Volume 12 Issue 3
Jun.  2022
Turn off MathJax
Article Contents
Yu Yi, Jianming Hu, Shenwei Ding, Jianfeng Mei, Xudong Wang, Yanlu Zhang, Jianshu Chen, Guoqing Ying. A preparation strategy for protein-oriented immobilized silica magnetic beads with Spy chemistry for ligand fishing[J]. Journal of Pharmaceutical Analysis, 2022, 12(3): 415-423. doi: 10.1016/j.jpha.2021.07.008
Citation: Yu Yi, Jianming Hu, Shenwei Ding, Jianfeng Mei, Xudong Wang, Yanlu Zhang, Jianshu Chen, Guoqing Ying. A preparation strategy for protein-oriented immobilized silica magnetic beads with Spy chemistry for ligand fishing[J]. Journal of Pharmaceutical Analysis, 2022, 12(3): 415-423. doi: 10.1016/j.jpha.2021.07.008

A preparation strategy for protein-oriented immobilized silica magnetic beads with Spy chemistry for ligand fishing

doi: 10.1016/j.jpha.2021.07.008
Funds:

The authors thank the College of Pharmaceutical Science, Zhejiang University of Technology, China, for providing the instruments. This work was supported by the Zhejiang Foundation Public Welfare Research Project (Authorization No.: LGF19B060006). We thank the International Science Editing for polishing this manuscript.

  • Received Date: Apr. 07, 2021
  • Accepted Date: Jul. 24, 2021
  • Rev Recd Date: Jul. 18, 2021
  • Publish Date: Jul. 26, 2021
  • Due to the complexity of bioactive ingredients in biological samples, the screening of target proteins is a complex process. Herein, a feasible strategy for directing protein immobilization on silica magnetic beads for ligand fishing based on SpyTag/SpyCatcher (ST/SC)-mediated anchoring is presented. Carboxyl functional groups on the surface of silica-coated magnetic beads (SMBs) were coupled with SC using the 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride/N-hydroxysulfosuccinimide method, named SC-SMBs. The green fluorescent protein (GFP), as the capturing protein model, was ST-labeled and anchored at a specific orientation onto the surface of SC-SMBs directly from relevant cell lysates via ST/SC self-ligation. The characteristics of the SC-SMBs were studied via electron microscopy, energy dispersive spectroscopy, and Fourier transform infrared spectroscopy. The spontaneity and site-specificity of this unique reaction were confirmed via electrophoresis and fluorescence analyses. Although the alkaline stability of ST-GFP-ligated SC-SMBs was not ideal, the formed isopeptide bond was unbreakable under acidic conditions (0.05 M glycine-HCl buffer, pH 1-6) for 2 h, under 20% ethanol solution within 7 days, and at most temperatures. We, therefore, present a simple and universal strategy for the preparation of diverse protein-functionalized SMBs for ligand fishing, prompting its usage on drug screening and target finding.
  • loading
  • X. Hou, M. Sun, T. Bao, et al., Recent advances in screening active components from natural products based on bioaffinity techniques, Acta. Pharm. Sin. B. 10(2020)1800-1813
    Y. Fu, J. Luo, J. Qin, et al., Screening techniques for the identification of bioactive compounds in natural products, J. Pharm. Biomed. Anal. 168(2019)189-200
    L. Ciesla, R. Moaddel, Comparison of analytical techniques for the identification of bioactive compounds from natural products, Nat. Prod. Rep. 33(2016)1131-1145
    R. Moaddel, M.P. Marszall, F. Bighi, et al., Automated ligand fishing using human serum albumin-coated magnetic beads, Anal. Chem. 79(2007)5414-5417
    M. Yasuda, D.R. Wilson, S.D. Fugmann, et al., Synthesis and Characterization of SIRT6 Protein Coated Magnetic Beads:Identification of a Novel Inhibitor of SIRT6 Deacetylase from Medicinal Plant Extracts, Anal. Chem. 83(2011)7400-7407
    R. Zhuo, H. Liu, N. Liu, et al., Ligand Fishing:A Remarkable Strategy for Discovering Bioactive Compounds from Complex Mixture of Natural Products, Molecules. 21(2016)1516-1532
    J. He, M. Huang, D. Wang, et al., Magnetic separation techniques in sample preparation for biological analysis:a review, J. Pharm. Biomed. Anal. 101(2014)84-101
    X.H. Pham, S. Kyeong, J. Jang, et al., Facile Method for Preparation of Silica Coated Monodisperse Superparamagnetic Microspheres, J. Nanomater. 2016(2016), 1730403
    D. Ma, J. Guan, S. Denommee, et al., Multifunctional Nano-Architecture for Biomedical Applications, Chem. Mater. 18(2006)1920-1927
    J.H. Jang, H.B. Lim, Characterization and analytical application of surface modified magnetic nanoparticles, Microchem. 94(2010)148-158
    Y.F. Huang, Y.F. Wang, X.P. Yan, Amine-functionalized magnetic nanoparticles for rapid capture and removal of bacterial pathogens, Environ. Sci. Technol. 44(2010)7908-7913
    C.B. Rosen, M.B. Francis, Targeting the N terminus for site-selective protein modification, Nat. Chem. Biol. 13(2017)697-705
    C.I. Schilling, N. Jung, M. Biskup, et al., Bioconjugation via azide-Staudinger ligation:an overview, Chem. Soc. Rev. 40(2011)4840-4871
    S. Schoffelen, M.B. van Eldijk, B. Rooijakkers, et al., Metal-free and pH-controlled introduction of azides in proteins, Chem. Sci. 2(2011)701-705
    A.O. Chan, C.M. Ho, H.C. Chong, et al., Modification of N-terminal alpha-amino groups of peptides and proteins using ketenes, J. Am. Chem. Soc. 134(2012)2589-2598
    E. Haldon, M.C. Nicasio, P.J. Perez, Copper-catalysed azide-alkyne cycloadditions (CuAAC):an update, Org. Biomol. Chem. 13(2015)9528-9550
    B.G. Nidumolu, M.C. Urbina, J. Hormes, et al., Functionalization of gold and glass surfaces with magnetic nanoparticles using biomolecular interactions, Biotechnol. Prog. 22(2006)91-95
    S.K. Sahu, A. Chakrabarty, D. Bhattacharya, et al., Single step surface modification of highly stable magnetic nanoparticles for purification of His-tag proteins, J. Nanopart. Res. 13(2011)2475-2484
    Y. Cao, W. Tian, S. Gao, et al., Immobilization Staphylococcal Protein A on Magnetic Cellulose Microspheres for IgG Affinity Purification, Artif. Cells, Blood Substitutes, Biotechnol. 35(2007)467-480
    B. Zakeri, J.O. Fierer, E. Celik, et al., Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin, Proc. Natl. Acad. Sci. U. S. A. 109(2012) E690-E697
    D. Hatlem, T. Trunk, D. Linke, et al., Catching a SPY:Using the SpyCatcher-SpyTag and Related Systems for Labeling and Localizing Bacterial Proteins, Int. J. Mol. Sci. 20(2019)2129-2148
    A.H. Keeble, M. Howarth, Power to the protein:enhancing and combining activities using the Spy toolbox, Chem. Sci. 11(2020)7281-7291
    L. Li, J.O. Fierer, T.A. Rapoport, et al., Structural analysis and optimization of the covalent association between SpyCatcher and a peptide Tag, J. Mol. Biol. 426(2014)309-317
    B. Zakeri, M. Howarth, Spontaneous intermolecular amide bond formation between side chains for irreversible peptide targeting, J. Am. Chem. Soc. 132(2010)4526-4527
    W.B. Zhang, F. Sun, D.A. Tirrell, et al., Controlling macromolecular topology with genetically encoded SpyTag-SpyCatcher chemistry, J. Am. Chem. Soc. 135(2013)13988-13997
    A.H. Keeble, M. Howarth, Insider information on successful covalent protein coupling with help from SpyBank, Methods. Enzymol. 617(2019)443-461
    G.P. Anderson, J.L. Liu, L.C. Shriver-Lake, et al., Oriented Immobilization of Single-Domain Antibodies Using SpyTag/SpyCatcher Yields Improved Limits of Detection, Anal. Chem. 91(2019)9424-9429
    W. Ma, A. Saccardo, D. Roccatano, et al., Modular assembly of proteins on nanoparticles, Nat. Commun. 9(2018), 1489
    M.J.E. Fischer, Amine Coupling Through EDC/NHS:A Practical Approach, in:Surface Plasmon Resonance:Methods and Protocols, Vol. 627, Humana Press, Totowa, New Jersey, 2010, pp. 55-73
    D.A. Morrison, Transformation in Escherichia coli:cryogenic preservation of competent cells, J. Bacteriol. 132(1977)349-351
    S.C. Reddington, M. Howarth, Secrets of a covalent interaction for biomaterials and biotechnology:SpyTag and SpyCatcher, Curr. Opin. Chem. Biol. 29(2015)94-99
    B.X. Huang, H.Y. Kim, C. Dass, Probing three-dimensional structure of bovine serum albumin by chemical cross-linking and mass spectrometry, J. Am. Soc. Mass. Spectrom. 15(2004)1237-1247
    R.S. Brown, A.J. Bennet, H. Slebocka-Tilk, Recent perspectives concerning the mechanism of H3O+-and hydroxide-promoted amide hydrolysis, Acc. Chem. Res. 25(1992)481-488
    H. Slebocka-Tilk, A.A. Neverov, R.S. Brown, Proton Inventory Study of the Base-Catalyzed Hydrolysis of Formamide. Consideration of the Nucleophilic and General Base Mechanisms, J. Am. Chem. Soc. 125(2003)1851-1858
    D. Zahn, Car-Parrinello molecular dynamics simulation of base-catalyzed amide hydrolysis in aqueous solution, Chem. Phys. Lett. 383(2004)134-137
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (195) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return