Citation: | Peijie Zhu, Weijia Chen, Qiqin Wang, Huihui Wu, Meng Ruan, Hongwu Wang, Zhengjin Jiang. Phosphatidylethanolamine functionalized biomimetic monolith for immobilized artificial membrane chromatography[J]. Journal of Pharmaceutical Analysis, 2022, 12(2): 332-338. doi: 10.1016/j.jpha.2021.09.002 |
C.Y. Yang, S.J. Cai, H. Liu, et al., Immobilized Artificial Membranes-screens for drug membrane interactions, Adv. Drug Delivery Rev. 23 (1997) 229-256
|
F. Tsopelas, T. Vallianatou, A. Tsantili-Kakoulidou, Advances in immobilized artificial membrane (IAM) chromatography for novel drug discovery, Expert Opin. Drug Dis. 11 (2016) 473-488
|
L. Grumetto, G. Russo, F. Barbato, Immobilized artificial membrane HPLC derived parameters vs PAMPA-BBB data in estimating in situ measured blood-brain barrier permeation of drugs, Mol. Pharm. 13 (2016) 2808-2816
|
A.W. Sobanska, E. Brzezinska, Phospholipid-based immobilized artificial membrane (IAM) chromatography: a powerful tool to model drug distribution processes, Curr. Pharm. design 23 (2017) 6784-6794
|
F. Tsopelas, C. Stergiopoulos, L.A. Tsakanika, et al., The use of immobilized artificial membrane chromatography to predict bioconcentration of pharmaceutical compounds, Ecotox. Environ. Safe. 139 (2017) 150-157
|
K.L. Valko, S.B. Nunhuck, A.P. Hill, Estimating unbound volume of distribution and tissue binding by in vitro HPLC-based human serum albumin and immobilised artificial membrane-binding measurements, J. Pharm. Sci. 100 (2011) 849-862
|
F. Tsopelas, T. Vallianatou, A. Tsantili-Kakoulidou, The potential of immobilized artificial membrane chromatography to predict human oral absorption, Eur. J. Pharm. Sci. 81 (2016) 82-93
|
M.D. Vrieze, D. Verzele, R. Szucs, et al., Evaluation of sphingomyelin, cholester, and phosphatidylcholine-based immobilized artificial membrane liquid chromatography to predict drug penetration across the blood-brain barrier, Anal. Bioanal. Chem. 406 (2014) 6179-6188
|
C. Pidgeon, U.V. Venkataram, Immobilized artificial membrane chromatography: supports composed of membrane lipids, Anal. Biochem. 176 (1989) 36-47
|
F. Barbato, G. di Martino, L. Grumetto, et al., Prediction of drug-membrane interactions by IAM-HPLC: effects of different phospholipid stationary phases on the partition of bases, Eur. J. Pharm. Sci. 22 (2004) 261-269
|
F. Tsopelas, N. Malaki, T. Vallianatou, et al., Insight into the retention mechanism on immobilized artificial membrane chromatography using two stationary phases, J. Chromatogr. A 1396 (2015) 25-33
|
T.E. Yen, S. Agatonovic-Kustrin, A.M. Evans, et al., Prediction of drug absorption based on immobilized artificial membrane (IAM) chromatography separation and calculated molecular descriptors, J. Pharm. Biomed. Anal. 38 (2005) 472-478
|
G.W. Caldwell, J.A. Masucci, M. Evangelisto, et al., Evaluation of the immobilized artificial membrane phosphatidylcholine: Drug discovery column for high-performance liquid chromatographic screening of drug-membrane interactions, J. Chromatogr. A 800 (1998) 161-169
|
R.J. Markovich, X. Qiu, D.E. Nichols, et al., Silica subsurface amine effect on the chemical stability and chromatographic properties of end-capped immobilized artifificial membrane surfaces, Anal. Chem. 63 (1991) 1851-1860
|
D. Moravcová, J. Planeta, S.K. Wiedmer, Silica-based monolithic capillary columns modified by liposomes for characterization of analyte-liposome interactions by capillary liquid chromatography, J. Chromatogr. A 1317 (2013) 159-166
|
Y. Kuroda, R. Hamaguchi, T. Tanimoto, Phospholipid-modifified ODS monolithic column for affinity prediction of hydrophobic basic drugs to phospholipids, Chromatographia 77 (2014) 405-411
|
Q. Wang, Q. Zhang, H. Huang, et al., Fabrication and application of zwitterionic phosphorylcholine functionalized monoliths with different hydrophilic crosslinkers in hydrophilic interaction chromatography, Anal. Chim. Acta 1101 (2020) 222-229
|
Q. Wang, H. Wu, K. Peng, et al., Hydrophilic polymeric monoliths containing choline phosphate for separation science applications, Anal. Chim. Acta 999 (2018) 184-189
|
Y. Luo, P. Huang, Q. Fu, et al., Preparation of monolithic imprinted stationary phase for clenbuterol by in situ polymerization and application in biological samples pretreatment, Chromatographia 74 (2011) 693-701
|
Q. Wang, H. Jin, D. Xia, et al., Biomimetic polymer-Based method for selective capture of C-reactive protein in biological fluids, ACS Appl. Mater. Inter. 10 (2018) 41999-42008
|
C. Liu, P. Bults, R. Bischoff, et al., Separation of deamidated peptides with mixed-mode chromatography using phospholipid-functionalized monolithic stationary phases, J. Chromatogr. A 1603 (2019) 417-421
|
S. Ebrahimi, R. Kleerebezem, M.T. Kreutzer, et al., Potential application of monolith packed columns as bioreactors, control of biofilm formation, Biotechnol. Bioeng. 93 (2006) 238-245
|
X. Zhao, W. Chen, Z. Zhou, et al., Preparation of a biomimetic polyphosphorylcholine monolithic column for immobilized artifificial membrane chromatography, J. Chromatogr. A 1407 (2015) 176-183
|
Q. Wang, K. Peng, W. Chen, et al., Development of double chain phosphatidylcholine functionalized polymeric monoliths for immobilized artifificial membrane chromatography, J. Chromatogr. A 1479 (2017) 97-106
|
X. Zhao, W. Chen, Z. Liu, et al., A novel mixed phospholipid functionalized monolithic column for early screening of drug induced phospholipidosis risk, J. Chromatogr. A 1367 (2014) 99-108
|
J.E. Vance, Phosphatidylserine and phosphatidylethanolamine in mammalian cells: two metabolically related aminophospholipids, J. Lipid Res. 49 (2008) 1377-1387
|
F. Gibellini, T.K. Smith, The Kennedy pathway-de novo synthesis of phosphatidylethanolamine and phosphatidylcholine, IUBMB life 62 (2010) 414-428
|
A.A. Gurtovenko, and I. Vattulainen, Effect of NaCl and KCl on phosphatidylcholine and phosphatidylethanolamine lipid membranes: insight from atomic-scale simulations for understanding salt-induced effects in the plasma membrane, J. Phys. Chem. B 112 (2008) 1953-1962
|
S. Ong, S.J. Cai, C. Bernal, et al., Phospholipid immobilization on solid surfaces, Anal. Chem. 66 (1994) 782-792
|
F. Paltauf, A. Hermetter, Strategies for the synthesis of glycerophospholipids, Prog. Lipid Res. 33 (1994) 239-328
|
Z. Jiang, N.W. Smith, Z. Liu, Preparation and application of hydrophilic monolithic column, J. Chromatogr. A 1218 (2011) 2350-2361
|
K. Peng, Q. Wang, W. Chen, et al., Phosphatidic acid-functionalized monolithic stationary phase for reversed-phase/cation-exchange mixed mode chromatography, RSC Adv. 6 (2016) 100891-100898
|
J. Lin, S. Liu, X. Lin, et al., Novel highly hydrophilic methacrylate-based monolithic column with mixed-mode of hydrophilic and strong cation-exchange interactions for pressurized capillary electrochromatography, J. Chromatogr. A 1218 (2011) 4671-4677
|
K. Valko, C.M. Du, C.D. Bevan, Rapid-gradient HPLC method for measuring drug interactions with immobilized artifificial membrane: Comparison with other lipophilicity measures, J. Pharm. Sci. 89 (2000) 1085-1096
|
K. Valko, C. Bevan, D. Reynolds, Chromatographic hydrophobicity index by fast-gradient RP-HPLC: a high-throughput alternative to log P/log D, Anal. Chem. 69 (1997) 2022-2029
|
X. Subirats, M. Roses, E. Bosch, High-throughput log Po/w determination from UHPLC measurements: Revisiting the chromatographic hydrophobicity index, J. Pharm. Biomed. Anal. 127 (2016) 26-31
|
N.V. Reo, M. Adinehzadeh, B.D. Foy, Kinetic analyses of liver phosphatidylcholine and phosphatidylethanolamine biosynthesis using 13C NMR spectroscopy, Biochim. Biophys. Acta. 1580 (2002) 171-188
|
J.R. Silvius, P.M. Brown, T.J. O'Leary, Role of head group structure in the phase behavior of amino phospholipids. 1. Hydrated and dehydrated lamellar phases of saturated phosphatidylethanolamine analogs, Biochemistry 25 (1986) 4249-4258
|