Volume 12 Issue 3
Jun.  2022
Turn off MathJax
Article Contents
Hendris Wongso. Natural product-based radiopharmaceuticals:Focus on curcumin and its analogs, flavonoids, and marine peptides[J]. Journal of Pharmaceutical Analysis, 2022, 12(3): 380-393. doi: 10.1016/j.jpha.2021.07.006
Citation: Hendris Wongso. Natural product-based radiopharmaceuticals:Focus on curcumin and its analogs, flavonoids, and marine peptides[J]. Journal of Pharmaceutical Analysis, 2022, 12(3): 380-393. doi: 10.1016/j.jpha.2021.07.006

Natural product-based radiopharmaceuticals:Focus on curcumin and its analogs, flavonoids, and marine peptides

doi: 10.1016/j.jpha.2021.07.006
Funds:

This study was supported by the Center for Applied Nuclear Science and Technology of the National Nuclear Energy Agency of Indonesia.

  • Received Date: Oct. 11, 2020
  • Accepted Date: Jul. 19, 2021
  • Rev Recd Date: May 19, 2021
  • Publish Date: Jul. 21, 2021
  • Natural products provide a bountiful supply of pharmacologically relevant precursors for the development of various drug-related molecules, including radiopharmaceuticals. However, current knowledge regarding the importance of natural products in developing new radiopharmaceuticals remains limited. To date, several radionuclides, including gallium-68, technetium-99m, fluorine-18, iodine-131, and iodine-125, have been extensively studied for the synthesis of diagnostic and therapeutic radiopharmaceuticals. The availability of various radiolabeling methods allows the incorporation of these radionuclides into bioactive molecules in a practical and efficient manner. Of the radiolabeling methods, direct radioiodination, radiometal complexation, and halogenation are generally suitable for natural products owing to their simplicity and robustness. This review highlights the pharmacological benefits of curcumin and its analogs, flavonoids, and marine peptides in treating human pathologies and provides a perspective on the potential use of these bioactive compounds as molecular templates for the design and development of new radiopharmaceuticals. Additionally, this review provides insights into the current strategies for labeling natural products with various radionuclides using either direct or indirect methods.
  • loading
  • R.A. Werner, R.A. Bundschuh, L. Bundschuh, et al., Novel structured reporting systems for theranostic radiotracers, J. Nucl. Med. 60(2019)577-584
    T.H. Witney, P.J. Blower, The chemical tool-kit for molecular imaging with radionuclides in the age of targeted and immune therapy, Cancer. Imaging. 21(2021), 18
    R. Fay, J.P. Holland, The impact of emerging bioconjugation chemistries on radiopharmaceuticals, J. Nucl. Med. 60(2019)587-591
    B. Gutfilen, G. Valentini, Radiopharmaceuticals in nuclear medicine:recent developments for SPECT and PET studies, Biomed. Res. Int. 2014(2014), 426892
    M.R. Kilbourn, 11C-and 18F-Radiotracers for in vivo imaging of the dopamine system:Past, present and future, Biomedicines. 9(2021), 108
    A. Leuzy, K. Chiotis, L. Lemoine, et al., Tau PET imaging in neurodegenerative tauopathies-still a challenge, Mol. Psychiatry. 24(2019)1112-1134
    G. Sgouros, L. Bodei, M.R. McDevitt, et al., Radiopharmaceutical therapy in cancer:clinical advances and challenges, Nat. Rev. Drug. Discov. 19(2020)589-608
    R. Sharma, E. Aboagye, Development of radiotracers for oncology-the interface with pharmacology, Brit. J. Pharmacol. 163(2011)1565-1585
    E.E. Carlson, Natural products as chemical probes, ACS. Chem. Biol. 5(2010)639-653
    P.M. Cheuka, G. Mayoka, P. Mutai, et al., The role of natural products in drug discovery and development against neglected tropical diseases, Molecules. 22(2016), 58
    J. Gu, Y. Gui, L. Chen, et al., Use of natural products as chemical library for drug discovery and network pharmacology, PLoS One 8(2013), e62839
    Y. Tong, Z. Deng, An aurora of natural products-based drug discovery is coming, Synth. Syst. Biotechnol. 5(2020)92-96
    R. Chen, L. Huang, K. Hu, Natural products remodel cancer-associated fibroblasts in desmoplastic tumors, Acta. Pharm. Sin. B. 10(2020)2140-2155
    Z. Mbese, V. Khwaza, B.A. Aderibigbe, Curcumin and its derivatives as potential therapeutic agents in prostate, colon and breast cancers, Molecules. 24(2019), 4386
    P. Anand, S.G. Thomas, A.B. Kunnumakkara, et al., Biological activities of curcumin and its analogues (Congeners) made by man and Mother Nature, Biochem. Pharmacol. 76(2008)1590-1611
    D. Mody, A.I.M. Athamneh, M.N. Seleem, Curcumin:A natural derivative with antibacterial activity against Clostridium difficile, J. Glob. Antimicrob. Resist. 21(2020)154-161
    M. Sharma, Monika, P. Thakur, et al., Unveiling antimicrobial and anticancerous behavior of AuNPs and AgNPs moderated by rhizome extracts of Curcuma longa from diverse altitudes of Himalaya, Sci. Rep. 10(2020), 10934
    C.V. Martins, D.L. da Silva, A.T. Neres, et al., Curcumin as a promising antifungal of clinical interest, J. Antimicrob. Chemother. 63(2009)337-339
    J.-H. Woo, J.-M. Park, J.-H. Jang, et al., Curcumin induces expression of 15-hydroxyprostaglandin dehydrogenase in gastric mucosal cells and mouse stomach in vivo:AP-1 as a potential target, J. Nutr. Biochem. 85(2020), 108469
    T.T. San, P. Khaenam, V. Prachayasittikul, et al., Curcumin enhances chemotherapeutic effects and suppresses ANGPTL4 in anoikis-resistant cholangiocarcinoma cells, Heliyon. 6(2020), e03255
    P. Liu, Q. Ying, H. Liu, et al., Curcumin enhances anti-cancer efficacy of either gemcitabine or docetaxel on pancreatic cancer cells, Oncol. Rep. 44(2020)1393-1402
    D.K. Khatri, A.R. Juvekar, Neuroprotective effect of curcumin as evinced by abrogation of rotenone-induced motor deficits, oxidative and mitochondrial dysfunctions in mouse model of Parkinson's disease, Pharmacol. Biochem. Behav. 150-151(2016)39-47
    P. Srivastava, Y.K. Dhuriya, V. Kumar, et al., PI3K/Akt/GSK3β induced CREB activation ameliorates arsenic mediated alterations in NMDA receptors and associated signaling in rat hippocampus:Neuroprotective role of curcumin, Neurotoxicology. 67(2018)190-205
    R.S. Yadav, L.P. Chandravanshi, R.K. Shukla, et al., Neuroprotective efficacy of curcumin in arsenic induced cholinergic dysfunctions in rats, Neurotoxicology. 32(2011)760-768
    S. Siva, C. Li, H. Cui, et al., Encompassment of isoeugenol in 2-hydroxypropyl-β-cyclodextrin using ultrasonication:Characterization, antioxidant and antibacterial activities, J. Mol. Liq. 296(2019), 111777
    R. Wang, X. Hu, J. Pan, et al., Interaction of isoeugenol with calf thymus DNA and its protective effect on DNA oxidative damage, J. Mol. Liq. 282(2019)356-365
    A. Peperidou, E. Pontiki, D. Hadjipavlou-Litina, et al., Multifunctional cinnamic acid derivatives, Molecules. 22(2017), 1247
    S. Adisakwattana, P. Chantarasinlapin, H. Thammarat, et al., A series of cinnamic acid derivatives and their inhibitory activity on intestinal alpha-glucosidase, J. Enzyme. Inhib. Med. Chem. 24(2009)1194-1200
    T. Prorok, M. Jana, D. Patel, et al., Cinnamic acid protects the nigrostriatum in a mouse model of Parkinson's disease via peroxisome proliferator-activated receptor alpha, Neurochem. Res. 44(2019)751-762
    A.B. Monteiro, C.K. de Souza Rodrigues, E.P. do Nascimento, et al., Anxiolytic and antidepressant-like effects of Annona coriacea (Mart.) and caffeic acid in mice, Food. Chem. Toxicol. 136(2020), 111049
    Z.-Q. Wang, Q.-Y. Song, J.-C. Su, et al., Caffeic acid oligomers from Mesona chinensis and their in vitro antiviral activities, Fitoterapia. 144(2020), 104603
    A. Parzonko, A.K. Kiss, Caffeic acid derivatives isolated from Galinsoga parviflora herb protected human dermal fibroblasts from UVA-radiation, Phytomedicine. 57(2019)215-222
    B. Aneja, A. Queen, P. Khan, et al., Design, synthesis& biological evaluation of ferulic acid-based small molecule inhibitors against tumor-associated carbonic anhydrase IX, Bioorg. Med. Chem. 28(2020), 115424
    Y.E. Choi, E. Park, Ferulic acid in combination with PARP inhibitor sensitizes breast cancer cells as chemotherapeutic strategy, Biochem. Biophys. Res. Commun. 458(2015)520-524
    P.B. Ezhuthupurakkal, S. Ariraman, S. Arumugam, et al., Anticancer potential of ZnO nanoparticle-ferulic acid conjugate on Huh-7 and HepG2 cells and diethyl nitrosamine induced hepatocellular cancer on Wistar albino rat, Nanomedicine. 14(2018)415-428
    S.B.R. Berton, M.R.P. Cabral, G.A.M. de Jesus, et al., Ultra-high-performance liquid chromatography supports a new reaction mechanism between free radicals and ferulic acid with antimicrobial and antioxidant activities, Ind. Crops. Prod. 154(2020), 112701
    E.-R. Jo, C.K. Youn, Y. Jun, et al., The protective role of ferulic acid against cisplatin-induced ototoxicity, Int. J. Pediatr. Otorhinolaryngol. 120(2019)30-35
    P. Yin, Z. Zhang, J. Li, et al., Ferulic acid inhibits bovine endometrial epithelial cells against LPS-induced inflammation via suppressing NK-kappaB and MAPK pathway, Res. Vet. Sci. 126(2019)164-169
    K.M. Jacksona, M. DeLeon, C.R. Verret, et al., Dibenzoylmethane induces cell cycle deregulation in human prostate cancer cells, Cancer. Lett. 178(2002)161-165
    F.R. Nascimento, T.A. Moura, J. Baeta, et al., New antineoplastic agent based on a dibenzoylmethane derivative:Cytotoxic effect and direct interaction with DNA, Biophys. Chem. 239(2018)1-6
    N.J. Mabjeesh, M.T. Willard, W.B. Harris, et al., Dibenzoylmethane, a natural dietary compound, induces HIF-1α and increases expression of VEGF, Biochem. Biophys. Res. Commun. 303(2003)279-286
    D.M. Martinez, A. Barcellos, A.M. Casaril, et al., Antidepressant-like activity of dehydrozingerone:involvement of the serotonergic and noradrenergic systems, Pharmacol. Biochem. Behav. 127(2014)111-117
    P. Chibber, C. Kumar, A. Singh, et al., Anti-inflammatory and analgesic potential of OA-DHZ; a novel semisynthetic derivative of dehydrozingerone, Int. Immunopharmacol. 83(2020), 106469
    N. Motohashi, Y. Ashihara, C. Yamagami, et al., Antimutagenic effects of dehydrozingerone and its analogs on UV-induced mutagenesis in Escherichia coli, Mutat. Res. 377(1997)17-25
    A.P. Gupta, S. Khan, M.M. Manzoor, et al., Anticancer curcumin:Natural analogues and structure-activity relationship, in:Studies in Natural Products Chemistry, Vol. 54, Elsevier B.V, Amsterdam, 2017, pp. 355-401
    M.A. Tomeh, R. Hadianamrei, X. Zhao, A review of curcumin and its derivatives as anticancer agents, Int. J. Mol. Sci. 20(2019), 1033
    M. Russo, S. Moccia, C. Spagnuolo, et al., Roles of flavonoids against coronavirus infection, Chem. Biol. Interact. 328(2020), 109211
    M. Poor, Z. Zrinyi, T. Koszegi, Structure related effects of flavonoid aglycones on cell cycle progression of HepG2 cells:Metabolic activation of fisetin and quercetin by catechol-O-methyltransferase (COMT), Biomed. Pharmacother. 83(2016)998-1005
    S.M. Borghi, S.S. Mizokami, F.A. Pinho-Ribeiro, et al., The flavonoid quercetin inhibits titanium dioxide (TiO2)-induced chronic arthritis in mice, J. Nutr. Biochem. 53(2018)81-95
    E. Atala, J. Fuentes, M.J. Wehrhahn, et al., Quercetin and related flavonoids conserve their antioxidant properties despite undergoing chemical or enzymatic oxidation, Food. Chem. 234(2017)479-485
    C. Veith, M. Drent, A. Bast, et al., The disturbed redox-balance in pulmonary fibrosis is modulated by the plant flavonoid quercetin, Toxicol. Appl. Pharmacol. 336(2017)40-48
    K.-C. Chen, W.-H. Hsu, J.-Y. Ho, et al., Flavonoids luteolin and quercetin inhibit RPS19 and contributes to metastasis of cancer cells through c-Myc reduction, J. Food. Drug. Anal. 26(2018)1180-1191
    K.M.M.B. Carvalho, T.C. Morais, T.S. Melo, et al., The natural flavonoid quercetin ameliorates cerulein-induced acute pancreatitis in mice, Biol. Pharm. Bull. 33(2010)1534-1539
    S.-C. Shen, W.-R. Lee, H.-Y. Lin, et al., In vitro and in vivo inhibitory activities of rutin, wogonin, and quercetin on lipopolysaccharide-induced nitric oxide and prostaglandin E2 production, Eur. J. Pharmacol. 446(2002)187-194
    N.A. Al-Dhabi, M.V. Arasu, C.H. Park, et al., An up-to-date review of rutin and its biological and pharmacological activities, EXCLI. J. 14(2015)59-63
    A. Gegotek, P. Rybaltowska-Kawalko, E. Skrzydlewska, Rutin as a mediator of lipid metabolism and cellular signaling pathways interactions in fibroblasts altered by UVA and UVB radiation, Oxid. Med. Cell. Longev. 2017(2017), 4721352
    S. Choi, T.-G. Lim, M.K. Hwang, et al., Rutin inhibits B[a]PDE-induced cyclooxygenase-2 expression by targeting EGFR kinase activity, Biochem. Pharmacol. 86(2013)1468-1475
    J. Wang, Z. Yang, L. Lin, et al., Protective effect of naringenin against lead-induced oxidative stress in rats, Biol. Trace. Elem. Res. 146(2012)354-359
    F.Y. Zhang, G.J. Du, L. Zhang, et al., Naringenin enhances the anti-tumor effect of doxorubicin through selectively inhibiting the activity of multidrug resistance-associated proteins but not P-glycoprotein, Pharm. Res. 26(2009)914-925
    E. Hernandez-Aquino, M.A. Quezada-Ramirez, A. Silva-Olivares, et al., Naringenin attenuates the progression of liver fibrosis via inactivation of hepatic stellate cells and profibrogenic pathways, Eur. J. Pharmacol. 865(2019), 172730
    I. Pafumi, M. Festa, F. Papacci, et al., Naringenin impairs two-pore channel 2 activity and inhibits VEGF-induced angiogenesis, Sci. Rep. 7(2017), 5121
    S. Md, S.Y. Gan, Y.H. Haw, et al., In vitro neuroprotective effects of naringenin nanoemulsion against beta-amyloid toxicity through the regulation of amyloidogenesis and tau phosphorylation, Int. J. Biol. Macromol. 118(2018)1211-1219
    D. Arul, P. Subramanian, Inhibitory effect of naringenin (citrus flavonone) on N-nitrosodiethylamine induced hepatocarcinogenesis in rats, Biochem. Biophys. Res. Commun. 434(2013)203-209
    A. Rusin, J. Zawisza-Puchalka, K. Kujawa, et al., Synthetic conjugates of genistein affecting proliferation and mitosis of cancer cells, Bioorg. Med. Chem. 19(2011)295-305
    K. Papaj, A. Kasprzycka, A. Gora, et al., Structure-bioavailability relationship study of genistein derivatives with antiproliferative activity on human cancer cell, J. Pharm. Biomed. Anal. 185(2020), 113216
    J.-P. Xue, G. Wang, Z.-B. Zhao, et al., Synergistic cytotoxic effect of genistein and doxorubicin on drug-resistant human breast cancer MCF-7/Adr cells, Oncol. Rep. 32(2014)1647-1653
    B. Yuan, L. Wang, Y. Jin, et al., Role of metabolism in the effects of genistein and its phase II conjugates on the growth of human breast cell lines, AAPS. J. 14(2012)329-344
    R.C. Santell, N. Kieu, W.G. Helferich, Genistein inhibits growth of estrogen-independent human breast cancer cells in culture but not in athymic mice, J. Nutr. 130(2000)1665-1669
    K. Merchant, J. Kumi-Diaka, A. Rathinavelu, et al., Genistein modulation of immune-associated genes in LNCaP prostate cancer cell line, Open. Prostate. Cancer. J. 5(2012)1-7
    H.-J. Chen, Y.-L. Chung, C.-Y. Li, et al., Taxifolin resensitizes multidrug resistance cancer cells via uncompetitive inhibition of P-glycoprotein function, Molecules. 23(2018), 3055
    M. Mahdavimehr, A.A. Meratan, M. Ghobeh, et al., Inhibition of HEWL fibril formation by taxifolin:Mechanism of action, PLoS One 12(2017), e0187841
    Y. Luo, P. Shang, D. Li, Luteolin:A flavonoid that has multiple cardio-protective effects and its molecular mechanisms, Front. Pharmacol. 8(2017), 692
    Y. Seo, K. Ryu, J. Park, et al., Inhibition of ANO1 by luteolin and its cytotoxicity in human prostate cancer PC-3 cells, PLoS One 12(2017), e0174935
    B. Xiao, Y. Qin, C. Ying, et al., Combination of oncolytic adenovirus and luteolin exerts synergistic antitumor effects in colorectal cancer cells and a mouse model, Mol. Med. Rep. 16(2017)9375-9382
    L. Wang, W. Li, M. Lin, et al., Luteolin, ellagic acid and punicic acid are natural products that inhibit prostate cancer metastasis, Carcinogenesis. 35(2014)2321-2330
    R. Sable, P. Parajuli, S. Jois, Peptides, peptidomimetics, and polypeptides from marine sources:A wealth of natural sources for pharmaceutical applications, Mar. Drugs 15(2017), 124
    Q.-Y. Chai, Z. Yang, H.-W. Lin, et al., Alkynyl-containing peptides of marine origin:A review, Mar. Drugs 14(2016), 216
    F.S. Youssef, M.L. Ashour, A.N.B. Singab, et al., A comprehensive review of bioactive peptides from marine fungi and their biological significance, Mar. Drugs 17(2019), 559
    X. Ma, X.-H. Nong, Z. Ren, et al., Antiviral peptides from marine gorgonian-derived fungus Aspergillus sp. SCSIO 41501, Tetrahedron. Lett. 58(2017)1151-1155
    P. Dolashka, V. Moshtanska, V. Borisova, et al., Antimicrobial proline-rich peptides from the hemolymph of marine snail Rapana venosa, Peptides. 32(2011)1477-1483
    D.S. Orlov, O.V. Shamova, I.E. Eliseev, et al., Redesigning arenicin-1, an antimicrobial peptide from the marine Polychaeta Arenicola marina, by strand rearrangement or branching, substitution of specific residues, and backbone linearization or cyclization, Mar. Drugs 17(2019), 376
    G. Leoni, A. De Poli, M. Mardirossian, et al., Myticalins:A novel multigenic family of linear, cationic antimicrobial peptides from marine mussels (Mytilus spp.), Mar. Drugs 15(2017), 261
    R. Anbuchezian, S. Ravichandran, D.K. Rajan, et al., Identification and functional characterization of antimicrobial peptide from the marine crab Dromia dehaani, Microb. Pathog. 125(2018)60-65
    R. Ghanbari, Review on the bioactive peptides from marine sources:Indication for health effects, Int. J. Pept. Res. Ther. 25(2018)1187-1199
    S.-K. Kim, I. Wijesekara, Development and biological activities of marine-derived bioactive peptides:A review, J. Funct. Foods. 2(2010)1-9
    S.-C. Ko, N. Kang, E.-A. Kim, et al., A novel angiotensin I-converting enzyme (ACE) inhibitory peptide from a marine Chlorella ellipsoidea and its antihypertensive effect in spontaneously hypertensive rats, Process. Biochem. 47(2012)2005-2011
    M. Anand, M. Alagar, J. Ranjitha, et al., Total synthesis and anticancer activity of a cyclic heptapeptide from marine sponge using water soluble peptide coupling agent EDC, Arabian J. Chem. 12(2019)2782-2787
    T.D. Tran, N.B. Pham, G.A. Fechner, et al., Potent cytotoxic peptides from the Australian marine sponge Pipestela candelabra, Mar. Drugs 12(2014)3399-3415
    S. Um, Y. Pyee, E.-H. Kim, et al., Thalassospiramide G, a new gamma-amino-acid-bearing peptide from the marine bacterium Thalassospira sp, Mar. Drugs 11(2013)611-622
    K. Iwasaki, A. Iwasaki, S. Sumimoto, et al., Croissamide, a proline-rich cyclic peptide with an N-prenylated tryptophan from a marine cyanobacterium Symploca sp, Tetrahedron. Lett. 59(2018)3806-3809
    F. Desriac, C. Jegou, E. Balnois, et al., Antimicrobial peptides from marine proteobacteria, Mar. Drugs 11(2013)3632-3660
    C. Freiberg, N.A. Brunner, G. Schiffer, et al., Identification and characterization of the first class of potent bacterial acetyl-CoA carboxylase inhibitors with antibacterial activity, J. Biol. Chem. 279(2004)26066-26073
    J. Needham, M.T. Kelly, M. Ishige, et al., Andrimid and moiramides A-C, metabolites produced in culture by a marine isolate of the bacterium Pseudomonas fluorescensi structure elucidation and biosynthesis, J. Org. Chem. 59(1994)2058-2063
    J. Fichna, A. Janecka, Synthesis of target-specific radiolabeled peptides for diagnostic imaging, Bioconjugate. Chem. 14(2003)3-17
    S.L. Pimlott, A. Sutherland, Molecular tracers for the PET and SPECT imaging of disease, Chem. Soc. Rev. 40(2011)149-162
    S. Molavipordanjani, S.J. Hosseinimehr, Fundamental concepts of radiopharmaceuticals quality controls, Pharm. Biomed. Res. 4(2019)1-8
    J.R. Hanson, A hundred years in the elucidation of the structures of natural products, Sci. Prog. 100(2017)63-79
    T. Kind, O. Fiehn, Advances in structure elucidation of small molecules using mass spectrometry, Bioanal. Rev. 2(2010)23-60
    M. Yun, S.J. Oh, H.-J. Ha, et al., High radiochemical yield synthesis of 3'-deoxy-3'-[18F]fluorothymidine using (5'-O-dimethoxytrityl-2'-deoxy-3'-O-nosyl-β-D-threo pentofuranosyl) thymine and its 3-N-BOC-protected analogue as a labeling precursor, Nucl. Med. Biol. 30(2003)151-157
    S.J. Lee, S.J. Oh, D.Y. Chi, et al., One-step high-radiochemical-yield synthesis of[18F]FP-CIT using a protic solvent system, Nucl. Med. Biol. 34(2007)345-351
    K.P. Willowson, Production of radionuclides for clinical nuclear medicine, Eur. J. Phys. 40(2019), 043001
    M.L. Aulsebrook, L. Hogan, L. Matesic, Highlights of radioisotope, radiochemistry, and radiotracer development in Australia, Aust. J. Chem. 73(2020)880-894
    G. Orteca, J.P. Sinnes, S. Rubagotti, et al., Gallium-68 and scandium-44 labelled radiotracers based on curcumin structure linked to bifunctional chelators:Synthesis and characterization of potential PET radiotracers, J. Inorg. Biochem. 204(2020), 110954
    D. Papagiannopoulou, Technetium-99m radiochemistry for pharmaceutical applications, J. Labelled. Comp. Radiopharm. 60(2017)502-520
    G. Ferro-Flores, I.A. Rivero, C.L. Santos-Cuevas, et al., Click chemistry for[99mTc (CO)3] labeling of Lys3-bombesin, Appl. Radiat. Isot. 68(2010)2274-2278
    N. Sadeghzadeh, M. Ahmadzadeh, M. Erfani, Evaluation of a new radiolabeled bombesin derivative with 99mTc as potential targeted tumor imaging agent, J. Radioanal. Nucl. Chem. 298(2013)287-293
    Z. Yu, G. Carlucci, H.J. Ananias, et al., Evaluation of a technetium-99m labeled bombesin homodimer for GRPR imaging in prostate cancer, Amino. Acids. 44(2013)543-553
    S.P. Shirmardi, M. Gandomkar, M. Mazidi, et al., Synthesis and evaluation of a new bombesin analog labeled with 99mTc as a GRP receptor imaging agent, J. Radioanal. Nucl. Chem. 288(2011)327-335
    M. Asti, E. Ferrari, S. Croci, et al., Synthesis and characterization of 68Ga-labeled curcumin and curcuminoid complexes as potential radiotracers for imaging of cancer and Alzheimer's disease, Inorg. Chem. 53(2014)4922-4933
    S. Rubagotti, S. Croci, E. Ferrari, et al., Affinity of nat/68Ga-labelled curcumin and curcuminoid complexes for beta-amyloid plaques:Towards the development of new metal-curcumin based radiotracers, Int. J. Mol. Sci. 17(2016), 1480
    N. Mohtavinejad, M.S. Ardestani, A. Khalaj, et al., Application of radiolabeled peptides in tumor imaging and therapy, Life. Sci. 258(2020), 118206
    J. Rokka, A. Snellman, C. Zona, et al., Synthesis and evaluation of a 18F-curcumin derivate for beta-amyloid plaque imaging, Bioorg. Med. Chem. 22(2014)2753-2762
    C. Kumar, S. Subramanian, G. Samuel, Evaluation of radioiodinated curcumin for its potential as a tumor-targeting radiopharmaceutical, J. Radiat. Cancer. Res. 7(2016)112-116
    E. Dubost, H. McErlain, V. Babin, et al., Recent advances in synthetic methods for radioiodination, J. Org. Chem. 85(2020)8300-8310
    M.H. Choi, J.K. Rho, J.A. Kang, et al., Efficient radiolabeling of rutin with 125I and biodistribution study of radiolabeled rutin, J. Radioanal. Nucl. Chem. 308(2015)477-483
    N. Molchanova, J.E. Nielsen, K.B. Sorensen, et al., Halogenation as a tool to tune antimicrobial activity of peptoids, Sci. Rep. 10(2020), 14805
    G.T. Hermanson, The reactions of bioconjugation, in:Bioconjugate Techniques, Elsevier, Amsterdam, 2013, pp. 229-258
    T. Fuchigami, Y. Yamashita, M. Kawasaki, et al., Characterisation of radioiodinated flavonoid derivatives for SPECT imaging of cerebral prion deposits, Sci. Rep. 5(2015), 18440
    T. Fuchigami, A. Ogawa, Y. Yamashita, et al., Development of alkoxy styrylchromone derivatives for imaging of cerebral amyloid-beta plaques with SPECT, Bioorg. Med. Chem. Lett. 25(2015)3363-3367
    M. Ono, Y. Maya, M. Haratake, et al., Aurones serve as probes of beta-amyloid plaques in Alzheimer's disease, Biochem. Biophys. Res. Commun. 361(2007)116-121
    M. Ono, R. Ikeoka, H. Watanabe, et al., Synthesis and evaluation of novel chalcone derivatives with 99mTc/Re complexes as potential probes for detection of beta-amyloid plaques, ACS. Chem. Neurosci. 1(2010)598-607
    L. Allott, D. Brickute, C. Chen, et al., Development of a fluorine-18 radiolabelled fluorescent chalcone:evaluated for detecting glycogen, EJNMMI. Radiopharm. Chem. 5(2020), 17
    S.J. Hosseinimehr, V. Tolmachev, B. Stenerlow, 125I-labeled quercetin as a novel DNA-targeted radiotracer, Cancer. Biother. Radiopharm. 26(2011)469-475
    M.E. Sriyani, D.A. Utami, M.S. Dwike, et al., Synthesis of 131I labeled quercetin through oxidation method using chloramine-T for cancer radiopharmaceuticals, Indones. J. Chem. 19(2019)841-848
    M.B. Febrian, Y. Prima, B.S. Rattyananda, et al., Proceeding of the Third Pharmaceutical Science and Technology Seminar, Bandung, Indonesia, 2018, 131-142.(accessed on 20 July, 2020)
    E.M. Widyasari, E. Kusumawardhany, R.J. Sugiharti, et al., The optimization method for synthesis of 99mTc-rutin as potential radiotracer in the development of cancer drugs from flavonoid, Indones. J. Cancer. Chemoprevent. 10(2019)80-87
    J. Jeon, S.-Y. Ma, D.S. Choi, et al., Radiosynthesis of 123I-labeled hesperetin for biodistribution study of orally administered hesperetin, J. Radioanal. Nucl. Chem. 306(2015)437-443
    B. Seyitoglu, F.Y. Lambrecht, K. Durkan, Labeling of apigenin with 131I and bioactivity of 131I-apigenin in male and female rats, J. Radioanal. Nucl. Chem. 279(2009)867-873
    C. Rangger, R. Haubner, Radiolabelled peptides for Positron Emission Tomography and endoradiotherapy in oncology, Pharmaceuticals. 13(2020)1-38
    J. Sosabowski, L. Melendez-alafort, S. Mather, Radiolabelling of peptides for diagnosis and therapy of non-oncological diseases, Q. J. Nucl. Med. 47(2003)223-237
    I.M. Jackson, P.J.H. Scott, S. Thompson, Clinical applications of radiolabeled peptides for PET, Semin. Nucl. Med. 47(2017)493-523
    S. Richter, F. Wuest, 18F-labeled peptides:The future is bright, Molecules. 19(2014)20536-20556
    U. Hennrich, M. Benesova,[68Ga]Ga-DOTA-TOC:The first FDA-approved 68Ga-radiopharmaceutical for PET imaging, Pharmaceuticals. 13(2020), 38
    D.J. Newman, G.M. Cragg, Current status of marine-derived compounds as warheads in anti-tumor drug candidates, Mar. Drugs 15(2017), 99
    A. Maderna, M. Doroski, C. Subramanyam, et al., Discovery of cytotoxic dolastatin 10 analogues with N-terminal modifications, J. Med. Chem. 57(2014)10527-10543
    C.A. Boswell, E.E. Mundo, C. Zhang, et al., Differential effects of predosing on tumor and tissue uptake of an 111In-labeled anti-TENB2 antibody-drug conjugate, J. Nucl. Med. 53(2012)1454-1461
    P. Adumeau, D. Vivier, S.K. Sharma, et al., Site-specifically labeled antibody-drug conjugate for simultaneous therapy and immunoPET, Mol. Pharm. 15(2018)892-898
    C.L. Charron, J.L. Hickey, T.K. Nsiama, et al., Molecular imaging probes derived from natural peptides, Nat. Prod. Rep. 33(2016)761-800
    E.W. Price, C. Orvig, Matching chelators to radiometals for radiopharmaceuticals, Chem. Soc. Rev. 43(2014)260-290
    A.L. Tornesello, L. Buonaguro, M.L. Tornesello, et al., New insights in the design of bioactive peptides and chelating agents for imaging and therapy in oncology, Molecules. 22(2017), 1282
    M. Fani, H.R. Maecke, S.M. Okarvi, Radiolabeled peptides:valuable tools for the detection and treatment of cancer, Theranostics. 2(2012)481-501
    S. Bhattacharyya, M. Dixit, Metallic radionuclides in the development of diagnostic and therapeutic radiopharmaceuticals, Dalton. Trans. 40(2011)6112-6128
    R.K. Hom, J.A. Katzenellenbogen, Synthesis of a tetradentate oxorhenium (V) complex mimic of a steroidal estrogen, J. Org. Chem. 62(1997)6290-6297
    Y. Liu, M. Tian, H. Zhang, Microfluidics for synthesis of peptide-based PET tracers, Biomed. Res. Int. 2013(2013), 839683
    O.R. Pozzi, E.O. Sajaroff, M.M. Edreira, Influence of prosthetic radioiodination on the chemical and biological behavior of chemotactic peptides labeled at high specific activity, Appl. Radiat. Isot. 64(2006)668-676
    A. Vorobyeva, A. Schulga, S.S. Rinne, et al., Indirect radioiodination of DARPin G3 using N-succinimidyl-para-iodobenzoate improves the contrast of HER2 molecular imaging, Int. J. Mol. Sci. 20(2019), 3047
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (279) PDF downloads(18) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return