Citation: | Souparnika H. Manjunath, Rajesh K. Thimmulappa. Antiviral, immunomodulatory, and anticoagulant effects of quercetin and its derivatives: Potential role in prevention and management of COVID-19[J]. Journal of Pharmaceutical Analysis, 2022, 12(1): 29-34. doi: 10.1016/j.jpha.2021.09.009 |
Coronavirus Resource Center, Compilation prepared by Johns Hopkins University, https://coronavirus.jhu.edu. (accessed on 7 Aug, 2021)
|
G. Grasselli, T. Tonetti, A. Protti, et al., Pathophysiology of COVID-19-associated acute respiratory distress syndrome:a multicentre prospective observational study, Lancet Respir. Med. 8(2020)1201-1208
|
W.J. Wiersinga, A. Rhodes, A.C. Cheng, et al., Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019(COVID-19):A Review, JAMA 324(2020)782-793
|
J.H. Beigel, K.M. Tomashek, L.E. Dodd, et al., Remdesivir for the Treatment of Covid-19-Final Report, N. Engl. J. Med. 383(2020)1813-1826
|
P. Horby, W.S. Lim, J.R. Emberson, et al., Dexamethasone in Hospitalized Patients with Covid-19-Preliminary Report, N. Engl. J. Med. 384(2020)694-704
|
Y. Zhou, F. Wang, J. Tang, et al., Artificial intelligence in COVID-19 drug repurposing, Lancet Digit Health 2(2020) e667-e676
|
H. Cheng, Z. Peng,W. Luo,et al.,Efficacy and Safety of COVID-19 Vaccines in Phase III Trials:A Meta-Analysis, Vaccines. 9(2021), 582
|
S. Wan, Y. Xiang, W. Fang, et al., Clinical features and treatment of COVID-19 patients in northeast Chongqing, J. Med. Virol. 92(2020)797-806
|
L. Luo, J. Jiang, C. Wang, et al., Analysis on herbal medicines utilized for treatment of COVID-19, Acta Pharm. Sin. B 10(2020)1192-1204
|
J.S. Mani, J.B. Johnson, J.C. Steel, et al., Natural product-derived phytochemicals as potential agents against coronaviruses:A review, Virus Res. 284(2020), 197989
|
E. Levy, E. Delvin, V. Marcil, et al., Can phytotherapy with polyphenols serve as a powerful approach for the prevention and therapy tool of novel coronavirus disease 2019(COVID-19)?Am. J. Physiol. Endocrinol. Metab. 319(2020) E689-E708
|
B.G. Vijayakumar, D. Ramesh, A. Joji, et al., In silico pharmacokinetic and molecular docking studies of natural flavonoids and synthetic indole chalcones against essential proteins of SARS-CoV-2, Eur. J. Pharmacol. 886(2020), 173448
|
J.-H. Kwak, J.M. Seo, N.-H. Kim, et al., Variation of quercetin glycoside derivatives in three onion (Allium cepa L.) varieties, Saudi J. Biol. Sci. 24(2017)1387-1391
|
Y. Li, J. Yao, C. Han, et al., Quercetin, Inflammation and Immunity, Nutrients. 8(2016), 167
|
L. Baird, M. Yamamoto, The Molecular Mechanisms Regulating the KEAP1-NRF2 Pathway, Mol. Cell Biol. 40(2020), e00099-20
|
D. Olagnier, E. Farahani, J. Thyrsted, et al., SARS-CoV2-mediated suppression of NRF2-signaling reveals potent antiviral and anti-inflammatory activity of 4-octyl-itaconate and dimethyl fumarate, Nat. Commun. 11(2020), 4938
|
N. Miyamoto, H. Izumi, R. Miyamoto, et al., Quercetin induces the expression of peroxiredoxins 3 and 5 via the Nrf2/NRF1 transcription pathway, Invest. Ophthalmol. Vis. Sci. 52(2011)1055-1063
|
S. Tanigawa, M. Fujii, D.-X. Hou, Action of Nrf2 and Keap1 in ARE-mediated NQO1 expression by quercetin, Free Radic. Biol. Med. 42(2007)1690-1703
|
A.W. Boots, C. Veith, C. Albrecht, et al., The dietary antioxidant quercetin reduces hallmarks of bleomycin-induced lung fibrogenesis in mice, BMC Pulm. Med. 20(2020), 112
|
W. Wang, B.L. Ma, C.G. Xu, et al., Dihydroquercetin protects against renal fibrosis by activating the Nrf2 pathway, Phytomedicine 69(2020), 153185
|
S. Jo, H. Kim, S. Kim, et al., Characteristics of flavonoids as potent MERS-CoV 3C-like protease inhibitors, Chem. Biol. Drug Des. 94(2019)2023-2030
|
T.T. Nguyen, H.J. Woo, H.K. Kang, et al., Flavonoid-mediated inhibition of SARS coronavirus 3C-like protease expressed in Pichia pastoris, Biotechnol. Lett. 34(2012)831-838
|
O. Abian, D. Ortega-Alarcon, A. Jimenez-Alesanco, et al., Structural stability of SARS-CoV-2 3CLpro and identification of quercetin as an inhibitor by experimental screening, Int. J. Biol. Macromol. 164(2020)1693-1703
|
Y.B. Ryu, H.J. Jeong, J.H. Kim, et al., Biflavonoids from Torreya nucifera displaying SARS-CoV 3CL (pro) inhibition, Bioorg. Med. Chem. 18(2010)7940-7947
|
L. Yi, Z. Li, K. Yuan, et al., Small molecules blocking the entry of severe acute respiratory syndrome coronavirus into host cells, J. Virol. 78(2004)11334-11339
|
P. Zhou, X.L. Yang, X.G. Wang, et al., A pneumonia outbreak associated with a new coronavirus of probable bat origin, Nature 579(2020)270-273
|
D. Bhowmik, R. Nandi, A. Prakash, et al., Evaluation of flavonoids as 2019-nCoV cell entry inhibitor through molecular docking and pharmacological analysis, Heliyon 7(2021), e06515
|
W. Wu, R. Li, X. Li, et al., Quercetin as an Antiviral Agent Inhibits Influenza A Virus (IAV) Entry, Viruses 8(2015), 6
|
S.H. Nile, D.H. Kim, A. Nile, et al., Probing the effect of quercetin 3-glucoside from Dianthus superbus L against influenza virus infection-In vitro and in silico biochemical and toxicological screening, Food Chem. Toxicol. 135(2020), 110985
|
H.J. Choi, J.H. Song, K.S. Park, et al., Inhibitory effects of quercetin 3-rhamnoside on influenza A virus replication, Eur. J. Pharm. Sci. 37(2009)329-333
|
H.J. Choi, J.H. Song, D.H., Quercetin 3-rhamnoside exerts antiinfluenza A virus activity in mice, Phytother. Res. 26(2012)462-464
|
B.R.P. Lopes, M.F. da Costa, A. Genova Ribeiro, et al., Quercetin pentaacetate inhibits in vitro human respiratory syncytial virus adhesion, Virus Res. 276(2020), 197805
|
V.B. Machado, J. Marostica de Sa, A.K. Miranda Prado, et al., Biophysical and flavonoid-binding studies of the G protein ectodomain of group A human respiratory syncytial virus, Heliyon 5(2019), e01394
|
J.H. Song, K.S. Park, D.H. Kwon, et al., Anti-human rhinovirus 2 activity and mode of action of quercetin-7-glucoside from Lagerstroemia speciosa, J. Med. Food 16(2013)274-279
|
S. Ganesan, A.N. Faris, A.T. Comstock, et al., Quercetin inhibits rhinovirus replication in vitro and in vivo, Antiviral Res. 94(2012)258-271
|
M. Farazuddin, R. Mishra, Y. Jing, et al., Quercetin prevents rhinovirus-induced progression of lung disease in mice with COPD phenotype, PLoS One 13(2018), e0199612
|
Q.X. Long, X.J. Tang, Q.L. Shi, et al., Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections, Nat. Med. 26(2020)1200-1204
|
C. Lucas, P. Wong, J. Klein, et al., Longitudinal analyses reveal immunological misfiring in severe COVID-19, Nature 584(2020)463-469
|
S. Kang, T. Tanaka, H. Inoue, et al., IL-6 trans-signaling induces plasminogen activator inhibitor-1 from vascular endothelial cells in cytokine release syndrome, Proc. Natl. Acad. Sci. U. S. A. 117(2020)22351-22356
|
J. Bovijn, C.M. Lindgren, M.V. Holmes, Genetic variants mimicking therapeutic inhibition of IL-6 receptor signaling and risk of COVID-19, Lancet Rheumatol. 2(2020) e658-e659
|
J.B. Moore, C.H. June, Cytokine release syndrome in severe COVID-19, Science 368(2020)473-474
|
A. Shah, Novel Coronavirus-Induced NLRP3 Inflammasome Activation:A Potential Drug Target in the Treatment of COVID-19, Front Immunol. 11(2020), 1021
|
P.A. Ruiz, A. Braune, G. Holzlwimmer, et al., Quercetin inhibits TNF-induced NF-kappaB transcription factor recruitment to proinflammatory gene promoters in murine intestinal epithelial cells, J. Nutr. 137(2007)1208-1215
|
Y.D. Min, C.H. Choi, H. Bark, et al., Quercetin inhibits expression of inflammatory cytokines through attenuation of NF-kappaB and p38 MAPK in HMC-1 human mast cell line, Inflamm. Res. 56(2007)210-215
|
S.C. Cheng, W.C. Huang, J.H. S. Pang, et al., Quercetin Inhibits the Production of IL-1β-Induced Inflammatory Cytokines and Chemokines in ARPE-19 Cells via the MAPK and NF-κB Signaling Pathways, Int. J. Mol. Sci. 20(2019), 2957
|
R. Huang, T. Zhong, H. Wu, Quercetin protects against lipopolysaccharide-induced acute lung injury in rats through suppression of inflammation and oxidative stress. Arch. Med. Sci. 11(2015)427-432
|
Z. Liu, J. Zhao, W. Li, et al., Computational screen and experimental validation of anti-influenza effects of quercetin and chlorogenic acid from traditional Chinese medicine, Sci. Rep. 6(2016), 19095
|
W. Jiang, Y. Huang, N. Han, et al., Quercetin suppresses NLRP3 inflammasome activation and attenuates histopathology in a rat model of spinal cord injury, Spinal Cord 54(2016)592-596
|
J. Liu, X. Li, Y. Yue, et al., The inhibitory effect of quercetin on IL-6 production by LPS-stimulated neutrophils, Cell Mol. Immunol. 2(2005)455-460
|
R.Y. Huang, Y.L. Yu, W.C. Cheng, et al., Immunosuppressive effect of quercetin on dendritic cell activation and function, J. Immunol. 184(2010)6815-6821
|
M. Granato, M.S. Gilardini Montani, C. Zompetta, et al., Quercetin Interrupts the Positive Feedback Loop Between STAT3 and IL-6, Promotes Autophagy, and Reduces ROS, Preventing EBV-Driven B Cell Immortalization, Biomolecules 9(2019), 482
|
J. Michaud-Levesque, N. Bousquet-Gagnon, R. Beliveau, Quercetin abrogates IL-6/STAT3 signaling and inhibits glioblastoma cell line growth and migration, Exp. Cell Res. 318(2012)925-935
|
B.S. Wung, M.C. Hsu, C.C. Wu, et al., Resveratrol suppresses IL-6-induced ICAM-1 gene expression in endothelial cells:effects on the inhibition of STAT3 phosphorylation, Life Sci. 78(2005)389-397
|
R.K. Thimmulappa, H. Lee, T. Rangasamy, et al., Nrf2 is a critical regulator of the innate immune response and survival during experimental sepsis, J. Clin. Invest. 116(2006)984-995
|
X. Kong, R. Thimmulappa, F. Craciun, et al., Enhancing Nrf2 pathway by disruption of Keap1 in myeloid leukocytes protects against sepsis, Am. J. Respir. Crit. Care Med. 184(2011)928-938
|
E.H. Kobayashi, T. Suzuki, R. Funayama, et al., Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription, Nat. Commun. 7(2016), 11624
|
G. Goshua, A.B. Pine, M.L. Meizlish, et al., Endotheliopathy in COVID-19-associated coagulopathy:evidence from a single-centre, cross-sectional study, Lancet Haematol. 7(2020) e575-e582
|
M. Levi, J. Thachil, T. Iba, et al., Coagulation abnormalities and thrombosis in patients with COVID-19, Lancet Haematol. 7(2020) e438-e440
|
S. Bilaloglu, Y. Aphinyanaphongs, S. Jones, et al., Thrombosis in Hospitalized Patients With COVID-19 in a New York City Health System, JAMA 324(2020)799-801
|
N. Tang, D. Li, X. Wang, et al., Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia, J. Thromb. Haemost. 18(2020)844-847
|
T. Iba, J.H. Levy, M. Levi, et al., Coagulopathy of Coronavirus Disease 2019, Crit. Care Med. 48(2020)1358-1364
|
J.I. Zwicker, B.L. Schlechter, J.D. Stopa, et al., Targeting protein disulfide isomerase with the flavonoid isoquercetin to improve hypercoagulability in advanced cancer, JCI Insight 4(2019), e125851
|
J.D. Stopa, D. Neuberg, M. Puligandla, et al., Protein disulfide isomerase inhibition blocks thrombin generation in humans by interfering with platelet factor V activation, JCI Insight 2(2017), e89373
|
ClinicalTrial.gov, Compilation prepared by National Library of Medicine, https://clinicaltrials.gov.(accessed on 24 Aug, 2021)
|
F. Di Pierro, S. Iqtadar, A. Khan, et al., Potential Clinical Benefits of Quercetin in the Early Stage of COVID-19:Results of a Second, Pilot, Randomized, Controlled and Open-Label Clinical Trial, Int. J. Gen. Med. 14(2021)2807-2816
|
N.T. Lu, C.M. Crespi, N.M. Liu, et al., A Phase I Dose Escalation Study Demonstrates Quercetin Safety and Explores Potential for Bioflavonoid Antivirals in Patients with Chronic Hepatitis C, Phytother. Res. 30(2016)160-168
|
D.C. Nieman, D.A. Henson, S.J. Gross, et al., Quercetin reduces illness but not immune perturbations after intensive exercise, Med. Sci. Sports Exerc. 39(2007)1561-1569
|
M.K. Han, T.A. Barreto, F.J. Martinez, et al., Randomised clinical trial to determine the safety of quercetin supplementation in patients with chronic obstructive pulmonary disease, BMJ Open Respir. Res. 7(2020), e000392
|
N.P. Bondonno, C.P. Bondonno, N.C. Ward, et al., Enzymatically modified isoquercitrin improves endothelial function in volunteers at risk of cardiovascular disease, Br. J. Nutr. 123(2020)182-189
|