Volume 12 Issue 3
Jun.  2022
Turn off MathJax
Article Contents
Yingai Sun, Yuqi Gao, Chunchao Tang, Gaopan Dong, Pei Zhao, Dunquan Peng, Tiantian Wang, Lupei Du, Minyong Li. Multiple rapid-responsive probes for hypochlorite detection based on dioxetane luminophore derivatives[J]. Journal of Pharmaceutical Analysis, 2022, 12(3): 446-452. doi: 10.1016/j.jpha.2021.10.001
Citation: Yingai Sun, Yuqi Gao, Chunchao Tang, Gaopan Dong, Pei Zhao, Dunquan Peng, Tiantian Wang, Lupei Du, Minyong Li. Multiple rapid-responsive probes for hypochlorite detection based on dioxetane luminophore derivatives[J]. Journal of Pharmaceutical Analysis, 2022, 12(3): 446-452. doi: 10.1016/j.jpha.2021.10.001

Multiple rapid-responsive probes for hypochlorite detection based on dioxetane luminophore derivatives

doi: 10.1016/j.jpha.2021.10.001
Funds:

The present work was supported by grants from the National Natural Science Foundation of China (Grant Nos.: 81673393 and 81874308), Taishan Scholar Program in Shandong Province, and Shandong Natural Science Foundation (Grant No.: ZR2018ZC0233).

  • Received Date: Dec. 26, 2020
  • Accepted Date: Oct. 08, 2021
  • Rev Recd Date: Sep. 21, 2021
  • Publish Date: Oct. 09, 2021
  • In recent years, various methods for detecting exogenous and endogenous hypochlorite have been studied, considering its essential role as a biomolecule. However, the existing technologies still pose obstacles such as their invasiveness, high costs, and complicated operation. In the current study, we developed a glow-type chemiluminescent probe, hypochlorite chemiluminescence probe (HCCL)-1, based on the scaffold of Schaap's 1,2-dioxetane luminophores. To better explore the physiological and pathological functions of hypochlorite, we modified the luminophore scaffold of HCCL-1 to develop several probes, including HCCL-2, HCCL-3, and HCCL-4, which amplify the response signal of hypochlorite. By comparing the luminescent intensities of the four probes using the IVIS® system, we determined that HCCL-2 with a limit of detection of 0.166 μM has enhanced sensitivity and selectivity for tracking hypochlorite both in vitro and in vivo.
  • loading
  • S.J Klebanoff, Myeloperoxidase:friend and foe, J. Leukoc. Biol. 77(2005)598-625
    S. Gross, S.T. Gammon, B.L. Moss, et al., Bioluminescence imaging of myeloperoxidase activity in vivo, Nat. Med. 15(2009)455-461
    M.B. Hampton, A.J. Kettle, C.C. Winterbourn, Inside the neutrophil phagosome:oxidants, Myeloperoxidase, and bacterial killing, Blood 92(1998)3007-3017
    Y.W. Yap, M. Whiteman, N.S. Cheung, Chlorinative stress:an under appreciated mediator of neurodegeneration?Cell. Signal. 19(2007)219-228
    S.J. Klebanoff, A.J. Kettle, H. Rosen, et al., Myeloperoxidase:a front-line defender against phagocytosed microorganisms, J. Leukoc. Biol. 93(2013)185-198
    M.J. Steinbeck, L.J. Nesti, P.F. Sharkey, et al., Myeloperoxidase and chlorinated peptides in osteoarthritis:Potential Biomarkers of the Disease, J. Orthop. Res. 25(2007)1128-1135
    D.I. Pattison, M.J. Davies, Evidence for rapid inter-and intramolecular chlorine transfer reactions of histamine and carnosine chloramines:implications for the prevention of hypochlorous-acid-mediated damage, Biochemistry 45(2006)8152-8162
    A.M. Cantin, S.L. North, G.A. Fells, et al., Oxidant-mediated epithelial cell injury in idiopathic pulmonary fibrosis, J. Clin. Invest. 79(1987)1665-1673
    C.L. Hawkins, M.J. Davies, Degradation of hyaluronic acid, poly-and monosaccharides, and model compounds by hypochlorite:evidence for radical intermediates and fragmentation, Free Radic. Biol. Med. 24(1998)1396-1410
    E. Malle, T. Buch, H.J. Grone, Myeloperoxidase in kidney disease, Kidney Int. 64(2003)1956-1967
    O. Ordeig, R. Mas, J. Gonzalo, et al., Continuous detection of hypochlorous acid/hypochlorite for water quality monitoring and control, Electroanalysis 17(2005)1641-1648
    I. Seymour, B. O'Sullivan, P. Lovera, et al., Electrochemical detection of free-chlorine in Water samples facilitated by in-situ pH control using interdigitated microelectrodes, Sens. Actuators B Chem. 325(2020)128774
    D.S. Jackson, D.F. Crockett, K.A. Wolnik, The indirect detection of bleach (sodium hypochlorite) in beverages as evidence of product tampering, J. Forensic Sci. 51(2006)827-831
    A. Gallina, P. Pastore, F. Magno, The use of nitrite ion in the chromatographic determination of large amounts of hypochlorite ion and of traces of chlorite and chlorate ions, Analyst 124(1999)1439-1442
    A. Chaurasia, K.K. Verma, Flow-injection spectrophotometric determination of residual free chlorine and chloramine, Fresen. J. Anal. Chem. 351(1995)335-337
    N.O. Soto, B. Horstkotte, J.G. March, et al., An environmental friendly method for the automatic determination of hypochlorite in commercial products using multisyringe flow injection analysis, Anal. Chim. Acta 611(2008)182-186
    A.P. Soldatkin, D.V. Gorchkov, C. Martelet, et al., New enzyme potentiometric sensor for hypochlorite species detection, Sens. Actuators B Chem. 43(1997)99-104
    T. Zhang, Y. Li, Z. Zheng, et al., In situ monitoring apoptosis process by a self-reporting photosensitizer, J. Am. Chem. Soc. 141(2019)5612-5616
    Y.L. Pak, S.J. Park, D. Wu, et al., N-Heterocyclic carbene boranes as reactive oxygen species-responsive materials:application to the two-photon imaging of hypochlorous acid in living cells and tissues, Angew. Chem. Int. Ed. 57(2018)1567-1571
    M. Li, T. Xiong, J. Du, et al., Superoxide radical photogenerator with amplification effect:surmounting the Achilles'heels of photodynamic oncotherapy, J. Am. Chem. Soc. 141(2019)2695-2702
    X Liu., H. Lai, J. Peng, et al., Chromophore-modified highly selective ratiometric upconversion nanoprobes for detection of ONOO-related hepatotoxicity in vivo, Small 15(2019)1902737
    R. Zhang, B. Song, J. Yuan, Bioanalytical methods for hypochlorous acid detection:recent advances and challenges, TrAC-Trends Anal. Chem. 99(2018)1-33
    H. Xiao, K. Xin, H. Dou, et al., A fast-responsive mitochondria-targeted fluorescent probe detecting endogenous hypochlorite in living RAW 264.7 cells and nude mouse, Chem Comm 51(2015)1442-1445
    Q. Xu, C.H. Heo, J.A. Kim, et al., A selective imidazoline-2-thione-bearing two-photon fluorescent probe for hypochlorous acid in mitochondria, Anal. Chem. 88(2016)6615-6620
    B. Zhu, P. Li, W. Shu, et al., Highly specific and ultrasensitive two-photon fluorescence imaging of native HOCl in lysosomes and tissues based on thiocarbamate derivatives, Anal. Chem. 88(2016)12532-12538
    C. Tang, Y. Gao, T. Liu, et al., Bioluminescent probe for detecting endogenous hypochlorite in living mice, Org. Biomol. Chem. 16(2018)645-651
    A.P. Schaap, T.S. Chen, R.S. Handley, et al., Cheminform abstract:chemical and enzymatic triggering of 1,2-dioxetanes. Part 2. Fluoride-induced chemiluminescence from tert-butyldimethylsilyloxy-substituted dioxetanes, Cheminform 18(1987)1155-1158
    A.P. Schaap, M.D. Sandison, R.S. Handley, Cheminform abstract:chemical and enzymatic triggering of 1,2-dioxetanes. Part 3. Alkaline phosphatase-catalyzed chemiluminescence from an aryl phosphate-substituted dioxetane, Cheminform 18(1987)1159-1162
    A.P. Schaap, T.S. Chen, R.S. Handley, et al., Chemical and enzymatic triggering of 1,2-dioxetanes. 2. Fluoride-induced chemiluminescence from tert-butyldimethylsilyloxy-substituted dioxetanes, Tetrahedron Lett. 28(1987)1155-1158
    N. Hananya, D. Shabat, A glowing trajectory between bio-and chemiluminescence:from luciferin-based probes to triggerable dioxetanes, Angew. Chem. Int. Ed. 56(2017)16454-16463
    M. Matsumoto, Advanced chemistry of dioxetane-based chemiluminescent substrates originating from bioluminescence, J. Photoch. Photobio. C 5(2004)27-53
    M. Matsumoto, N. Watanabe, N. Hoshiya, et al., Color modulation for intramolecular charge-transfer-induced chemiluminescence of 1,2-dioxetanes, Chem. Rec. 8(2008)213-228
    N. Hananya, D. Shabat, Recent advances and challenges in luminescent imaging:bright outlook for chemiluminescence of dioxetanes in water, ACS Central Science 5(2019)949-959
    I.S. Turan, E.U. Akkaya, Chemiluminescence sensing of fluoride ions using a self-immolative amplifier, Org. Lett. 16(2014)1680-1683
    J. Cao, R. Lopez, J.M. Thacker, et al., Chemiluminescent probes for imaging H2S in living animals, Chem. Sci. 6(2015)1979-1985
    J. Cao, J. Campbell, L. Liu, et al., In vivo chemiluminescent imaging agents for nitroreductase and tissue oxygenation, Anal. Chem. 88(2016)4995-5002
    I.S. Turan, O. Yilmaz, B. Karatas, et al., A sensitive and selective chemiluminogenic probe for palladium, RSC Adv. 5(2015)34535-34540
    I.S. Turan, O. Seven, S. Ayan, et al., Amplified chemiluminescence signal for sensing fluoride ions, ACS Omega 2(2017)3291-3295
    O. Green, S. Gnaim, R. Blau, et al., Near-infrared dioxetane luminophores with direct chemiluminescence emission mode, J. Am. Chem. Soc. 139(2017)13243-13248
    O. Green, T. Eilon, N. Hananya, et al., Opening a gateway for chemiluminescence cell imaging:distinctive methodology for design of bright chemiluminescent dioxetane probes, ACS Cent. Sci. 3(2017)349-358
    N. Hananya, A.E. Boock, C.R. Bauer, et al., Remarkable enhancement of chemiluminescent signal by dioxetane-fluorophore conjugates:turn-ON chemiluminescence probes with color modulation for sensing and imaging, J. Am. Chem. Soc. 138(2016)13438-13446
    M. Matsumoto, Y. Mizoguchi, T. Motoyama, et al., Base-induced chemiluminescence of 5-tert-butyl-1-(4-hydroxybenz[d]oxazol-6-yl)-4,4-dimethyl-2,6,7-trioxabicyclo[3.2.0] heptanes:chemiluminescence-chemiexcitation profile in aqueous medium, Tetrahedron Lett. 42(2001)8869-8872
    I. Bronstein, B. Edwards, J.C. Voyta, 1,2-Dioxetanes:novel chemiluminescent enzyme substrates. Applications to immunoassays, J. Biolum. Chemilum. 4(1989)99-111
    B. Gu, C. Dong, R. Shen, et al., Dioxetane-based chemiluminescent probe for fluoride ion-sensing in aqueous solution and living imaging. Sens. Actuators B Chem. 301(2019)127111
    L.S. Ryan, J. Gerberich, J. Cao, et al., Kinetics-based measurement of hypoxia in living cells and animals using an acetoxymethyl ester chemiluminescent probe, ACS Sens. 4(2019)1391-1398
    Y. Adachi, A.L. Kindzelskii, A.R. Petty, et al., IFN-γ primes RAW264 macrophages and human monocytes for enhanced oxidant production in response to CpG DNA via metabolic signaling:roles of TLR9 and myeloperoxidase trafficking, J. Immunol. 176(2006)5033-5040
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (146) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return