Volume 11 Issue 6
Dec.  2021
Turn off MathJax
Article Contents
Lianxiang Luo, Qin Qiu, Fangfang Huang, Kaifeng Liu, Yongqi Lan, Xiaoling Li, Yuge Huang, Liao Cui, Hui Luo. Drug repurposing against coronavirus disease 2019 (COVID-19): A review[J]. Journal of Pharmaceutical Analysis, 2021, 11(6): 683-690. doi: 10.1016/j.jpha.2021.09.001
Citation: Lianxiang Luo, Qin Qiu, Fangfang Huang, Kaifeng Liu, Yongqi Lan, Xiaoling Li, Yuge Huang, Liao Cui, Hui Luo. Drug repurposing against coronavirus disease 2019 (COVID-19): A review[J]. Journal of Pharmaceutical Analysis, 2021, 11(6): 683-690. doi: 10.1016/j.jpha.2021.09.001

Drug repurposing against coronavirus disease 2019 (COVID-19): A review

doi: 10.1016/j.jpha.2021.09.001
Funds:

This project was supported by the PhD Start-up Fund of Guangdong Medical University (Grant No.: B2019016), Administration of Traditional Chinese Medicine of Guangdong Province (Grant No.: 20201180), Science and Technology Special Project of Zhanjiang (Project No.: 2019A01009), Natural Science Foundation of Guangdong Province (Grant No.: 2016B030309002), Basic and Applied Basic Research Program of Guangdong Province (Grant No.: 2019A1515110201), Educational Commission of Guangdong Province (Grant No.: 4SG20138G), and Fund of Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang) (Grant No.: ZJW-2019-007).

  • Received Date: Mar. 08, 2021
  • Accepted Date: Sep. 03, 2021
  • Rev Recd Date: Aug. 16, 2021
  • Available Online: Jan. 12, 2022
  • Publish Date: Dec. 15, 2021
  • Since December 2019, severe acute respiratory syndrome coronavirus 2 has been found to be the culprit in the coronavirus disease 2019 (COVID-19), causing a global pandemic. Despite the existence of many vaccine programs, the number of confirmed cases and fatalities due to COVID-19 is still increasing. Furthermore, a number of variants have been reported. Because of the absence of approved anti-coronavirus drugs, the treatment and management of COVID-19 has become a global challenge. Under these circumstances, drug repurposing is an effective method to identify candidate drugs with a shorter cycle of clinical trials. Here, we summarize the current status of the application of drug repurposing in COVID-19, including drug repurposing based on virtual computer screening, network pharmacology, and bioactivity, which may be a beneficial COVID-19 treatment.
  • loading
  • H. Lu, C. W. Stratton and Y.W. Tang, Outbreak of pneumonia of unknown etiology in Wuhan, China: The mystery and the miracle, J. Med. Virol. 92 (2020) 401-402
    N. Zhu, D. Zhang, W. Wang, et al., A Novel Coronavirus from Patients with Pneumonia in China, 2019, N. Engl. J. Med. 382 (2020) 727-733
    Y. Shi, G. Wang, X.P. Cai, et al., An overview of COVID-19, J. Zhejiang Univ. Sci. B. 21 (2020) 343-360
    A.K. Gupta, H. Jneid, D. Addison, et al., Current Perspectives on Coronavirus Disease 2019 and Cardiovascular Disease: A White Paper by the JAHA Editors, J. Am. Heart Assoc. 9 (2020), e017013
    Y. Yeu, Y. Yoon, S. Park, Protein localization vector propagation: a method for improving the accuracy of drug repositioning, Mol. Biosyst. 11 (2015) 2096-2102
    J.A. DiMasi, R.W. Hansen, H.G. Grabowski, The price of innovation: new estimates of drug development costs, J. Health Econ. 22 (2003) 151-185
    H. Xue, J. Li, H. Xie, et al., Review of Drug Repositioning Approaches and Resources, Int. J. Biol. Sci. 14 (2018) 1232-1244
    T.T. Ashburn, K.B. Thor, Drug repositioning: identifying and developing new uses for existing drugs, Nat. Rev. Drug Discov. 3 (2004) 673-683
    S. Pushpakom, F. Iorio, P.A. Eyers, et al., Drug repurposing: progress, challenges and recommendations, Nat. Rev. Drug Discov. 18 (2019) 41-58
    A. Papapetropoulos, C. Szabo, Inventing new therapies without reinventing the wheel: the power of drug repurposing, Br. J. Pharmacol. 175 (2018) 165-167
    D. Sardana, C. Zhu, M. Zhang, et al., Drug repositioning for orphan diseases, Brief. Bioinform. 12 (2011) 346-356
    S. Singhal, J. Mehta, R. Desikan, et al., Antitumor activity of thalidomide in refractory multiple myeloma, N. Engl. J. Med. 341 (1999) 1565-1571
    S. Chen, J. Tian, Z. Li, et al., Feline Infectious Peritonitis Virus Nsp5 Inhibits Type I Interferon Production by Cleaving NEMO at Multiple Sites, Viruses. 12 (2019), 43
    R. Sah, A.J. Rodriguez-Morales, R. Jha, et al., Complete Genome Sequence of a 2019 Novel Coronavirus (SARS-CoV-2) Strain Isolated in Nepal, Microbiol. Resour. Announc. 9 (2020), e00169-20
    F. Wu, S. Zhao, B. Yu, et al., A new coronavirus associated with human respiratory disease in China, Nature 579 (2020) 265-269
    P. Zhou, X.L. Yang, X.G. Wang, et al., A pneumonia outbreak associated with a new coronavirus of probable bat origin, Nature 579 (2020) 270-273
    D. Wrapp, N. Wang, K.S. Corbett, et al., Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation, Science 367 (2020) 1260-1263
    M. Hoffmann, H. Kleine-Weber, S. Schroeder, et al., SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor, Cell 181 (2020) 271-280
    B. Coutard, C. Valle, X. de Lamballerie, et al., The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade, Antiviral Res. 176 (2020), 104742
    C. Liu, Q. Zhou, Y. Li, et al., Research and Development on Therapeutic Agents and Vaccines for COVID-19 and Related Human Coronavirus Diseases, ACS Cent. Sci. 6 (2020) 315-331
    A.E. Gorbalenya, F.M. Pringle, J.L. Zeddam, et al., The palm subdomain-based active site is internally permuted in viral RNA-dependent RNA polymerases of an ancient lineage, J. Mol. Biol. 324 (2002) 47-62
    X. Chen, C.Y. Chou, G.G. Chang, Thiopurine analogue inhibitors of severe acute respiratory syndrome-coronavirus papain-like protease, a deubiquitinating and deISGylating enzyme, Antivir. Chem. Chemother. 19 (2009) 151-156
    K.W. Cheng, S.C. Cheng, W.Y. Chen, et al., Thiopurine analogs and mycophenolic acid synergistically inhibit the papain-like protease of Middle East respiratory syndrome coronavirus, Antiviral Res. 115 (2015) 9-16
    J.F. Chan, S.K. Lau, K.K. To, et al., Middle East respiratory syndrome coronavirus: another zoonotic betacoronavirus causing SARS-like disease, Clin. Microbiol. Rev. 28 (2015) 465-522
    K. Shirato, M. Kawase, S. Matsuyama, Middle East respiratory syndrome coronavirus infection mediated by the transmembrane serine protease TMPRSS2, J. Virol. 87 (2013) 12552-12561
    A.C. Walls, Y.J. Park, M.A. Tortorici, et al., Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein, Cell 181 (2020) 281-292
    H. Zhang, J.M. Penninger, Y. Li, et al., Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target, Intensive Care Med. 46 (2020) 586-590
    B.J. Bosch, R. van der Zee, C.A. de Haan, et al., The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex, J. Virol. 77 (2003) 8801-8811
    Z. Song, Y. Xu, L. Bao, et al., From SARS to MERS, Thrusting Coronaviruses into the Spotlight, Viruses 11 (2019), 59
    A. Zumla, J.F. Chan, E.I. Azhar, et al., Coronaviruses - drug discovery and therapeutic options, Nat. Rev. Drug Discov. 15 (2016) 327-347
    E.J. Snijder, Y. van der Meer, J. Zevenhoven-Dobbe, et al., Ultrastructure and origin of membrane vesicles associated with the severe acute respiratory syndrome coronavirus replication complex, J. Virol. 80 (2006) 5927-5940
    A.R. Fehr, S. Perlman, Coronaviruses: an overview of their replication and pathogenesis, Methods Mol. Biol. 1282 (2015) 1-23
    K. Knoops, M. Kikkert, S. H. Worm, et al., SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum, PLoS Biol. 6 (2008), e226
    K. Stadler, V. Masignani, M. Eickmann, et al., SARS--beginning to understand a new virus, Nat. Rev. Microbiol. 1 (2003) 209-218
    T.N. Raju, The Nobel chronicles. 1988: James Whyte Black, (b 1924), Gertrude Elion (1918-99), and George H Hitchings (1905-98), Lancet 355 (2000), 1022
    H. Yu, J. Chen, X. Xu, et al., A systematic prediction of multiple drug-target interactions from chemical, genomic, and pharmacological data, PLoS ONE. 7 (2012), e37608
    F. Cheng, C. Liu, J. Jiang, et al., Prediction of drug-target interactions and drug repositioning via network-based inference, PLoS Comput. Biol. 8 (2012), e1002503
    R.A. Hodos, B.A. Kidd, K. Shameer, et al., In silico methods for drug repurposing and pharmacology, Wiley Interdiscip. Rev. Syst. Biol. Med. 8 (2016) 186-210
    J.S. Morse, T. Lalonde, S. Xu, et al., Learning from the Past: Possible Urgent Prevention and Treatment Options for Severe Acute Respiratory Infections Caused by 2019-nCoV, Chembiochem. 21 (2020) 730-738
    M. Berry, B.C. Fielding, J. Gamieldien, Potential Broad Spectrum Inhibitors of the Coronavirus 3CLpro: A Virtual Screening and Structure-Based Drug Design Study, Viruses 7 (2015) 6642-6660
    S. Mahanta, P. Chowdhury, N. Gogoi, et al., Potential anti-viral activity of approved repurposed drug against main protease of SARS-CoV-2: an in silico based approach, J. Biomol. Struct. Dyn. 39 (2021) 3802-3811
    H.A. Odhar, S.W. Ahjel, A. Albeer, et al., Molecular docking and dynamics simulation of FDA approved drugs with the main protease from 2019 novel coronavirus, Bioinformation. 16 (2020) 236-244
    V.K. Bhardwaj, R. Singh, J. Sharma, et al., Identification of bioactive molecules from tea plant as SARS-CoV-2 main protease inhibitors, J. Biomol. Struct. Dyn. 39 (2021) 3449-3458
    L. Mittal, A. Kumari, M. Srivastava, et al., Identification of potential molecules against COVID-19 main protease through structure-guided virtual screening approach, J. Biomol. Struct. Dyn. 39 (2021) 3662-3680
    K.G. Arun, C.S. Sharanya, J. Abhithaj, et al., Drug repurposing against SARS-CoV-2 using E-pharmacophore based virtual screening, molecular docking and molecular dynamics with main protease as the target, J. Biomol. Struct. Dyn. 22 (2020) 1-12
    Z. Yang, O. Bastas, M. Demtchenko, et al., Ro5 Bioactivity Lab: Identification of Drug Candidates for COVID-19, ChemRxiv. (2020), https://chemrxiv.org/engage/chemrxiv/article-details/60c74af40f50db3836396b4e. (accessed on 3 May, 2021)
    M. Tsuji, Potential anti-SARS-CoV-2 drug candidates identified through virtual screening of the ChEMBL database for compounds that target the main coronavirus protease, FEBS Open Bio. 10 (2020) 995-1004
    Y.W. Chen, C.B. Yiu, K.Y. Wong, Prediction of the SARS-CoV-2 (2019-nCoV) 3C-like protease (3CL (pro)) structure: virtual screening reveals velpatasvir, ledipasvir, and other drug repurposing candidates, F1000Res. 9 (2020), 129
    M. Kandeel, M. Al-Nazawi, Virtual screening and repurposing of FDA approved drugs against COVID-19 main protease, Life Sci. 251 (2020), 117627
    S.O. Aftab, M.Z. Ghouri, M.U. Masood, et al., Analysis of SARS-CoV-2 RNA-dependent RNA polymerase as a potential therapeutic drug target using a computational approach, J. Transl. Med. 18 (2020), 275
    N. Bibi, S. Gul, J. Ali, et al., Viroinformatics approach to explore the inhibitory mechanism of existing drugs repurposed to fight against COVID-19, Eur. J. Pharmacol. 885 (2020), 173496
    A.A. Elfiky, Anti-HCV, nucleotide inhibitors, repurposing against COVID-19, Life Sci. 248 (2020), 117477
    A.A. Elfiky, Ribavirin, Remdesivir, Sofosbuvir, Galidesivir, and Tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): A molecular docking study, Life Sci. 253 (2020), 117592
    A.A. Elfiky, SARS-CoV-2 RNA dependent RNA polymerase (RdRp) targeting: an in silico perspective, J Biomol Struct Dyn. 39 (2021) 3204-3212
    H. Iftikhar, H.N. Ali, S. Farooq, et al., Identification of potential inhibitors of three key enzymes of SARS-CoV2 using computational approach, Comput. Biol. Med. 122 (2020), 103848
    C. Wu, Y. Liu, Y. Yang, et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, Acta Pharm. Sin. B 10 (2020) 766-788
    O.V. de Oliveira, G.B. Rocha, A.S. Paluch, et al., Repurposing approved drugs as inhibitors of SARS-CoV-2 S-protein from molecular modeling and virtual screening, J. Biomol. Struct. Dyn. 39 (2021) 3921-3933
    K. Terali, B. Baddal, H.O. Gulcan, Prioritizing potential ACE2 inhibitors in the COVID-19 pandemic: Insights from a molecular mechanics-assisted structure-based virtual screening experiment, J. Mol. Graph. Model. 100 (2020), 107697
    J.M. Lucas, C. Heinlein, T. Kim, et al., The androgen-regulated protease TMPRSS2 activates a proteolytic cascade involving components of the tumor microenvironment and promotes prostate cancer metastasis, Cancer Discov. 4 (2014) 1310-1325
    S. DurdaGi, Virtual drug repurposing study against SARS-CoV-2 TMPRSS2 target, Turk. J. Biol. 44 (2020) 185-191
    A.L. Hopkins, Network pharmacology, Nat. Biotechnol. 25 (2007) 1110-1111
    A.L. Hopkins, Network pharmacology: the next paradigm in drug discovery, Nat. Chem. Biol. 4 (2008) 682-690
    F. Cheng, S. Rao, R. Mehra, COVID-19 treatment: Combining anti-inflammatory and antiviral therapeutics using a network-based approach, Cleve. Clin. J. Med. (2020), https://doi.org/10.3949/ccjm.87a.ccc037
    Y. Zhou, Y. Hou, J. Shen, et al., Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2, Cell Discov. 6 (2020), 14
    S. Hazra, A.G. Chaudhuri, B.K. Tiwary, et al., Matrix metallopeptidase 9 as a host protein target of chloroquine and melatonin for immunoregulation in COVID-19: A network-based meta-analysis, Life Sci. 257 (2020), 118096
    D.E. Gordon, G.M. Jang, M. Bouhaddou, et al., A SARS-CoV-2 protein interaction map reveals targets for drug repurposing, Nature. 583 (2020) 459-468
    C. Cava, G. Bertoli, I. Castiglioni, In Silico Discovery of Candidate Drugs against Covid-19, Viruses 12 (2020), 404
    S. Sadegh, J. Matschinske, D.B. Blumenthal, et al., Exploring the SARS-CoV-2 virus-host-drug interactome for drug repurposing, Nat. Commun. 11 (2020), 3518
    S. Yu, J. Wang, H. Shen, Network pharmacology-based analysis of the role of traditional Chinese herbal medicines in the treatment of COVID-19, Ann. Palliat Med. 9 (2020) 437-446
    X. Li, Q. Qiu, M. Li, et al., Chemical composition and pharmacological mechanism of ephedra-glycyrrhiza drug pair against coronavirus disease 2019 (COVID-19), Aging. 13 (2021) 4811-4830
    Q. Qiu, Y. Huang, X. Liu, et al., Potential Therapeutic Effect of Traditional Chinese Medicine on Coronavirus Disease 2019: A Review, Front Pharmacol. 11 (2020), 570893
    Y. Ding, L. Zeng, R. Li, et al., The Chinese prescription lianhuaqingwen capsule exerts anti-influenza activity through the inhibition of viral propagation and impacts immune function, BMC Complement. Altern. Med. 17 (2017), 130
    L. Runfeng, H. Yunlong, H. Jicheng, et al., Lianhuaqingwen exerts anti-viral and anti-inflammatory activity against novel coronavirus (SARS-CoV-2), Pharmacol. Res. 156 (2020), 104761
    K. Hu, W.J. Guan, Y. Bi, et al., Efficacy and safety of Lianhuaqingwen capsules, a repurposed Chinese herb, in patients with coronavirus disease 2019: A multicenter, prospective, randomized controlled trial, Phytomedicine. 85 (2021), 153242
    Y. Wang, H. Hou, Q. Ren, et al., Natural drug sources for respiratory diseases from Fritillaria: chemical and biological analyses, Chin. Med. 16 (2021), 40
    E. Luo, D. Zhang, H. Luo, et al., Treatment efficacy analysis of traditional Chinese medicine for novel coronavirus pneumonia (COVID-19): an empirical study from Wuhan, Hubei Province, China, Chin. Med. 15 (2020), 34
    X. Zhao, Y. Jiang, Y. Zhao, et al., Analysis of the susceptibility to COVID-19 in pregnancy and recommendations on potential drug screening, Eur. J. Clin. Microbiol. Infect. Dis. 39 (2020) 1209-1220
    E.K. McCreary, J.M. Pogue, Coronavirus Disease 2019 Treatment: A Review of Early and Emerging Options, Open Forum Infect. Dis. 7 (2020), ofaa105
    E. de Wit, F. Feldmann, J. Cronin, et al., Prophylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection, Proc. Natl. Acad. Sci. U. S. A. 117 (2020) 6771-6776
    Y. Wang, D. Zhang, G. Du, et al., Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial, Lancet 395 (2020) 1569-1578
    J.M. Sanders, M.L. Monogue, T.Z. Jodlowski, et al., Pharmacologic Treatments for Coronavirus Disease 2019 (COVID-19): A Review, JAMA 323 (2020) 1824-1836
    Y.S. Boriskin, I.A. Leneva, E.I. Pecheur, et al., Arbidol: a broad-spectrum antiviral compound that blocks viral fusion, Curr. Med. Chem. 15 (2008) 997-1005
    S.S. Yavuz, S. Unal, Antiviral treatment of COVID-19, Turk. J. Med. Sci. 50 (2020) 611-619
    L. Caly, J.D. Druce, M.G. Catton, et al., The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro, Antiviral Res. 178 (2020), 104787
    M. Kawase, K. Shirato, L. van der Hoek, et al., Simultaneous treatment of human bronchial epithelial cells with serine and cysteine protease inhibitors prevents severe acute respiratory syndrome coronavirus entry, J. Virol. 86 (2012) 6537-6545
    K. Takeda, T. Takada, Y. Kawarada, et al., JPN Guidelines for the management of acute pancreatitis: medical management of acute pancreatitis, J. Hepatobiliary. Pancreat. Surg. 13 (2006) 42-47
    S. Ota, Y. Hara, S. Kanoh, et al., Acute eosinophilic pneumonia caused by camostat mesilate: The first case report, Respir. Med. Case Rep. 19 (2016) 21-23
    M.J. Grigg, T. William, P. Dhanaraj, et al., A study protocol for a randomised open-label clinical trial of artesunate-mefloquine versus chloroquine in patients with non-severe Plasmodium knowlesi malaria in Sabah, Malaysia (ACT KNOW trial), BMJ Open. 4 (2014), e006005
    A. Savarino, J.R. Boelaert, A. Cassone, et al., Effects of chloroquine on viral infections: an old drug against today's diseases?, Lancet Infect. Dis. 3 (2003) 722-727
    C. Hu, L. Lu, J.-P. Wan, et al., The Pharmacological Mechanisms and Therapeutic Activities of Hydroxychloroquine in Rheumatic and Related Diseases, Curr. Med. Chem. 24 (2017) 2241-2249
    P. Schlagenhauf, M.P. Grobusch, J.D. Maier, et al., Repurposing antimalarials and other drugs for COVID-19, Travel Med. Infect. Dis. 34 (2020), 101658
    Z. Sahraei, M. Shabani, S. Shokouhi, et al., Aminoquinolines against coronavirus disease 2019 (COVID-19): chloroquine or hydroxychloroquine, Int. J. Antimicrob. Agents. 55 (2020), 105945
    S.S. Jean, P.I. Lee, P.R. Hsueh, Treatment options for COVID-19: The reality and challenges, J. Microbiol. Immunol. Infect. 53 (2020) 436-443
    E. Schrezenmeier, T. Dorner, Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology, Nat. Rev. Rheumatol. 16 (2020) 155-166
    J. Gao, Z. Tian, X. Yang, Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies, Biosci. Trends. 14 (2020) 72-73
    N. Shah, V. Davariya, S.K. Gupta, et al., Review: An insight into coronaviruses: Challenges, security and scope, Rev. Med. Virol. 30 (2020), e2138
    X. Yao, F. Ye, M. Zhang, et al., In Vitro Antiviral Activity and Projection of Optimized Dosing Design of Hydroxychloroquine for the Treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), Clin. Infect. Dis. 71 (2020) 732-739
    A. Tufan, A. Avanoglu Guler, M. Matucci-Cerinic, COVID-19, immune system response, hyperinflammation and repurposing antirheumatic drugs, Turk J. Med. Sci. 50 (2020) 620-632
    W.H. Self, M.W. Semler, L.M. Leither, et al., Effect of Hydroxychloroquine on Clinical Status at 14 Days in Hospitalized Patients With COVID-19: A Randomized Clinical Trial, JAMA 324 (2020) 2165-2176
    Y. Zhou, B. Fu, X. Zheng, et al., Pathogenic T-cells and inflammatory monocytes incite inflammatory storms in severe COVID-19 patients, Natl. Sci. Rev. 7 (2020) 998-1002
    P. Mehta, D.F. McAuley, M. Brown, et al., COVID-19: consider cytokine storm syndromes and immunosuppression, Lancet. 395 (2020) 1033-1034
    G. Dimopoulos, Q. de Mast, N. Markou, et al., Favorable Anakinra Responses in Severe Covid-19 Patients with Secondary Hemophagocytic Lymphohistiocytosis, Cell Host Microbe. 28 (2020) 117-123.e1
    J. Ramirez, J.D. Canete, Anakinra for the treatment of rheumatoid arthritis: a safety evaluation, Expert Opin. Drug Saf. 17 (2018) 727-732
    R.Q. Le, L. Li, W. Yuan, et al., FDA Approval Summary: Tocilizumab for Treatment of Chimeric Antigen Receptor T Cell-Induced Severe or Life-Threatening Cytokine Release Syndrome, Oncologist. 23 (2018) 943-947
    E.M. Bloch, S. Shoham, A. Casadevall, et al., Deployment of convalescent plasma for the prevention and treatment of COVID-19, J. Clin. Invest. 130 (2020) 2757-2765
    P. Kumar, A.K. Sah, G. Tripathi, et al., Role of ACE2 receptor and the landscape of treatment options from convalescent plasma therapy to the drug repurposing in COVID-19, Mol. Cell Biochem. 476 (2021) 553-574
    K. Duan, B. Liu, C. Li, et al., Effectiveness of convalescent plasma therapy in severe COVID-19 patients, Proc. Natl. Acad. Sci. U. S. A. 117 (2020) 9490-9496
    L. Li, W. Zhang, Y. Hu, et al., Effect of Convalescent Plasma Therapy on Time to Clinical Improvement in Patients With Severe and Life-threatening COVID-19: A Randomized Clinical Trial, JAMA 324 (2020) 460-470
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (224) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return