Citation: | Hendris Wongso. Natural product-based radiopharmaceuticals:Focus on curcumin and its analogs, flavonoids, and marine peptides[J]. Journal of Pharmaceutical Analysis, 2022, 12(3): 380-393. doi: 10.1016/j.jpha.2021.07.006 |
R.A. Werner, R.A. Bundschuh, L. Bundschuh, et al., Novel structured reporting systems for theranostic radiotracers, J. Nucl. Med. 60(2019)577-584
|
T.H. Witney, P.J. Blower, The chemical tool-kit for molecular imaging with radionuclides in the age of targeted and immune therapy, Cancer. Imaging. 21(2021), 18
|
R. Fay, J.P. Holland, The impact of emerging bioconjugation chemistries on radiopharmaceuticals, J. Nucl. Med. 60(2019)587-591
|
B. Gutfilen, G. Valentini, Radiopharmaceuticals in nuclear medicine:recent developments for SPECT and PET studies, Biomed. Res. Int. 2014(2014), 426892
|
M.R. Kilbourn, 11C-and 18F-Radiotracers for in vivo imaging of the dopamine system:Past, present and future, Biomedicines. 9(2021), 108
|
A. Leuzy, K. Chiotis, L. Lemoine, et al., Tau PET imaging in neurodegenerative tauopathies-still a challenge, Mol. Psychiatry. 24(2019)1112-1134
|
G. Sgouros, L. Bodei, M.R. McDevitt, et al., Radiopharmaceutical therapy in cancer:clinical advances and challenges, Nat. Rev. Drug. Discov. 19(2020)589-608
|
R. Sharma, E. Aboagye, Development of radiotracers for oncology-the interface with pharmacology, Brit. J. Pharmacol. 163(2011)1565-1585
|
E.E. Carlson, Natural products as chemical probes, ACS. Chem. Biol. 5(2010)639-653
|
P.M. Cheuka, G. Mayoka, P. Mutai, et al., The role of natural products in drug discovery and development against neglected tropical diseases, Molecules. 22(2016), 58
|
J. Gu, Y. Gui, L. Chen, et al., Use of natural products as chemical library for drug discovery and network pharmacology, PLoS One 8(2013), e62839
|
Y. Tong, Z. Deng, An aurora of natural products-based drug discovery is coming, Synth. Syst. Biotechnol. 5(2020)92-96
|
R. Chen, L. Huang, K. Hu, Natural products remodel cancer-associated fibroblasts in desmoplastic tumors, Acta. Pharm. Sin. B. 10(2020)2140-2155
|
Z. Mbese, V. Khwaza, B.A. Aderibigbe, Curcumin and its derivatives as potential therapeutic agents in prostate, colon and breast cancers, Molecules. 24(2019), 4386
|
P. Anand, S.G. Thomas, A.B. Kunnumakkara, et al., Biological activities of curcumin and its analogues (Congeners) made by man and Mother Nature, Biochem. Pharmacol. 76(2008)1590-1611
|
D. Mody, A.I.M. Athamneh, M.N. Seleem, Curcumin:A natural derivative with antibacterial activity against Clostridium difficile, J. Glob. Antimicrob. Resist. 21(2020)154-161
|
M. Sharma, Monika, P. Thakur, et al., Unveiling antimicrobial and anticancerous behavior of AuNPs and AgNPs moderated by rhizome extracts of Curcuma longa from diverse altitudes of Himalaya, Sci. Rep. 10(2020), 10934
|
C.V. Martins, D.L. da Silva, A.T. Neres, et al., Curcumin as a promising antifungal of clinical interest, J. Antimicrob. Chemother. 63(2009)337-339
|
J.-H. Woo, J.-M. Park, J.-H. Jang, et al., Curcumin induces expression of 15-hydroxyprostaglandin dehydrogenase in gastric mucosal cells and mouse stomach in vivo:AP-1 as a potential target, J. Nutr. Biochem. 85(2020), 108469
|
T.T. San, P. Khaenam, V. Prachayasittikul, et al., Curcumin enhances chemotherapeutic effects and suppresses ANGPTL4 in anoikis-resistant cholangiocarcinoma cells, Heliyon. 6(2020), e03255
|
P. Liu, Q. Ying, H. Liu, et al., Curcumin enhances anti-cancer efficacy of either gemcitabine or docetaxel on pancreatic cancer cells, Oncol. Rep. 44(2020)1393-1402
|
D.K. Khatri, A.R. Juvekar, Neuroprotective effect of curcumin as evinced by abrogation of rotenone-induced motor deficits, oxidative and mitochondrial dysfunctions in mouse model of Parkinson's disease, Pharmacol. Biochem. Behav. 150-151(2016)39-47
|
P. Srivastava, Y.K. Dhuriya, V. Kumar, et al., PI3K/Akt/GSK3β induced CREB activation ameliorates arsenic mediated alterations in NMDA receptors and associated signaling in rat hippocampus:Neuroprotective role of curcumin, Neurotoxicology. 67(2018)190-205
|
R.S. Yadav, L.P. Chandravanshi, R.K. Shukla, et al., Neuroprotective efficacy of curcumin in arsenic induced cholinergic dysfunctions in rats, Neurotoxicology. 32(2011)760-768
|
S. Siva, C. Li, H. Cui, et al., Encompassment of isoeugenol in 2-hydroxypropyl-β-cyclodextrin using ultrasonication:Characterization, antioxidant and antibacterial activities, J. Mol. Liq. 296(2019), 111777
|
R. Wang, X. Hu, J. Pan, et al., Interaction of isoeugenol with calf thymus DNA and its protective effect on DNA oxidative damage, J. Mol. Liq. 282(2019)356-365
|
A. Peperidou, E. Pontiki, D. Hadjipavlou-Litina, et al., Multifunctional cinnamic acid derivatives, Molecules. 22(2017), 1247
|
S. Adisakwattana, P. Chantarasinlapin, H. Thammarat, et al., A series of cinnamic acid derivatives and their inhibitory activity on intestinal alpha-glucosidase, J. Enzyme. Inhib. Med. Chem. 24(2009)1194-1200
|
T. Prorok, M. Jana, D. Patel, et al., Cinnamic acid protects the nigrostriatum in a mouse model of Parkinson's disease via peroxisome proliferator-activated receptor alpha, Neurochem. Res. 44(2019)751-762
|
A.B. Monteiro, C.K. de Souza Rodrigues, E.P. do Nascimento, et al., Anxiolytic and antidepressant-like effects of Annona coriacea (Mart.) and caffeic acid in mice, Food. Chem. Toxicol. 136(2020), 111049
|
Z.-Q. Wang, Q.-Y. Song, J.-C. Su, et al., Caffeic acid oligomers from Mesona chinensis and their in vitro antiviral activities, Fitoterapia. 144(2020), 104603
|
A. Parzonko, A.K. Kiss, Caffeic acid derivatives isolated from Galinsoga parviflora herb protected human dermal fibroblasts from UVA-radiation, Phytomedicine. 57(2019)215-222
|
B. Aneja, A. Queen, P. Khan, et al., Design, synthesis& biological evaluation of ferulic acid-based small molecule inhibitors against tumor-associated carbonic anhydrase IX, Bioorg. Med. Chem. 28(2020), 115424
|
Y.E. Choi, E. Park, Ferulic acid in combination with PARP inhibitor sensitizes breast cancer cells as chemotherapeutic strategy, Biochem. Biophys. Res. Commun. 458(2015)520-524
|
P.B. Ezhuthupurakkal, S. Ariraman, S. Arumugam, et al., Anticancer potential of ZnO nanoparticle-ferulic acid conjugate on Huh-7 and HepG2 cells and diethyl nitrosamine induced hepatocellular cancer on Wistar albino rat, Nanomedicine. 14(2018)415-428
|
S.B.R. Berton, M.R.P. Cabral, G.A.M. de Jesus, et al., Ultra-high-performance liquid chromatography supports a new reaction mechanism between free radicals and ferulic acid with antimicrobial and antioxidant activities, Ind. Crops. Prod. 154(2020), 112701
|
E.-R. Jo, C.K. Youn, Y. Jun, et al., The protective role of ferulic acid against cisplatin-induced ototoxicity, Int. J. Pediatr. Otorhinolaryngol. 120(2019)30-35
|
P. Yin, Z. Zhang, J. Li, et al., Ferulic acid inhibits bovine endometrial epithelial cells against LPS-induced inflammation via suppressing NK-kappaB and MAPK pathway, Res. Vet. Sci. 126(2019)164-169
|
K.M. Jacksona, M. DeLeon, C.R. Verret, et al., Dibenzoylmethane induces cell cycle deregulation in human prostate cancer cells, Cancer. Lett. 178(2002)161-165
|
F.R. Nascimento, T.A. Moura, J. Baeta, et al., New antineoplastic agent based on a dibenzoylmethane derivative:Cytotoxic effect and direct interaction with DNA, Biophys. Chem. 239(2018)1-6
|
N.J. Mabjeesh, M.T. Willard, W.B. Harris, et al., Dibenzoylmethane, a natural dietary compound, induces HIF-1α and increases expression of VEGF, Biochem. Biophys. Res. Commun. 303(2003)279-286
|
D.M. Martinez, A. Barcellos, A.M. Casaril, et al., Antidepressant-like activity of dehydrozingerone:involvement of the serotonergic and noradrenergic systems, Pharmacol. Biochem. Behav. 127(2014)111-117
|
P. Chibber, C. Kumar, A. Singh, et al., Anti-inflammatory and analgesic potential of OA-DHZ; a novel semisynthetic derivative of dehydrozingerone, Int. Immunopharmacol. 83(2020), 106469
|
N. Motohashi, Y. Ashihara, C. Yamagami, et al., Antimutagenic effects of dehydrozingerone and its analogs on UV-induced mutagenesis in Escherichia coli, Mutat. Res. 377(1997)17-25
|
A.P. Gupta, S. Khan, M.M. Manzoor, et al., Anticancer curcumin:Natural analogues and structure-activity relationship, in:Studies in Natural Products Chemistry, Vol. 54, Elsevier B.V, Amsterdam, 2017, pp. 355-401
|
M.A. Tomeh, R. Hadianamrei, X. Zhao, A review of curcumin and its derivatives as anticancer agents, Int. J. Mol. Sci. 20(2019), 1033
|
M. Russo, S. Moccia, C. Spagnuolo, et al., Roles of flavonoids against coronavirus infection, Chem. Biol. Interact. 328(2020), 109211
|
M. Poor, Z. Zrinyi, T. Koszegi, Structure related effects of flavonoid aglycones on cell cycle progression of HepG2 cells:Metabolic activation of fisetin and quercetin by catechol-O-methyltransferase (COMT), Biomed. Pharmacother. 83(2016)998-1005
|
S.M. Borghi, S.S. Mizokami, F.A. Pinho-Ribeiro, et al., The flavonoid quercetin inhibits titanium dioxide (TiO2)-induced chronic arthritis in mice, J. Nutr. Biochem. 53(2018)81-95
|
E. Atala, J. Fuentes, M.J. Wehrhahn, et al., Quercetin and related flavonoids conserve their antioxidant properties despite undergoing chemical or enzymatic oxidation, Food. Chem. 234(2017)479-485
|
C. Veith, M. Drent, A. Bast, et al., The disturbed redox-balance in pulmonary fibrosis is modulated by the plant flavonoid quercetin, Toxicol. Appl. Pharmacol. 336(2017)40-48
|
K.-C. Chen, W.-H. Hsu, J.-Y. Ho, et al., Flavonoids luteolin and quercetin inhibit RPS19 and contributes to metastasis of cancer cells through c-Myc reduction, J. Food. Drug. Anal. 26(2018)1180-1191
|
K.M.M.B. Carvalho, T.C. Morais, T.S. Melo, et al., The natural flavonoid quercetin ameliorates cerulein-induced acute pancreatitis in mice, Biol. Pharm. Bull. 33(2010)1534-1539
|
S.-C. Shen, W.-R. Lee, H.-Y. Lin, et al., In vitro and in vivo inhibitory activities of rutin, wogonin, and quercetin on lipopolysaccharide-induced nitric oxide and prostaglandin E2 production, Eur. J. Pharmacol. 446(2002)187-194
|
N.A. Al-Dhabi, M.V. Arasu, C.H. Park, et al., An up-to-date review of rutin and its biological and pharmacological activities, EXCLI. J. 14(2015)59-63
|
A. Gegotek, P. Rybaltowska-Kawalko, E. Skrzydlewska, Rutin as a mediator of lipid metabolism and cellular signaling pathways interactions in fibroblasts altered by UVA and UVB radiation, Oxid. Med. Cell. Longev. 2017(2017), 4721352
|
S. Choi, T.-G. Lim, M.K. Hwang, et al., Rutin inhibits B[a]PDE-induced cyclooxygenase-2 expression by targeting EGFR kinase activity, Biochem. Pharmacol. 86(2013)1468-1475
|
J. Wang, Z. Yang, L. Lin, et al., Protective effect of naringenin against lead-induced oxidative stress in rats, Biol. Trace. Elem. Res. 146(2012)354-359
|
F.Y. Zhang, G.J. Du, L. Zhang, et al., Naringenin enhances the anti-tumor effect of doxorubicin through selectively inhibiting the activity of multidrug resistance-associated proteins but not P-glycoprotein, Pharm. Res. 26(2009)914-925
|
E. Hernandez-Aquino, M.A. Quezada-Ramirez, A. Silva-Olivares, et al., Naringenin attenuates the progression of liver fibrosis via inactivation of hepatic stellate cells and profibrogenic pathways, Eur. J. Pharmacol. 865(2019), 172730
|
I. Pafumi, M. Festa, F. Papacci, et al., Naringenin impairs two-pore channel 2 activity and inhibits VEGF-induced angiogenesis, Sci. Rep. 7(2017), 5121
|
S. Md, S.Y. Gan, Y.H. Haw, et al., In vitro neuroprotective effects of naringenin nanoemulsion against beta-amyloid toxicity through the regulation of amyloidogenesis and tau phosphorylation, Int. J. Biol. Macromol. 118(2018)1211-1219
|
D. Arul, P. Subramanian, Inhibitory effect of naringenin (citrus flavonone) on N-nitrosodiethylamine induced hepatocarcinogenesis in rats, Biochem. Biophys. Res. Commun. 434(2013)203-209
|
A. Rusin, J. Zawisza-Puchalka, K. Kujawa, et al., Synthetic conjugates of genistein affecting proliferation and mitosis of cancer cells, Bioorg. Med. Chem. 19(2011)295-305
|
K. Papaj, A. Kasprzycka, A. Gora, et al., Structure-bioavailability relationship study of genistein derivatives with antiproliferative activity on human cancer cell, J. Pharm. Biomed. Anal. 185(2020), 113216
|
J.-P. Xue, G. Wang, Z.-B. Zhao, et al., Synergistic cytotoxic effect of genistein and doxorubicin on drug-resistant human breast cancer MCF-7/Adr cells, Oncol. Rep. 32(2014)1647-1653
|
B. Yuan, L. Wang, Y. Jin, et al., Role of metabolism in the effects of genistein and its phase II conjugates on the growth of human breast cell lines, AAPS. J. 14(2012)329-344
|
R.C. Santell, N. Kieu, W.G. Helferich, Genistein inhibits growth of estrogen-independent human breast cancer cells in culture but not in athymic mice, J. Nutr. 130(2000)1665-1669
|
K. Merchant, J. Kumi-Diaka, A. Rathinavelu, et al., Genistein modulation of immune-associated genes in LNCaP prostate cancer cell line, Open. Prostate. Cancer. J. 5(2012)1-7
|
H.-J. Chen, Y.-L. Chung, C.-Y. Li, et al., Taxifolin resensitizes multidrug resistance cancer cells via uncompetitive inhibition of P-glycoprotein function, Molecules. 23(2018), 3055
|
M. Mahdavimehr, A.A. Meratan, M. Ghobeh, et al., Inhibition of HEWL fibril formation by taxifolin:Mechanism of action, PLoS One 12(2017), e0187841
|
Y. Luo, P. Shang, D. Li, Luteolin:A flavonoid that has multiple cardio-protective effects and its molecular mechanisms, Front. Pharmacol. 8(2017), 692
|
Y. Seo, K. Ryu, J. Park, et al., Inhibition of ANO1 by luteolin and its cytotoxicity in human prostate cancer PC-3 cells, PLoS One 12(2017), e0174935
|
B. Xiao, Y. Qin, C. Ying, et al., Combination of oncolytic adenovirus and luteolin exerts synergistic antitumor effects in colorectal cancer cells and a mouse model, Mol. Med. Rep. 16(2017)9375-9382
|
L. Wang, W. Li, M. Lin, et al., Luteolin, ellagic acid and punicic acid are natural products that inhibit prostate cancer metastasis, Carcinogenesis. 35(2014)2321-2330
|
R. Sable, P. Parajuli, S. Jois, Peptides, peptidomimetics, and polypeptides from marine sources:A wealth of natural sources for pharmaceutical applications, Mar. Drugs 15(2017), 124
|
Q.-Y. Chai, Z. Yang, H.-W. Lin, et al., Alkynyl-containing peptides of marine origin:A review, Mar. Drugs 14(2016), 216
|
F.S. Youssef, M.L. Ashour, A.N.B. Singab, et al., A comprehensive review of bioactive peptides from marine fungi and their biological significance, Mar. Drugs 17(2019), 559
|
X. Ma, X.-H. Nong, Z. Ren, et al., Antiviral peptides from marine gorgonian-derived fungus Aspergillus sp. SCSIO 41501, Tetrahedron. Lett. 58(2017)1151-1155
|
P. Dolashka, V. Moshtanska, V. Borisova, et al., Antimicrobial proline-rich peptides from the hemolymph of marine snail Rapana venosa, Peptides. 32(2011)1477-1483
|
D.S. Orlov, O.V. Shamova, I.E. Eliseev, et al., Redesigning arenicin-1, an antimicrobial peptide from the marine Polychaeta Arenicola marina, by strand rearrangement or branching, substitution of specific residues, and backbone linearization or cyclization, Mar. Drugs 17(2019), 376
|
G. Leoni, A. De Poli, M. Mardirossian, et al., Myticalins:A novel multigenic family of linear, cationic antimicrobial peptides from marine mussels (Mytilus spp.), Mar. Drugs 15(2017), 261
|
R. Anbuchezian, S. Ravichandran, D.K. Rajan, et al., Identification and functional characterization of antimicrobial peptide from the marine crab Dromia dehaani, Microb. Pathog. 125(2018)60-65
|
R. Ghanbari, Review on the bioactive peptides from marine sources:Indication for health effects, Int. J. Pept. Res. Ther. 25(2018)1187-1199
|
S.-K. Kim, I. Wijesekara, Development and biological activities of marine-derived bioactive peptides:A review, J. Funct. Foods. 2(2010)1-9
|
S.-C. Ko, N. Kang, E.-A. Kim, et al., A novel angiotensin I-converting enzyme (ACE) inhibitory peptide from a marine Chlorella ellipsoidea and its antihypertensive effect in spontaneously hypertensive rats, Process. Biochem. 47(2012)2005-2011
|
M. Anand, M. Alagar, J. Ranjitha, et al., Total synthesis and anticancer activity of a cyclic heptapeptide from marine sponge using water soluble peptide coupling agent EDC, Arabian J. Chem. 12(2019)2782-2787
|
T.D. Tran, N.B. Pham, G.A. Fechner, et al., Potent cytotoxic peptides from the Australian marine sponge Pipestela candelabra, Mar. Drugs 12(2014)3399-3415
|
S. Um, Y. Pyee, E.-H. Kim, et al., Thalassospiramide G, a new gamma-amino-acid-bearing peptide from the marine bacterium Thalassospira sp, Mar. Drugs 11(2013)611-622
|
K. Iwasaki, A. Iwasaki, S. Sumimoto, et al., Croissamide, a proline-rich cyclic peptide with an N-prenylated tryptophan from a marine cyanobacterium Symploca sp, Tetrahedron. Lett. 59(2018)3806-3809
|
F. Desriac, C. Jegou, E. Balnois, et al., Antimicrobial peptides from marine proteobacteria, Mar. Drugs 11(2013)3632-3660
|
C. Freiberg, N.A. Brunner, G. Schiffer, et al., Identification and characterization of the first class of potent bacterial acetyl-CoA carboxylase inhibitors with antibacterial activity, J. Biol. Chem. 279(2004)26066-26073
|
J. Needham, M.T. Kelly, M. Ishige, et al., Andrimid and moiramides A-C, metabolites produced in culture by a marine isolate of the bacterium Pseudomonas fluorescensi structure elucidation and biosynthesis, J. Org. Chem. 59(1994)2058-2063
|
J. Fichna, A. Janecka, Synthesis of target-specific radiolabeled peptides for diagnostic imaging, Bioconjugate. Chem. 14(2003)3-17
|
S.L. Pimlott, A. Sutherland, Molecular tracers for the PET and SPECT imaging of disease, Chem. Soc. Rev. 40(2011)149-162
|
S. Molavipordanjani, S.J. Hosseinimehr, Fundamental concepts of radiopharmaceuticals quality controls, Pharm. Biomed. Res. 4(2019)1-8
|
J.R. Hanson, A hundred years in the elucidation of the structures of natural products, Sci. Prog. 100(2017)63-79
|
T. Kind, O. Fiehn, Advances in structure elucidation of small molecules using mass spectrometry, Bioanal. Rev. 2(2010)23-60
|
M. Yun, S.J. Oh, H.-J. Ha, et al., High radiochemical yield synthesis of 3'-deoxy-3'-[18F]fluorothymidine using (5'-O-dimethoxytrityl-2'-deoxy-3'-O-nosyl-β-D-threo pentofuranosyl) thymine and its 3-N-BOC-protected analogue as a labeling precursor, Nucl. Med. Biol. 30(2003)151-157
|
S.J. Lee, S.J. Oh, D.Y. Chi, et al., One-step high-radiochemical-yield synthesis of[18F]FP-CIT using a protic solvent system, Nucl. Med. Biol. 34(2007)345-351
|
K.P. Willowson, Production of radionuclides for clinical nuclear medicine, Eur. J. Phys. 40(2019), 043001
|
M.L. Aulsebrook, L. Hogan, L. Matesic, Highlights of radioisotope, radiochemistry, and radiotracer development in Australia, Aust. J. Chem. 73(2020)880-894
|
G. Orteca, J.P. Sinnes, S. Rubagotti, et al., Gallium-68 and scandium-44 labelled radiotracers based on curcumin structure linked to bifunctional chelators:Synthesis and characterization of potential PET radiotracers, J. Inorg. Biochem. 204(2020), 110954
|
D. Papagiannopoulou, Technetium-99m radiochemistry for pharmaceutical applications, J. Labelled. Comp. Radiopharm. 60(2017)502-520
|
G. Ferro-Flores, I.A. Rivero, C.L. Santos-Cuevas, et al., Click chemistry for[99mTc (CO)3] labeling of Lys3-bombesin, Appl. Radiat. Isot. 68(2010)2274-2278
|
N. Sadeghzadeh, M. Ahmadzadeh, M. Erfani, Evaluation of a new radiolabeled bombesin derivative with 99mTc as potential targeted tumor imaging agent, J. Radioanal. Nucl. Chem. 298(2013)287-293
|
Z. Yu, G. Carlucci, H.J. Ananias, et al., Evaluation of a technetium-99m labeled bombesin homodimer for GRPR imaging in prostate cancer, Amino. Acids. 44(2013)543-553
|
S.P. Shirmardi, M. Gandomkar, M. Mazidi, et al., Synthesis and evaluation of a new bombesin analog labeled with 99mTc as a GRP receptor imaging agent, J. Radioanal. Nucl. Chem. 288(2011)327-335
|
M. Asti, E. Ferrari, S. Croci, et al., Synthesis and characterization of 68Ga-labeled curcumin and curcuminoid complexes as potential radiotracers for imaging of cancer and Alzheimer's disease, Inorg. Chem. 53(2014)4922-4933
|
S. Rubagotti, S. Croci, E. Ferrari, et al., Affinity of nat/68Ga-labelled curcumin and curcuminoid complexes for beta-amyloid plaques:Towards the development of new metal-curcumin based radiotracers, Int. J. Mol. Sci. 17(2016), 1480
|
N. Mohtavinejad, M.S. Ardestani, A. Khalaj, et al., Application of radiolabeled peptides in tumor imaging and therapy, Life. Sci. 258(2020), 118206
|
J. Rokka, A. Snellman, C. Zona, et al., Synthesis and evaluation of a 18F-curcumin derivate for beta-amyloid plaque imaging, Bioorg. Med. Chem. 22(2014)2753-2762
|
C. Kumar, S. Subramanian, G. Samuel, Evaluation of radioiodinated curcumin for its potential as a tumor-targeting radiopharmaceutical, J. Radiat. Cancer. Res. 7(2016)112-116
|
E. Dubost, H. McErlain, V. Babin, et al., Recent advances in synthetic methods for radioiodination, J. Org. Chem. 85(2020)8300-8310
|
M.H. Choi, J.K. Rho, J.A. Kang, et al., Efficient radiolabeling of rutin with 125I and biodistribution study of radiolabeled rutin, J. Radioanal. Nucl. Chem. 308(2015)477-483
|
N. Molchanova, J.E. Nielsen, K.B. Sorensen, et al., Halogenation as a tool to tune antimicrobial activity of peptoids, Sci. Rep. 10(2020), 14805
|
G.T. Hermanson, The reactions of bioconjugation, in:Bioconjugate Techniques, Elsevier, Amsterdam, 2013, pp. 229-258
|
T. Fuchigami, Y. Yamashita, M. Kawasaki, et al., Characterisation of radioiodinated flavonoid derivatives for SPECT imaging of cerebral prion deposits, Sci. Rep. 5(2015), 18440
|
T. Fuchigami, A. Ogawa, Y. Yamashita, et al., Development of alkoxy styrylchromone derivatives for imaging of cerebral amyloid-beta plaques with SPECT, Bioorg. Med. Chem. Lett. 25(2015)3363-3367
|
M. Ono, Y. Maya, M. Haratake, et al., Aurones serve as probes of beta-amyloid plaques in Alzheimer's disease, Biochem. Biophys. Res. Commun. 361(2007)116-121
|
M. Ono, R. Ikeoka, H. Watanabe, et al., Synthesis and evaluation of novel chalcone derivatives with 99mTc/Re complexes as potential probes for detection of beta-amyloid plaques, ACS. Chem. Neurosci. 1(2010)598-607
|
L. Allott, D. Brickute, C. Chen, et al., Development of a fluorine-18 radiolabelled fluorescent chalcone:evaluated for detecting glycogen, EJNMMI. Radiopharm. Chem. 5(2020), 17
|
S.J. Hosseinimehr, V. Tolmachev, B. Stenerlow, 125I-labeled quercetin as a novel DNA-targeted radiotracer, Cancer. Biother. Radiopharm. 26(2011)469-475
|
M.E. Sriyani, D.A. Utami, M.S. Dwike, et al., Synthesis of 131I labeled quercetin through oxidation method using chloramine-T for cancer radiopharmaceuticals, Indones. J. Chem. 19(2019)841-848
|
M.B. Febrian, Y. Prima, B.S. Rattyananda, et al., Proceeding of the Third Pharmaceutical Science and Technology Seminar, Bandung, Indonesia, 2018, 131-142.(accessed on 20 July, 2020)
|
E.M. Widyasari, E. Kusumawardhany, R.J. Sugiharti, et al., The optimization method for synthesis of 99mTc-rutin as potential radiotracer in the development of cancer drugs from flavonoid, Indones. J. Cancer. Chemoprevent. 10(2019)80-87
|
J. Jeon, S.-Y. Ma, D.S. Choi, et al., Radiosynthesis of 123I-labeled hesperetin for biodistribution study of orally administered hesperetin, J. Radioanal. Nucl. Chem. 306(2015)437-443
|
B. Seyitoglu, F.Y. Lambrecht, K. Durkan, Labeling of apigenin with 131I and bioactivity of 131I-apigenin in male and female rats, J. Radioanal. Nucl. Chem. 279(2009)867-873
|
C. Rangger, R. Haubner, Radiolabelled peptides for Positron Emission Tomography and endoradiotherapy in oncology, Pharmaceuticals. 13(2020)1-38
|
J. Sosabowski, L. Melendez-alafort, S. Mather, Radiolabelling of peptides for diagnosis and therapy of non-oncological diseases, Q. J. Nucl. Med. 47(2003)223-237
|
I.M. Jackson, P.J.H. Scott, S. Thompson, Clinical applications of radiolabeled peptides for PET, Semin. Nucl. Med. 47(2017)493-523
|
S. Richter, F. Wuest, 18F-labeled peptides:The future is bright, Molecules. 19(2014)20536-20556
|
U. Hennrich, M. Benesova,[68Ga]Ga-DOTA-TOC:The first FDA-approved 68Ga-radiopharmaceutical for PET imaging, Pharmaceuticals. 13(2020), 38
|
D.J. Newman, G.M. Cragg, Current status of marine-derived compounds as warheads in anti-tumor drug candidates, Mar. Drugs 15(2017), 99
|
A. Maderna, M. Doroski, C. Subramanyam, et al., Discovery of cytotoxic dolastatin 10 analogues with N-terminal modifications, J. Med. Chem. 57(2014)10527-10543
|
C.A. Boswell, E.E. Mundo, C. Zhang, et al., Differential effects of predosing on tumor and tissue uptake of an 111In-labeled anti-TENB2 antibody-drug conjugate, J. Nucl. Med. 53(2012)1454-1461
|
P. Adumeau, D. Vivier, S.K. Sharma, et al., Site-specifically labeled antibody-drug conjugate for simultaneous therapy and immunoPET, Mol. Pharm. 15(2018)892-898
|
C.L. Charron, J.L. Hickey, T.K. Nsiama, et al., Molecular imaging probes derived from natural peptides, Nat. Prod. Rep. 33(2016)761-800
|
E.W. Price, C. Orvig, Matching chelators to radiometals for radiopharmaceuticals, Chem. Soc. Rev. 43(2014)260-290
|
A.L. Tornesello, L. Buonaguro, M.L. Tornesello, et al., New insights in the design of bioactive peptides and chelating agents for imaging and therapy in oncology, Molecules. 22(2017), 1282
|
M. Fani, H.R. Maecke, S.M. Okarvi, Radiolabeled peptides:valuable tools for the detection and treatment of cancer, Theranostics. 2(2012)481-501
|
S. Bhattacharyya, M. Dixit, Metallic radionuclides in the development of diagnostic and therapeutic radiopharmaceuticals, Dalton. Trans. 40(2011)6112-6128
|
R.K. Hom, J.A. Katzenellenbogen, Synthesis of a tetradentate oxorhenium (V) complex mimic of a steroidal estrogen, J. Org. Chem. 62(1997)6290-6297
|
Y. Liu, M. Tian, H. Zhang, Microfluidics for synthesis of peptide-based PET tracers, Biomed. Res. Int. 2013(2013), 839683
|
O.R. Pozzi, E.O. Sajaroff, M.M. Edreira, Influence of prosthetic radioiodination on the chemical and biological behavior of chemotactic peptides labeled at high specific activity, Appl. Radiat. Isot. 64(2006)668-676
|
A. Vorobyeva, A. Schulga, S.S. Rinne, et al., Indirect radioiodination of DARPin G3 using N-succinimidyl-para-iodobenzoate improves the contrast of HER2 molecular imaging, Int. J. Mol. Sci. 20(2019), 3047
|