Volume 12 Issue 2
May  2022
Turn off MathJax
Article Contents
Peijie Zhu, Weijia Chen, Qiqin Wang, Huihui Wu, Meng Ruan, Hongwu Wang, Zhengjin Jiang. Phosphatidylethanolamine functionalized biomimetic monolith for immobilized artificial membrane chromatography[J]. Journal of Pharmaceutical Analysis, 2022, 12(2): 332-338. doi: 10.1016/j.jpha.2021.09.002
Citation: Peijie Zhu, Weijia Chen, Qiqin Wang, Huihui Wu, Meng Ruan, Hongwu Wang, Zhengjin Jiang. Phosphatidylethanolamine functionalized biomimetic monolith for immobilized artificial membrane chromatography[J]. Journal of Pharmaceutical Analysis, 2022, 12(2): 332-338. doi: 10.1016/j.jpha.2021.09.002

Phosphatidylethanolamine functionalized biomimetic monolith for immobilized artificial membrane chromatography

doi: 10.1016/j.jpha.2021.09.002
Funds:

This project was funded by the National Natural Science Foundation of China (Grant Nos.: 81872830 and 82073806), the Natural Science Foundation of Guangdong Province (Grant No.: 2020A1515010569), the Science and Technology Innovation Guidance Project of Zhaoqing City (Grant No.: 201804030103), and the Scientific Research Fund of Zhaoqing University (Grant No.: 201817).

  • Received Date: Jun. 02, 2020
  • Accepted Date: Sep. 05, 2021
  • Rev Recd Date: Jun. 30, 2021
  • Publish Date: Sep. 08, 2021
  • In this research, a new phospholipid based monolith was fabricated by in situ co-polymerization of 1-dodecanoyl-2-(11-methacrylamidoundecanoyl)-sn-glycero-3-phosphoethanolamine and ethylene dimethacrylate to mimick bio-membrane environment. Excellent physicochemical properties of this novel monolith that were achieved included column efficiency, stability, and permeability. Moreover, the biomimetic monolith showed outstanding separation capability for a series of intact proteins and small molecules. In particular, it exhibited good potential as an alternative to the commercial immobilized artificial membrane (IAM) column (IAM.PC.DD2) for studying drug-membrane interactions. This study not only enriched the types of IAM stationary phases, but also provided a simple model for the prediction of phosphatidylethanolamine related properties of drug candidates.
  • loading
  • C.Y. Yang, S.J. Cai, H. Liu, et al., Immobilized Artificial Membranes-screens for drug membrane interactions, Adv. Drug Delivery Rev. 23 (1997) 229-256
    F. Tsopelas, T. Vallianatou, A. Tsantili-Kakoulidou, Advances in immobilized artificial membrane (IAM) chromatography for novel drug discovery, Expert Opin. Drug Dis. 11 (2016) 473-488
    L. Grumetto, G. Russo, F. Barbato, Immobilized artificial membrane HPLC derived parameters vs PAMPA-BBB data in estimating in situ measured blood-brain barrier permeation of drugs, Mol. Pharm. 13 (2016) 2808-2816
    A.W. Sobanska, E. Brzezinska, Phospholipid-based immobilized artificial membrane (IAM) chromatography: a powerful tool to model drug distribution processes, Curr. Pharm. design 23 (2017) 6784-6794
    F. Tsopelas, C. Stergiopoulos, L.A. Tsakanika, et al., The use of immobilized artificial membrane chromatography to predict bioconcentration of pharmaceutical compounds, Ecotox. Environ. Safe. 139 (2017) 150-157
    K.L. Valko, S.B. Nunhuck, A.P. Hill, Estimating unbound volume of distribution and tissue binding by in vitro HPLC-based human serum albumin and immobilised artificial membrane-binding measurements, J. Pharm. Sci. 100 (2011) 849-862
    F. Tsopelas, T. Vallianatou, A. Tsantili-Kakoulidou, The potential of immobilized artificial membrane chromatography to predict human oral absorption, Eur. J. Pharm. Sci. 81 (2016) 82-93
    M.D. Vrieze, D. Verzele, R. Szucs, et al., Evaluation of sphingomyelin, cholester, and phosphatidylcholine-based immobilized artificial membrane liquid chromatography to predict drug penetration across the blood-brain barrier, Anal. Bioanal. Chem. 406 (2014) 6179-6188
    C. Pidgeon, U.V. Venkataram, Immobilized artificial membrane chromatography: supports composed of membrane lipids, Anal. Biochem. 176 (1989) 36-47
    F. Barbato, G. di Martino, L. Grumetto, et al., Prediction of drug-membrane interactions by IAM-HPLC: effects of different phospholipid stationary phases on the partition of bases, Eur. J. Pharm. Sci. 22 (2004) 261-269
    F. Tsopelas, N. Malaki, T. Vallianatou, et al., Insight into the retention mechanism on immobilized artificial membrane chromatography using two stationary phases, J. Chromatogr. A 1396 (2015) 25-33
    T.E. Yen, S. Agatonovic-Kustrin, A.M. Evans, et al., Prediction of drug absorption based on immobilized artificial membrane (IAM) chromatography separation and calculated molecular descriptors, J. Pharm. Biomed. Anal. 38 (2005) 472-478
    G.W. Caldwell, J.A. Masucci, M. Evangelisto, et al., Evaluation of the immobilized artificial membrane phosphatidylcholine: Drug discovery column for high-performance liquid chromatographic screening of drug-membrane interactions, J. Chromatogr. A 800 (1998) 161-169
    R.J. Markovich, X. Qiu, D.E. Nichols, et al., Silica subsurface amine effect on the chemical stability and chromatographic properties of end-capped immobilized artifificial membrane surfaces, Anal. Chem. 63 (1991) 1851-1860
    D. Moravcová, J. Planeta, S.K. Wiedmer, Silica-based monolithic capillary columns modified by liposomes for characterization of analyte-liposome interactions by capillary liquid chromatography, J. Chromatogr. A 1317 (2013) 159-166
    Y. Kuroda, R. Hamaguchi, T. Tanimoto, Phospholipid-modifified ODS monolithic column for affinity prediction of hydrophobic basic drugs to phospholipids, Chromatographia 77 (2014) 405-411
    Q. Wang, Q. Zhang, H. Huang, et al., Fabrication and application of zwitterionic phosphorylcholine functionalized monoliths with different hydrophilic crosslinkers in hydrophilic interaction chromatography, Anal. Chim. Acta 1101 (2020) 222-229
    Q. Wang, H. Wu, K. Peng, et al., Hydrophilic polymeric monoliths containing choline phosphate for separation science applications, Anal. Chim. Acta 999 (2018) 184-189
    Y. Luo, P. Huang, Q. Fu, et al., Preparation of monolithic imprinted stationary phase for clenbuterol by in situ polymerization and application in biological samples pretreatment, Chromatographia 74 (2011) 693-701
    Q. Wang, H. Jin, D. Xia, et al., Biomimetic polymer-Based method for selective capture of C-reactive protein in biological fluids, ACS Appl. Mater. Inter. 10 (2018) 41999-42008
    C. Liu, P. Bults, R. Bischoff, et al., Separation of deamidated peptides with mixed-mode chromatography using phospholipid-functionalized monolithic stationary phases, J. Chromatogr. A 1603 (2019) 417-421
    S. Ebrahimi, R. Kleerebezem, M.T. Kreutzer, et al., Potential application of monolith packed columns as bioreactors, control of biofilm formation, Biotechnol. Bioeng. 93 (2006) 238-245
    X. Zhao, W. Chen, Z. Zhou, et al., Preparation of a biomimetic polyphosphorylcholine monolithic column for immobilized artifificial membrane chromatography, J. Chromatogr. A 1407 (2015) 176-183
    Q. Wang, K. Peng, W. Chen, et al., Development of double chain phosphatidylcholine functionalized polymeric monoliths for immobilized artifificial membrane chromatography, J. Chromatogr. A 1479 (2017) 97-106
    X. Zhao, W. Chen, Z. Liu, et al., A novel mixed phospholipid functionalized monolithic column for early screening of drug induced phospholipidosis risk, J. Chromatogr. A 1367 (2014) 99-108
    J.E. Vance, Phosphatidylserine and phosphatidylethanolamine in mammalian cells: two metabolically related aminophospholipids, J. Lipid Res. 49 (2008) 1377-1387
    F. Gibellini, T.K. Smith, The Kennedy pathway-de novo synthesis of phosphatidylethanolamine and phosphatidylcholine, IUBMB life 62 (2010) 414-428
    A.A. Gurtovenko, and I. Vattulainen, Effect of NaCl and KCl on phosphatidylcholine and phosphatidylethanolamine lipid membranes: insight from atomic-scale simulations for understanding salt-induced effects in the plasma membrane, J. Phys. Chem. B 112 (2008) 1953-1962
    S. Ong, S.J. Cai, C. Bernal, et al., Phospholipid immobilization on solid surfaces, Anal. Chem. 66 (1994) 782-792
    F. Paltauf, A. Hermetter, Strategies for the synthesis of glycerophospholipids, Prog. Lipid Res. 33 (1994) 239-328
    Z. Jiang, N.W. Smith, Z. Liu, Preparation and application of hydrophilic monolithic column, J. Chromatogr. A 1218 (2011) 2350-2361
    K. Peng, Q. Wang, W. Chen, et al., Phosphatidic acid-functionalized monolithic stationary phase for reversed-phase/cation-exchange mixed mode chromatography, RSC Adv. 6 (2016) 100891-100898
    J. Lin, S. Liu, X. Lin, et al., Novel highly hydrophilic methacrylate-based monolithic column with mixed-mode of hydrophilic and strong cation-exchange interactions for pressurized capillary electrochromatography, J. Chromatogr. A 1218 (2011) 4671-4677
    K. Valko, C.M. Du, C.D. Bevan, Rapid-gradient HPLC method for measuring drug interactions with immobilized artifificial membrane: Comparison with other lipophilicity measures, J. Pharm. Sci. 89 (2000) 1085-1096
    K. Valko, C. Bevan, D. Reynolds, Chromatographic hydrophobicity index by fast-gradient RP-HPLC: a high-throughput alternative to log P/log D, Anal. Chem. 69 (1997) 2022-2029
    X. Subirats, M. Roses, E. Bosch, High-throughput log Po/w determination from UHPLC measurements: Revisiting the chromatographic hydrophobicity index, J. Pharm. Biomed. Anal. 127 (2016) 26-31
    N.V. Reo, M. Adinehzadeh, B.D. Foy, Kinetic analyses of liver phosphatidylcholine and phosphatidylethanolamine biosynthesis using 13C NMR spectroscopy, Biochim. Biophys. Acta. 1580 (2002) 171-188
    J.R. Silvius, P.M. Brown, T.J. O'Leary, Role of head group structure in the phase behavior of amino phospholipids. 1. Hydrated and dehydrated lamellar phases of saturated phosphatidylethanolamine analogs, Biochemistry 25 (1986) 4249-4258
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (196) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return