Volume 12 Issue 2
May  2022
Turn off MathJax
Article Contents
Abir Chamandy, Minjie Zhao, Hassan Rammal, Saïd Ennahar. Hyphenated LC-ABTS·+ and LC-DAD-HRMS for simultaneous analysis and identification of antioxidant compounds in Astragalus emarginatus Labill. Extracts[J]. Journal of Pharmaceutical Analysis, 2022, 12(2): 253-262. doi: 10.1016/j.jpha.2021.09.008
Citation: Abir Chamandy, Minjie Zhao, Hassan Rammal, Saïd Ennahar. Hyphenated LC-ABTS·+ and LC-DAD-HRMS for simultaneous analysis and identification of antioxidant compounds in Astragalus emarginatus Labill. Extracts[J]. Journal of Pharmaceutical Analysis, 2022, 12(2): 253-262. doi: 10.1016/j.jpha.2021.09.008

Hyphenated LC-ABTS·+ and LC-DAD-HRMS for simultaneous analysis and identification of antioxidant compounds in Astragalus emarginatus Labill. Extracts

doi: 10.1016/j.jpha.2021.09.008
Funds:

(CNRS, Lebanon) for the identification of the plant specimens and to the Shouf Biosphere Reserve for granting permission for plant collection and facilitating the research work within the reserve.

The authors are grateful to Professor Georges Tohmé

  • Received Date: Mar. 15, 2021
  • Accepted Date: Sep. 15, 2021
  • Rev Recd Date: Aug. 30, 2021
  • Publish Date: Sep. 16, 2021
  • The compounds in leaf and stem extracts of Astragalus emarginatus Labill. (AEL), a plant species used in traditional Lebanese medicine, were investigated for antioxidant properties. First, the activity of various extracts was assessed using the Trolox equivalent antioxidant capacity, oxygen radical absorption capacity, and 2,2-diphenyl-1-picryl-hydrazyl-hydrate assays. The extract obtained using 30% ethanol showed the greatest activity. The antioxidant compounds in this extract were screened using a hyphenated high-performance liquid chromatography-2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonate) radical (ABTS·+) system before being separated by ultra-high-performance liquid chromatography and identified using high-resolution mass spectrometry and ultra-violet-visible diode array detection. Approximately 40 compounds were identified. Hydroxycinnamates (caffeic, ferulic, and p-coumaric acid derivatives) and flavonoids (quercetin, luteolin, apigenin, and isorhamnetin derivatives) were the two main categories of the identified compounds. The active compounds were identified as caffeic acid derivatives and quercetin glycosides. In addition, the catechol moiety was shown to be key to antioxidant activity. This study showed that AEL is a source of natural antioxidants, which may explain its medicinal use.
  • loading
  • Z. Liu, Z. Ren, J. Zhang, et al., Role of ROS and nutritional antioxidants in human diseases, Front. Physiol. 9 (2018), 477
    B. Poljsak, D. Šuput, I. Milisav, Achieving the balance between ROS and antioxidants: When to use the synthetic antioxidants, Oxid. Med. Cell. Longev. 2013 (2013), 956792
    G.A. Engwa, Free Radicals and the Role of Plant Phytochemicals as Antioxidants Against Oxidative Stress-Related Diseases, in: Phytochemicals, Source of Antioxidants and Role in Disease Prevention, IntechOpen, Shimane University, Shimane, Japan, 2018, pp. 1-27
    B. Salehi, E. Azzini, P. Zucca, et al., Plant-derived bioactives and oxidative stress-related disorders: A key trend towards healthy aging and longevity promotion, Appl. Sci. 10 (2020), 947
    S. Naghiloo, A. Movafeghi, A. Delazar, et al., Ontogenetic variation of total phenolics and antioxidant activity in roots, leaves and flowers of Astragalus compactus Lam. (Fabaceae), Bioimpacts 2 (2012) 105-109
    J. Asgarpanah, S.M. Motamed, A. Farzaneh, et al., Antioxidant activity and total phenolic and flavonoid content of Astragalus squarrosus Bunge, African J. Biotechnol. 10 (2011) 19176-19180
    I.I. Ionkova, A. Shkondrov, I. Krasteva, et al., Recent progress in phytochemistry, pharmacology and biotechnology of Astragalus saponins, Phytochem. Rev. 13 (2014) 343-374
    N.A. Jaradat, A.N. Zaid, A. Abuzant, et al., Phytochemical and biological properties of four Astragalus species commonly used in traditional Palestinian medicine, Eur. J. Integr. Med. 9 (2017) 1-8
    R. Arumugam, B. Kirkan, C. Sarikurkcu, Phenolic profile, antioxidant and enzyme inhibitory potential of methanolic extracts from different parts of Astragalus ponticus Pall., South African J. Bot. 120 (2019) 268-273
    H. Teyeb, O. Houta, H. Najjaa, et al., Biological and chemical study of Astragalus gombiformis, Z. Naturforsch. C. J. Biosci. 67 (2012) 367-374
    International Organization for Standardization, Traditional Chinese medicine - Astragalus mongholicus root, ISO Standard (2020) 22988:2020, https://www.iso.org/standard/74288.html. (accessed on 19 August, 2021)
    V.N. Hristo, I.I. Ionkova, Dpph radical scavenging activity of extracts obtained from Astragalus aitosensis Ivanisch. and Astragalus thracicus Griseb. Proceedings of the 8th Conference on Medicinal and Aromatic Plants of Southeast European Countries (CMAPSEEC), Durrës, Albania, 2014, 293-299
    H. Vasilev, S. Ross, K. Šmejkal, et al., Flavonoid glycosides from endemic bulgarian Astragalus aitosensis (Ivanisch.), Molecules 24 (2019), 1419
    J. Ghasemian-Yadegari, H. Nazemiyeh, S. Hamedeyazdan, et al., Secondary metabolites from the roots of Astragalus maximus, Res. J. Pharmacogn. 4 (2017) 31-38
    N. Arnold, S. Baydoun, L. Chalak, et al., A contribution to the flora and ethnobotanical knowledge of Mount Hermon, Lebanon, Fl. Medit. 25 (2015) 13-55
    H. Kanaan, M. El-Mestrah, A. Sweidan, et al., Screening for antibacterial and antibiofilm activities in Astragalus angulosus, J. Intercult. Ethnopharmacol. 6 (2016) 50-57
    M.S. Amiri, M.R. Joharchi, M. Nadaf, et al., Ethnobotanical knowledge of Astragalus spp.: The world’s largest genus of vascular plants, Avicenna J. Phytomed. 10 (2020) 128-142
    G. Tohmé, H.S. Tohmé, Illustrated flora of Lebanon, second ed., National Council for Scientific Research, CNRS Publications, Beirut, Lebanon, 2014. 1-610
    R. Re, N. Pellegrini, A. Proteggente, et al., Antioxidant activity applying an improved abts radical cation decolorization assay, Free Radic. Biol. Med. 26 (1999) 1231-1237
    B. Ou, M. Hampsch-Woodill, R.L. Prior, Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe, J. Agric. Food Chem. 49 (2001) 4619-4626
    R. Hassan, F. Hussein, M. Hawraa, et al., Antioxidant, cytotoxic properties and phytochemical screening of two lebanese medicinal plants, Int. Res. J. Pharm. 4 (2013) 132-136
    C. Leitao, E. Marchioni, M. Bergaentzlé, et al., Effects of processing steps on the phenolic content and antioxidant activity of beer, J. Agric. Food Chem. 59 (2011) 1249-1255
    A. Zulueta, M.J. Esteve, A. Frígola, ORAC and TEAC assays comparison to measure the antioxidant capacity of food products, Food Chem. 114 (2009) 310-316
    A. Adigüzel, M. Sökmen, H. Özkan, et al., In vitro antimicrobial and antioxidant activities of methanol and hexane extract of Astragalus species growing in the eastern Anatolia Region of Turkey, Turk. J. Biol. 33 (2009) 65-71
    S. Bourezzane, H. Haba, C. Long, et al., Chemical composition and antioxidant activity of Astragalus monspessulanus L. growing in semiarid areas of Algeria, J. Serb. Chem. Soc. 83 (2018) 31-38
    W. Pu, D. Wang, D. Zhou, Structural characterization and evaluation of the antioxidant activity of phenolic compounds from Astragalus taipaishanensis and their structure-activity relationship, Sci. Rep. 5 (2015), 13914
    K. Mishra, H. Ojha, N.K. Chaudhury, Estimation of antiradical properties of antioxidants using DPPH assay: A critical review and results, Food Chem. 130 (2012) 1036-1043
    L.F. Pistelli, Secondary metabolites of genus Astragalus: Structure and biological activity, Stud. Nat. Prod. Chem. 27 (2002) 443-545
    N. Haşimi, A. Ertaş, M.A. Yilmaz, et al., LC-MS/MS and GC-MS analyses of three endemic Astragalus species from Anatolia towards their total phenolic-flavonoid contents and biological activities, Biol. Divers. Conserv. 10 (2017) 18-30
    K.A. Al-shammary, K.R. Al-joboury, Chemical study for some species of Astragalus L. (Fabaceae family) in Iraq, J. Genet. Environ. Resour. Conserv. 4 (2016) 66-71
    N.N. Guzhva, Flavonoids and hydroxycinnamic acids from Astragalus asper, Chem. Nat. Compd. 46 (2010) 303-304
    H. Kelebek, S. Selli, P. Kadiroǧlu, et al., Bioactive compounds and antioxidant potential in tomato pastes as affected by hot and cold break process, Food Chem. 220 (2017) 31-41
    J.P. Piwowarski, B. Waltenberger, H. Stuppner, et al., The analysis of phenolic compounds from the aerial parts of Eupatorium cannabinum L. subsp. cannabinum, Biochem. Syst. Ecol. 79 (2018) 37-43
    P. Lorenz, J. Conrad, J. Bertrams, et al., Investigations into the phenolic constituents of Dog’s mercury (Mercurialis perennis L.) by LC-MS/MS and GC-MS analyses, Phytochem. Anal. 23 (2012) 60-71
    L.Z. Lin, J.M. Harnly, M.S. Pastor-Corrales, et al., The polyphenolic profiles of common bean (Phaseolus vulgaris L.), Food Chem. 107 (2008) 399-410
    T.A. Garran, R. Ji, J.L. Chen, et al., Elucidation of metabolite isomers of Leonurus japonicus and Leonurus cardiaca using discriminating metabolite isomerism strategy based on ultra-high performance liquid chromatography tandem quadrupole time-of-flight mass spectrometry, J. Chromatogr. A 1598 (2019) 141-153
    L. Bengoechea, T. Hernandez, C. Quesada, et al., Structure of hydroxycinnamic acid derivatives established by high-performance liquid chromatography with photodiode-array detection, Chromatographia 41 (1995) 94-98
    I.M. Abu-Reidah, M.M. Contreras, D. Arráez-Román, et al., Reversed-phase ultra-high-performance liquid chromatography coupled to electrospray ionization-quadrupole-time-of-flight mass spectrometry as a powerful tool for metabolic profiling of vegetables: Lactuca sativa as an example of its application, J. Chromatogr. A 1313 (2013) 212-227
    B.S. Khoza, S. Gbashi, P.A. Steenkamp, et al., Identification of hydroxylcinnamoyl tartaric acid esters in Bidens pilosa by UPLC-tandem mass spectrometry, S. Afr. J. Bot. 103 (2016) 95-100
    K. Schütz, D.R. Kammerer, R. Carle, et al., Characterization of phenolic acids and flavonoids in dandelion (Taraxacum officinale WEB. ex WIGG.) root and herb by high-performance liquid chromatography/electrospray ionization mass spectrometry, Rapid Commun. Mass Spectrom. 19 (2005) 179-186
    F. Buiarelli, F. Coccioli, M. Merolle, et al., Identification of hydroxycinnamic acid-tartaric acid esters in wine by HPLC-tandem mass spectrometry, Food Chem. 123 (2010) 827-833
    M.F. Chamorro, G. Reiner, C. Theoduloz, et al., Polyphenol composition and (bio)activity of Berberis species and wild strawberry from the Argentinean Patagonia, Molecules 24 (2019), 3331
    H. Li, W. Yao, Q. Liu, et al., Application of UHPLC-ESI-Q-TOF-MS to identify multiple constituents in processed products of the herbal medicine Ligustri Lucidi Fructus, Molecules 22 (2017), 689
    M. Mosić, J. Trifković, I. Vovk, et al., Phenolic composition influences the health-promoting potential of bee-pollen, Biomolecules 9 (2019), 783
    N. Zhang, Z. He, S. He, et al., Insights into the importance of dietary chrysanthemum flower (Chrysanthemum morifolium cv. Hangju)-wolfberry (Lycium barbarum fruit) combination in antioxidant and anti-inflammatory properties, Food Res. Int. 116 (2019) 810-818
    A. Schieber, P. Keller, P. Streker, et al., Carle, Detection of isorhamnetin glycosides in extracts of apples (Malus domestica cv. “Brettacher”) by HPLC-PDA and HPLC-APCI-MS/MS, Phytochem. Anal. 13 (2002) 87-94
    M. Kessler, G. Ubeaud, L. Jung, Anti- and pro-oxidant activity of rutin and quercetin derivatives, J. Pharm. Pharmacol. 55 (2003) 131-142
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (127) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return