Citation: | Rui Ding, Yue Chen, Qiusu Wang, Zhengzhang Wu, Xing Zhang, Bingzhi Li, Lei Lin. Recent advances in quantum dots-based biosensors for antibiotics detection[J]. Journal of Pharmaceutical Analysis, 2022, 12(3): 355-364. doi: 10.1016/j.jpha.2021.08.002 |
S. Shao, Y. Hu, J. Cheng, et al., Research progress on distribution, migration, transformation of antibiotics and antibiotic resistance genes (ARGs) in aquatic environment, Crit. Rev. Biotechnol. 38(2018)1195-1208
|
Q. Wang, W.-M. Zhao, Optical methods of antibiotic residues detections:A comprehensive review, Sensor. Actuat. B-Chem. 269(2018)238-256
|
A. Joshi, K.H. Kim, Recent advances in nanomaterial-based electrochemical detection of antibiotics:Challenges and future perspectives, Biosens. Bioelectron. 153(2020), 112046
|
Y. Yang, S. Yin, Y. Li, et al., Application of aptamers in detection and chromatographic purification of antibiotics in different matrices, TrAC-Trend. Anal. Chem. 95(2017)1-22
|
R. Daghrir, P. Drogui, Tetracycline antibiotics in the environment:a review, Environ. Chem. Letters. 11(2013)209-227
|
Z.R. Hopkins, L. Blaney, A novel approach to modeling the reaction kinetics of tetracycline antibiotics with aqueous ozone, Sci. Total. Environ. 468-469(2014)337-344
|
V.V. Belakhov, A.V. Garabadzhiu, Polyene macrolide antibiotics:Mechanisms of inactivation, ways of stabilization, and methods of disposal of unusable drugs (Review), Russ. J. Gen. Chem. 85(2016)2985-3001
|
M.R. Keskar, R.M. Jugade, Spectrophotometric Investigations of Macrolide Antibiotics:A Brief Review, Anal. Chem. Insights. 10(2015)29-37
|
G.V. Sanchez, D.J. Shapiro, A.L. Hersh, et al., Outpatient Macrolide Antibiotic Prescribing in the United States, 2008-2011, Open. Forum. Infect. Dis. 4(2017), ofx220
|
L. Jiafeng, X. Fu, Z. Chang, Hypoionic shock treatment enables aminoglycosides antibiotics to eradicate bacterial persisters, Sci. Rep. 5(2015), 14247
|
M. Jospe-Kaufman, L. Siomin,M. Fridman, The relationship between the structure and toxicity of aminoglycoside antibiotics, Bioorg. Med. Chem. Lett. 30(2020), 127218
|
F. Khan, D.T.N. Pham, Y.M. Kim, Alternative strategies for the application of aminoglycoside antibiotics against the biofilm-forming human pathogenic bacteria, Appl. Microbiol. Biotechnol. 104(2020)1955-1976
|
S.W. Kim, J.S. Lee, S.B. Park, et al., The Importance of Porins and beta-Lactamase in Outer Membrane Vesicles on the Hydrolysis of beta-Lactam Antibiotics, Int. J. Mol. Sci. 21(2020), 2822
|
D.M. Peters, Jr, J.B. Winter, C.A. Droege, et al., Comparison of Ceftriaxone and Antipseudomonal β-Lactam Antibiotics Utilized for Potential AmpC β-Lactamase-Producing Organisms, Hosp. Pharm.(2020), https://doi.org/10.1177/0018578720931463
|
L. Wang, L. Zhang, Y. Wang, et al., Construction of an Electrochemical Receptor Sensor Based on Graphene/Thionine for the Sensitive Determination of beta-Lactam Antibiotics Content in Milk, Int. J. Mol. Sci. 21(2020), 3306
|
R.J. Worthington, C. Melander, Overcoming resistance to beta-lactam antibiotics, J. Org. Chem. 78(2013)4207-4213
|
M. Juda, B. Chudzik-Rzad, A. Malm, The prevalence of genotypes that determine resistance to macrolides, lincosamides, and streptogramins B compared with spiramycin susceptibility among erythromycin-resistant Staphylococcus epidermidis, Mem. Inst. Oswaldo. Cruz. 111(2016)155-160
|
Y. Mast, W. Wohlleben, Streptogramins-two are better than one!, Int. J. Med. Microbiol. 304(2014)44-50
|
D.Y. Kormilets, A.D. Polyanovsky, V.A. Dadali, et al., Antibiotic Peptides, J. Evol. Biochem. Phys+. 55(2019)269-276
|
H. Mohimani, W.T. Liu, Y.L. Yang, et al., Multiplex de novo sequencing of peptide antibiotics, J. Comput. Biol. 18(2011)1371-1381
|
W. Simonson, Antibiotic stewardship:Revisiting quinolone antibiotics, Geriatr. Nurs. 38(2017)152-153
|
L. Lan, Y. Yao, J. Ping, et al., Recent advances in nanomaterial-based biosensors for antibiotics detection, Biosens. Bioelectron. 91(2017)504-514
|
R. Gothwal, T. Shashidhar, Antibiotic Pollution in the Environment:A Review, CLEAN-Soil. Air. Water. 43(2015)479-489
|
T. Meng, W. Cheng, T. Wan, et al., Occurrence of antibiotics in rural drinking water and related human health risk assessment, Environ. Technol. 42(2021)671-681
|
Y. Ben, M. Hu, X. Zhang, et al., Efficient detection and assessment of human exposure to trace antibiotic residues in drinking water, Water. Res. 175(2020), 115699
|
F. Martin-Laurent, E. Topp, L. Billet, et al., Environmental risk assessment of antibiotics in agroecosystems:ecotoxicological effects on aquatic microbial communities and dissemination of antimicrobial resistances and antibiotic biodegradation potential along the soil-water continuum, Environ. Sci. Pollut. Res. Int. 26(2019)18930-18937
|
J. Lyu, L. Yang, L. Zhang, et al., Antibiotics in soil and water in China-a systematic review and source analysis, Environ. Pollut. 266(2020), 115147
|
W. Li, L. Gao, Y. Shi, et al., Occurrence, distribution and risks of antibiotics in urban surface water in Beijing, China, Environ. Sci. Proc. Imp. 17(2015)1611-1619
|
J.R. Cabrera-Pardo, R. Lood, K. Udekwu, et al., A One Health-One World initiative to control antibiotic resistance:A Chile-Sweden collaboration, One. Health. 8(2019), 100100
|
Y. Ortiz-Martinez, C. Galindo-Regino, F. Valdes-Villegas, et al., World Antibiotic Awareness Week 2017 and its influence on digital information seeking on antibiotic resistance:A Google Trends study, J. Hosp. Infect. 100(2018)276-277
|
M.Z.H. Khan, Recent Biosensors for Detection of Antibiotics in Animal Derived Food, Crit. Rev. Anal. Chem.(2020)1-11
|
A. Mehlhorn, P. Rahimi,Y. Joseph, Aptamer-Based Biosensors for Antibiotic Detection:A Review, Biosensors-Basel. 8(2018), 54
|
S. Chen, Y. Li, S. Wu, et al., A phosphorescent probe for cephalexin consisting of mesoporous thioglycolic acid-modified Mn:ZnS quantum dots coated with a molecularly imprinted polymer, Mikrochim. Acta. 187(2019), 40
|
K. Rajendiran, Z. Zhao, D.-S. Pei, et al., Antimicrobial Activity and Mechanism of Functionalized Quantum Dots, Polymers. 11(2019), 1670
|
P. Li, S. Liu, W. Cao, et al., Low-toxicity carbon quantum dots derived from gentamicin sulfate to combat antibiotic resistance and eradicate mature biofilms, Chem. Commun. 56(2020)2316-2319
|
M.A. Jahangir, S.J. Gilani, A. Muheem, et al., Quantum Dots:Next Generation of Smart Nano-Systems, Pharm. Nanotechnol. 7(2019)234-245
|
J.W. Zhou, X.M. Zou, S.H. Song, et al., Quantum Dots Applied to Methodology on Detection of Pesticide and Veterinary Drug Residues, J. Agric. Food. Chem. 66(2018)1307-1319
|
Z.Y. Yan, Q.Q. Du, J. Qian, et al., Eco-friendly intracellular biosynthesis of CdS quantum dots without changing Escherichia coli's antibiotic resistance, Enzyme. Microb. Tech. 96(2017)96-102
|
B. Li, A. Xia, S. Zhang, et al., A CRISPR-derived biosensor for the sensitive detection of transcription factors based on the target-induced inhibition of Cas12a activation, Biosens. Bioelectron. 173(2020), 112619
|
T. Suo, M. Sohail, Y. Ma, et al., A versatile turn-on fluorometric biosensing profile based on split aptamers-involved assembly of nanocluster beacon sandwich, Sensor. Actuat. B-Chem. 324(2020), 128586
|
T.S. Atabaev, D.W. Han, Editorial:Fluorescent Carbon-Based Nanostructures for Bioimaging Applications, Front. Chem. 8(2020), 587918
|
M.L. Yola, N. Atar, Functionalized Graphene Quantum Dots with Bi-Metallic Nanoparticles Composite:Sensor Application for Simultaneous Determination of Ascorbic Acid, Dopamine, Uric Acid and Tryptophan, J. Electrochem. Soc. 163(2016) B718-B725
|
M.L. Yola, N. Atar, A Highly Efficient Nanomaterial with Molecular Imprinting Polymer:Carbon Nitride Nanotubes Decorated with Graphene Quantum Dots for Sensitive Electrochemical Determination of Chlorpyrifos, J. Electrochem. Soc. 164(2017) B223-B229
|
N. Ozcan, C. Karaman, N. Atar, et al., A Novel Molecularly Imprinting Biosensor Including Graphene Quantum Dots/Multi-Walled Carbon Nanotubes Composite for Interleukin-6 Detection and Electrochemical Biosensor Validation, ECS. J. Solid. State. Sci. Tech. 9(2020), 121010
|
M.L. Yola, N. Atar, Development of cardiac troponin-I biosensor based on boron nitride quantum dots including molecularly imprinted polymer, Biosens. Bioelectron. 126(2019)418-424
|
O. Akyildirim, F. Kardas, M. Beytur, et al., Palladium nanoparticles functionalized graphene quantum dots with molecularly imprinted polymer for electrochemical analysis of citrinin, J. Mol. Liq. 243(2017)677-681
|
G.L. Hong, H.H. Deng, H.L. Zhao, et al., Gold nanoclusters/graphene quantum dots complex-based dual-emitting ratiometric fluorescence probe for the determination of glucose, J. Pharm. Biomed. Anal. 189(2020), 113480
|
M. Mehrzad-Samarin, F. Faridbod, A.S. Dezfuli, et al., A novel metronidazole fluorescent nanosensor based on graphene quantum dots embedded silica molecularly imprinted polymer, Biosens. Bioelectron. 92(2017)618-623
|
Y. Song, Y. Li, Z. Liu, et al., A novel ultrasensitive carboxymethyl chitosan-quantum dot-based fluorescence"turn on-off "nanosensor for lysozyme detection, Biosens. Bioelectron. 61(2014)9-13
|
M. Mou, Y. Wu, H. Zou, et al., The self-assembly of Cu-In-S quantum dots with aggregation-induced emission into 3D network triggered by cation and its application as a novel metal-enhanced fluorescent nanosensor for detecting Zn (Ⅱ), Sensor. Actuat. B-Chem. 284(2019)265-270
|
L. Zhang, L. Chen, A New Fluorescence Probe Based on Hybrid Mesoporous Silica/Quantum Dot/Molecularly Imprinted Polymer for Detection of Tetracycline, ACS. Appl. Mater. Inter. 8(2016)16248-16256
|
M. Roushani, K. Ghanbari, S. Jafar Hoseini, Designing an electrochemical aptasensor based on immobilization of the aptamer onto nanocomposite for detection of the streptomycin antibiotic, Microchem. J. 141(2018)96-103
|
C. Wu, N. Gan, C. Ou, et al., A homogenous" signal-on"aptasensor for antibiotics based on a single stranded DNA binding protein-quantum dot aptamer probe coupling exonuclease-assisted target recycling for signal amplification, RSC. Adv. 7(2017)8381-8387
|
Y. Wang, N. Gan, T. Li, et al., A novel aptamer-quantum dot fluorescence probe for specific detection of antibiotic residues in milk, Anal. Methods. 8(2016)3006-3013
|
L. Zong, Y. Jiao, X. Guo, et al., Paper-based fluorescent immunoassay for highly sensitive and selective detection of norfloxacin in milk at picogram level, Talanta. 195(2019)333-338
|
E. Song, M. Yu, Y. Wang, et al., Multi-color quantum dot-based fluorescence immunoassay array for simultaneous visual detection of multiple antibiotic residues in milk, Biosens. Bioelectron. 72(2015)320-325
|
N.A. Taranova, A.N. Berlina, A.V. Zherdev, et al.,'Traffic light'immunochromatographic test based on multicolor quantum dots for the simultaneous detection of several antibiotics in milk, Biosens. Bioelectron. 63(2015)255-261
|
G. Muthusankar, R.K. Devi,G. Gopu, Nitrogen-doped carbon quantum dots embedded Co3O4 with multiwall carbon nanotubes:An efficient probe for the simultaneous determination of anticancer and antibiotic drugs, Biosens. Bioelectron. 150(2020), 111947
|
X. Xu, Y. Yang, H. Jin, et al., Fungal In Situ Assembly Gives Novel Properties to CdSxSe1-x Quantum Dots for Sensitive Label-Free Detection of Chloramphenicol, ACS. Sustain. Chem. Eng. 8(2020)6806-6814
|
Y. Ye, T. Wu, X. Jiang, et al., Portable Smartphone-Based QDs for the Visual Onsite Monitoring of Fluoroquinolone Antibiotics in Actual Food and Environmental Samples, ACS. Appl. Mater. Inter. 12(2020)14552-14562
|
C.-X. Chen, Y.-H. Li, Y.-L. Zhou, et al., Rapidly detecting antibiotics with magnetic nanoparticle coated CdTe quantum dots, RSC. Advances. 10(2020)1966-1970
|
H.L. Meng, G.H. Chen, X. Guo, et al., Determination of five quinolone antibiotic residues in foods by micellar electrokinetic capillary chromatography with quantum dot indirect laser-induced fluorescence, Anal. Bioanal. Chem. 406(2014)3201-3208
|
W. Li, J. Zhu, G. Xie, et al., Ratiometric system based on graphene quantum dots and Eu3+for selective detection of tetracyclines, Anal. Chim. Acta. 1022(2018)131-137
|
J. Chen, F. Xu, H. Jiang, et al., A novel quantum dot-based fluoroimmunoassay method for detection of Enrofloxacin residue in chicken muscle tissue, Food. Chem. 113(2009)1197-1201
|
A. Das, P.T. Snee, Synthetic Developments of Nontoxic Quantum Dots, Chemphyschem. 17(2016)598-617
|
J.K. Choi, S. Jang, H. Sohn, et al., Tuning of refractive indices and optical band gaps in oxidized silicon quantum dot solids, J. Am. Chem. Soc. 131(2009)17894-17900
|
D. Ki, H. Sohn, Water Soluble Silicon Quantum Dots Grafted with Amoxicillin as a Drug Delivery System, J. Nanosci. Nanotechnol. 20(2020)4624-4628
|
Y. Wang, H. Wang, J. Guo, et al., Water-Soluble Silicon Quantum Dots with Quasi-Blue Emission, Nanoscale. Res. Lett. 10(2015), 1012
|
V.P. Sur, M. Kominkova, Z. Buchtova, et al., CdSe QD Biosynthesis in Yeast Using Tryptone-Enriched Media and Their Conjugation with a Peptide Hecate for Bacterial Detection and Killing, Nanomaterials-Basel. 9(2019), 1463
|
K.T. Yong, W.C. Law, I. Roy, et al., Aqueous phase synthesis of CdTe quantum dots for biophotonics, J. Biophotonics. 4(2011)9-20
|
N.F. Crawford, R.M. Leblanc, CdSe and CdSe (ZnS) quantum dots in 2D:A Langmuir monolayer approach, Coordin. Chem. Rev. 263-264(2014)13-24
|
Y. Yulong, P. Xinsheng, Recent advances in carbon-based dots for electroanalysis, Analyst. 141(2016)2619-2628
|
X. Gao, C. Du, Z. Zhuang, et al., Carbon quantum dot-based nanoprobes for metal ion detection, J. Mater. Chem. C. 4(2016)6927-6945
|
P.G. Luo, F. Yang, S.-T. Yang, et al., Carbon-based quantum dots for fluorescence imaging of cells and tissues, RSC. Advances. 4(2014)10791-10807
|
H. Qi, M. Teng, M. Liu, et al., Biomass-derived nitrogen-doped carbon quantum dots:highly selective fluorescent probe for detecting Fe3+ions and tetracyclines, J. Colloid. Interf. Sci. 539(2019)332-341
|
K.A. Fernando, S. Sahu, Y. Liu, et al., Carbon quantum dots and applications in photocatalytic energy conversion, ACS. Appl. Mater. Interfaces. 7(2015)8363-8376
|
Y. Zhang, Y. Shen, X. Wang, et al., Enhancement of blue fluorescence on the ZnSe quantum dots doped with transition metal ions, Mater. Lett. 78(2012)35-38
|
X. Zhang, Y. Ren, Z. Ji, et al., Sensitive detection of amoxicillin in aqueous solution with novel fluorescent probes containing boron-doped carbon quantum dots, J. Mol. Liq. 311(2020), 113278
|
J. Patel, A.K. Singh, S.A.C. Carabineiro, Assessing the Photocatalytic Degradation of Fluoroquinolone Norfloxacin by Mn:ZnS Quantum Dots:Kinetic Study, Degradation Pathway and Influencing Factors, Nanomaterials-Basel. 10(2020), 964
|
C. Zhong, B. Yang, X. Jiang, et al., Current Progress of Nanomaterials in Molecularly Imprinted Electrochemical Sensing, Crit. Rev. Anal. Chem. 48(2018)15-32
|
M. Dinc, C. Esen, B. Mizaikoff, Recent advances on core-shell magnetic molecularly imprinted polymers for biomacromolecules, TrAC-Trend. Anal. Chem. 114(2019)202-217
|
K. Haupt, K. Mosbach, Molecularly imprinted polymers and their use in biomimetic sensors, Chem. Rev. 100(2000)2495-2504
|
G. Liu, X. Huang, L. Li, et al., Recent Advances and Perspectives of Molecularly Imprinted Polymer-Based Fluorescent Sensors in Food and Environment Analysis, Nanomaterials-Basel. 9(2019), 1030
|
K. Haupt, A.V. Linares, M. Bompart, et al., Molecularly imprinted polymers, in:Molecular Imprinting, Topics in Current Chemistry, Vol. 325, Springer, Berlin, Heidelberg,(2012)1-28
|
J.L. Markley, T.A. Wencewicz, Tetracycline-Inactivating Enzymes, Front. Microbiol. 9(2018), 1058
|
I. Chopra, M. Roberts, Tetracycline antibiotics:mode of action, applications, molecular biology, and epidemiology of bacterial resistance, Microbiol. Mol. Biol. Rev. 65(2001)232-260
|
M.C. Roberts, Tetracycline resistance determinants:mechanisms of action, regulation of expression, genetic mobility, and distribution, FEMS. Microbiol. Rev. 19(1996)1-24
|
A.B. Kinghorn, L.A. Fraser, S. Lang, et al., Aptamer Bioinformatics, Int. J. Mol. Sci. 18(2017), 2516
|
F. Ding, Y. Gao, X. He, Recent progresses in biomedical applications of aptamer-functionalized systems, Bioorg. Med. Chem. Lett. 27(2017)4256-4269
|
T. Adachi, Y. Nakamura, Aptamers:A Review of Their Chemical Properties and Modifications for Therapeutic Application, Molecules. 24(2019), 4229
|
M. McKeague, R. Velu, K. Hill, et al., Selection and characterization of a novel DNA aptamer for label-free fluorescence biosensing of ochratoxin A, Toxins-Basel. 6(2014)2435-2452
|
S. Sharma, R. Raghav, R. O'Kennedy, et al., Advances in ovarian cancer diagnosis:A journey from immunoassays to immunosensors, Enzyme. Microb. Tech. 89(2016)15-30
|
A. Pollap, J. Kochana, Electrochemical Immunosensors for Antibiotic Detection, Biosensors-Basel. 9(2019), 61
|
B. Li, S. Xie, A. Xia, et al., Recent advance in the sensing of biomarker transcription factors, TrAC. Trend. Anal. Chem. 132(2020), 116039
|
Y. Chen, X. Yan, W. Yang, et al., A signal transduction approach for multiplexed detection of transcription factors by integrating DNA nanotechnology, multi-channeled isothermal amplification, and chromatography, J. Chromatogr. A. 1624(2020), 461148
|
S. Xie, Z. Ji, T. Suo, et al., Advancing sensing technology with CRISPR:from the detection of nucleic acids to a broad range of analytes-A Review, Anal. Chim. Acta.(2021), 338848
|
B. Li, T. Suo, S. Xie, et al., Rational design, synthesis, and applications of carbon dots@metal-organic frameworks (CD@MOF) based sensors, TrAC-Trend. Anal. Chem. 135(2021), 116163
|
T. Suo, M. Sohail, S. Xie, et al., DNA nanotechnology:A recent advancement in the monitoring of microcystin-LR, J. Hazard. Mater. 403(2021), 123418
|