Volume 12 Issue 1
Feb.  2022
Turn off MathJax
Article Contents
Souparnika H. Manjunath, Rajesh K. Thimmulappa. Antiviral, immunomodulatory, and anticoagulant effects of quercetin and its derivatives: Potential role in prevention and management of COVID-19[J]. Journal of Pharmaceutical Analysis, 2022, 12(1): 29-34. doi: 10.1016/j.jpha.2021.09.009
Citation: Souparnika H. Manjunath, Rajesh K. Thimmulappa. Antiviral, immunomodulatory, and anticoagulant effects of quercetin and its derivatives: Potential role in prevention and management of COVID-19[J]. Journal of Pharmaceutical Analysis, 2022, 12(1): 29-34. doi: 10.1016/j.jpha.2021.09.009

Antiviral, immunomodulatory, and anticoagulant effects of quercetin and its derivatives: Potential role in prevention and management of COVID-19

doi: 10.1016/j.jpha.2021.09.009
Funds:

Rajesh Kumar Thimmulappa acknowledges the funding support from the Department of Biotechnology, Ramalingaswami Re-entry Fellowship (Grant No.: BT/RLF/Re-entry/37/2013) and the Department of Science and Technology grant (Grant No.: DST/INT/SOUTH AFRICA/P13/2016).

  • Received Date: Apr. 19, 2021
  • Accepted Date: Sep. 16, 2021
  • Rev Recd Date: Sep. 08, 2021
  • Publish Date: Sep. 20, 2021
  • The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has caused a devastating health crisis worldwide. In this review, we have discussed that prophylactic phytochemical quercetin supplementation in the form of foods or nutraceuticals may help manage the COVID-19 pandemic. The following evidence supports our argument. First, nuclear factor erythroid-derived 2-like 2 (NRF2) agonists abrogate replication of SARS-CoV-2 in lung cells, and quercetin is a potent NRF2 agonist. Second, quercetin exerts antiviral activity against several zoonotic coronaviruses, including SARS-CoV-2, mainly by inhibiting the entry of virions into host cells. Third, inflammatory pathways activated by nuclear factor kappa B, inflammasome, and interleukin-6 signals elicit cytokine release syndrome that promotes acute respiratory distress syndrome in patients with COVID-19, and quercetin inhibits these pro-inflammatory signals. Fourth, patients with COVID-19 develop thrombosis, and quercetin mitigates coagulation abnormalities by inhibiting plasma protein disulfide isomerase. This review provides a strong rationale for testing quercetin for the management of COVID-19.
  • loading
  • Coronavirus Resource Center, Compilation prepared by Johns Hopkins University, https://coronavirus.jhu.edu. (accessed on 7 Aug, 2021)
    G. Grasselli, T. Tonetti, A. Protti, et al., Pathophysiology of COVID-19-associated acute respiratory distress syndrome:a multicentre prospective observational study, Lancet Respir. Med. 8(2020)1201-1208
    W.J. Wiersinga, A. Rhodes, A.C. Cheng, et al., Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019(COVID-19):A Review, JAMA 324(2020)782-793
    J.H. Beigel, K.M. Tomashek, L.E. Dodd, et al., Remdesivir for the Treatment of Covid-19-Final Report, N. Engl. J. Med. 383(2020)1813-1826
    P. Horby, W.S. Lim, J.R. Emberson, et al., Dexamethasone in Hospitalized Patients with Covid-19-Preliminary Report, N. Engl. J. Med. 384(2020)694-704
    Y. Zhou, F. Wang, J. Tang, et al., Artificial intelligence in COVID-19 drug repurposing, Lancet Digit Health 2(2020) e667-e676
    H. Cheng, Z. Peng,W. Luo,et al.,Efficacy and Safety of COVID-19 Vaccines in Phase III Trials:A Meta-Analysis, Vaccines. 9(2021), 582
    S. Wan, Y. Xiang, W. Fang, et al., Clinical features and treatment of COVID-19 patients in northeast Chongqing, J. Med. Virol. 92(2020)797-806
    L. Luo, J. Jiang, C. Wang, et al., Analysis on herbal medicines utilized for treatment of COVID-19, Acta Pharm. Sin. B 10(2020)1192-1204
    J.S. Mani, J.B. Johnson, J.C. Steel, et al., Natural product-derived phytochemicals as potential agents against coronaviruses:A review, Virus Res. 284(2020), 197989
    E. Levy, E. Delvin, V. Marcil, et al., Can phytotherapy with polyphenols serve as a powerful approach for the prevention and therapy tool of novel coronavirus disease 2019(COVID-19)?Am. J. Physiol. Endocrinol. Metab. 319(2020) E689-E708
    B.G. Vijayakumar, D. Ramesh, A. Joji, et al., In silico pharmacokinetic and molecular docking studies of natural flavonoids and synthetic indole chalcones against essential proteins of SARS-CoV-2, Eur. J. Pharmacol. 886(2020), 173448
    J.-H. Kwak, J.M. Seo, N.-H. Kim, et al., Variation of quercetin glycoside derivatives in three onion (Allium cepa L.) varieties, Saudi J. Biol. Sci. 24(2017)1387-1391
    Y. Li, J. Yao, C. Han, et al., Quercetin, Inflammation and Immunity, Nutrients. 8(2016), 167
    L. Baird, M. Yamamoto, The Molecular Mechanisms Regulating the KEAP1-NRF2 Pathway, Mol. Cell Biol. 40(2020), e00099-20
    D. Olagnier, E. Farahani, J. Thyrsted, et al., SARS-CoV2-mediated suppression of NRF2-signaling reveals potent antiviral and anti-inflammatory activity of 4-octyl-itaconate and dimethyl fumarate, Nat. Commun. 11(2020), 4938
    N. Miyamoto, H. Izumi, R. Miyamoto, et al., Quercetin induces the expression of peroxiredoxins 3 and 5 via the Nrf2/NRF1 transcription pathway, Invest. Ophthalmol. Vis. Sci. 52(2011)1055-1063
    S. Tanigawa, M. Fujii, D.-X. Hou, Action of Nrf2 and Keap1 in ARE-mediated NQO1 expression by quercetin, Free Radic. Biol. Med. 42(2007)1690-1703
    A.W. Boots, C. Veith, C. Albrecht, et al., The dietary antioxidant quercetin reduces hallmarks of bleomycin-induced lung fibrogenesis in mice, BMC Pulm. Med. 20(2020), 112
    W. Wang, B.L. Ma, C.G. Xu, et al., Dihydroquercetin protects against renal fibrosis by activating the Nrf2 pathway, Phytomedicine 69(2020), 153185
    S. Jo, H. Kim, S. Kim, et al., Characteristics of flavonoids as potent MERS-CoV 3C-like protease inhibitors, Chem. Biol. Drug Des. 94(2019)2023-2030
    T.T. Nguyen, H.J. Woo, H.K. Kang, et al., Flavonoid-mediated inhibition of SARS coronavirus 3C-like protease expressed in Pichia pastoris, Biotechnol. Lett. 34(2012)831-838
    O. Abian, D. Ortega-Alarcon, A. Jimenez-Alesanco, et al., Structural stability of SARS-CoV-2 3CLpro and identification of quercetin as an inhibitor by experimental screening, Int. J. Biol. Macromol. 164(2020)1693-1703
    Y.B. Ryu, H.J. Jeong, J.H. Kim, et al., Biflavonoids from Torreya nucifera displaying SARS-CoV 3CL (pro) inhibition, Bioorg. Med. Chem. 18(2010)7940-7947
    L. Yi, Z. Li, K. Yuan, et al., Small molecules blocking the entry of severe acute respiratory syndrome coronavirus into host cells, J. Virol. 78(2004)11334-11339
    P. Zhou, X.L. Yang, X.G. Wang, et al., A pneumonia outbreak associated with a new coronavirus of probable bat origin, Nature 579(2020)270-273
    D. Bhowmik, R. Nandi, A. Prakash, et al., Evaluation of flavonoids as 2019-nCoV cell entry inhibitor through molecular docking and pharmacological analysis, Heliyon 7(2021), e06515
    W. Wu, R. Li, X. Li, et al., Quercetin as an Antiviral Agent Inhibits Influenza A Virus (IAV) Entry, Viruses 8(2015), 6
    S.H. Nile, D.H. Kim, A. Nile, et al., Probing the effect of quercetin 3-glucoside from Dianthus superbus L against influenza virus infection-In vitro and in silico biochemical and toxicological screening, Food Chem. Toxicol. 135(2020), 110985
    H.J. Choi, J.H. Song, K.S. Park, et al., Inhibitory effects of quercetin 3-rhamnoside on influenza A virus replication, Eur. J. Pharm. Sci. 37(2009)329-333
    H.J. Choi, J.H. Song, D.H., Quercetin 3-rhamnoside exerts antiinfluenza A virus activity in mice, Phytother. Res. 26(2012)462-464
    B.R.P. Lopes, M.F. da Costa, A. Genova Ribeiro, et al., Quercetin pentaacetate inhibits in vitro human respiratory syncytial virus adhesion, Virus Res. 276(2020), 197805
    V.B. Machado, J. Marostica de Sa, A.K. Miranda Prado, et al., Biophysical and flavonoid-binding studies of the G protein ectodomain of group A human respiratory syncytial virus, Heliyon 5(2019), e01394
    J.H. Song, K.S. Park, D.H. Kwon, et al., Anti-human rhinovirus 2 activity and mode of action of quercetin-7-glucoside from Lagerstroemia speciosa, J. Med. Food 16(2013)274-279
    S. Ganesan, A.N. Faris, A.T. Comstock, et al., Quercetin inhibits rhinovirus replication in vitro and in vivo, Antiviral Res. 94(2012)258-271
    M. Farazuddin, R. Mishra, Y. Jing, et al., Quercetin prevents rhinovirus-induced progression of lung disease in mice with COPD phenotype, PLoS One 13(2018), e0199612
    Q.X. Long, X.J. Tang, Q.L. Shi, et al., Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections, Nat. Med. 26(2020)1200-1204
    C. Lucas, P. Wong, J. Klein, et al., Longitudinal analyses reveal immunological misfiring in severe COVID-19, Nature 584(2020)463-469
    S. Kang, T. Tanaka, H. Inoue, et al., IL-6 trans-signaling induces plasminogen activator inhibitor-1 from vascular endothelial cells in cytokine release syndrome, Proc. Natl. Acad. Sci. U. S. A. 117(2020)22351-22356
    J. Bovijn, C.M. Lindgren, M.V. Holmes, Genetic variants mimicking therapeutic inhibition of IL-6 receptor signaling and risk of COVID-19, Lancet Rheumatol. 2(2020) e658-e659
    J.B. Moore, C.H. June, Cytokine release syndrome in severe COVID-19, Science 368(2020)473-474
    A. Shah, Novel Coronavirus-Induced NLRP3 Inflammasome Activation:A Potential Drug Target in the Treatment of COVID-19, Front Immunol. 11(2020), 1021
    P.A. Ruiz, A. Braune, G. Holzlwimmer, et al., Quercetin inhibits TNF-induced NF-kappaB transcription factor recruitment to proinflammatory gene promoters in murine intestinal epithelial cells, J. Nutr. 137(2007)1208-1215
    Y.D. Min, C.H. Choi, H. Bark, et al., Quercetin inhibits expression of inflammatory cytokines through attenuation of NF-kappaB and p38 MAPK in HMC-1 human mast cell line, Inflamm. Res. 56(2007)210-215
    S.C. Cheng, W.C. Huang, J.H. S. Pang, et al., Quercetin Inhibits the Production of IL-1β-Induced Inflammatory Cytokines and Chemokines in ARPE-19 Cells via the MAPK and NF-κB Signaling Pathways, Int. J. Mol. Sci. 20(2019), 2957
    R. Huang, T. Zhong, H. Wu, Quercetin protects against lipopolysaccharide-induced acute lung injury in rats through suppression of inflammation and oxidative stress. Arch. Med. Sci. 11(2015)427-432
    Z. Liu, J. Zhao, W. Li, et al., Computational screen and experimental validation of anti-influenza effects of quercetin and chlorogenic acid from traditional Chinese medicine, Sci. Rep. 6(2016), 19095
    W. Jiang, Y. Huang, N. Han, et al., Quercetin suppresses NLRP3 inflammasome activation and attenuates histopathology in a rat model of spinal cord injury, Spinal Cord 54(2016)592-596
    J. Liu, X. Li, Y. Yue, et al., The inhibitory effect of quercetin on IL-6 production by LPS-stimulated neutrophils, Cell Mol. Immunol. 2(2005)455-460
    R.Y. Huang, Y.L. Yu, W.C. Cheng, et al., Immunosuppressive effect of quercetin on dendritic cell activation and function, J. Immunol. 184(2010)6815-6821
    M. Granato, M.S. Gilardini Montani, C. Zompetta, et al., Quercetin Interrupts the Positive Feedback Loop Between STAT3 and IL-6, Promotes Autophagy, and Reduces ROS, Preventing EBV-Driven B Cell Immortalization, Biomolecules 9(2019), 482
    J. Michaud-Levesque, N. Bousquet-Gagnon, R. Beliveau, Quercetin abrogates IL-6/STAT3 signaling and inhibits glioblastoma cell line growth and migration, Exp. Cell Res. 318(2012)925-935
    B.S. Wung, M.C. Hsu, C.C. Wu, et al., Resveratrol suppresses IL-6-induced ICAM-1 gene expression in endothelial cells:effects on the inhibition of STAT3 phosphorylation, Life Sci. 78(2005)389-397
    R.K. Thimmulappa, H. Lee, T. Rangasamy, et al., Nrf2 is a critical regulator of the innate immune response and survival during experimental sepsis, J. Clin. Invest. 116(2006)984-995
    X. Kong, R. Thimmulappa, F. Craciun, et al., Enhancing Nrf2 pathway by disruption of Keap1 in myeloid leukocytes protects against sepsis, Am. J. Respir. Crit. Care Med. 184(2011)928-938
    E.H. Kobayashi, T. Suzuki, R. Funayama, et al., Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription, Nat. Commun. 7(2016), 11624
    G. Goshua, A.B. Pine, M.L. Meizlish, et al., Endotheliopathy in COVID-19-associated coagulopathy:evidence from a single-centre, cross-sectional study, Lancet Haematol. 7(2020) e575-e582
    M. Levi, J. Thachil, T. Iba, et al., Coagulation abnormalities and thrombosis in patients with COVID-19, Lancet Haematol. 7(2020) e438-e440
    S. Bilaloglu, Y. Aphinyanaphongs, S. Jones, et al., Thrombosis in Hospitalized Patients With COVID-19 in a New York City Health System, JAMA 324(2020)799-801
    N. Tang, D. Li, X. Wang, et al., Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia, J. Thromb. Haemost. 18(2020)844-847
    T. Iba, J.H. Levy, M. Levi, et al., Coagulopathy of Coronavirus Disease 2019, Crit. Care Med. 48(2020)1358-1364
    J.I. Zwicker, B.L. Schlechter, J.D. Stopa, et al., Targeting protein disulfide isomerase with the flavonoid isoquercetin to improve hypercoagulability in advanced cancer, JCI Insight 4(2019), e125851
    J.D. Stopa, D. Neuberg, M. Puligandla, et al., Protein disulfide isomerase inhibition blocks thrombin generation in humans by interfering with platelet factor V activation, JCI Insight 2(2017), e89373
    ClinicalTrial.gov, Compilation prepared by National Library of Medicine, https://clinicaltrials.gov.(accessed on 24 Aug, 2021)
    F. Di Pierro, S. Iqtadar, A. Khan, et al., Potential Clinical Benefits of Quercetin in the Early Stage of COVID-19:Results of a Second, Pilot, Randomized, Controlled and Open-Label Clinical Trial, Int. J. Gen. Med. 14(2021)2807-2816
    N.T. Lu, C.M. Crespi, N.M. Liu, et al., A Phase I Dose Escalation Study Demonstrates Quercetin Safety and Explores Potential for Bioflavonoid Antivirals in Patients with Chronic Hepatitis C, Phytother. Res. 30(2016)160-168
    D.C. Nieman, D.A. Henson, S.J. Gross, et al., Quercetin reduces illness but not immune perturbations after intensive exercise, Med. Sci. Sports Exerc. 39(2007)1561-1569
    M.K. Han, T.A. Barreto, F.J. Martinez, et al., Randomised clinical trial to determine the safety of quercetin supplementation in patients with chronic obstructive pulmonary disease, BMJ Open Respir. Res. 7(2020), e000392
    N.P. Bondonno, C.P. Bondonno, N.C. Ward, et al., Enzymatically modified isoquercitrin improves endothelial function in volunteers at risk of cardiovascular disease, Br. J. Nutr. 123(2020)182-189
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (136) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return