapy, Adv. Mater. 33 (2021), 2007888
|