Citation: | Abdelhakim Bouyahya, Fatima-Ezzahrae Guaouguaou, Nasreddine El Omari, Naoual El Menyiy, Abdelaali Balahbib, Mohamed El-Shazly, Youssef Bakri. Anti-inflammatory and analgesic properties of Moroccan medicinal plants: Phytochemistry, in vitro and in vivo investigations, mechanism insights, clinical evidences and perspectives[J]. Journal of Pharmaceutical Analysis, 2022, 12(1): 35-57. doi: 10.1016/j.jpha.2021.07.004 |
M. Back, A. Yurdagul Jr, I. Tabas, et al., Inflammation and its resolution in atherosclerosis:mediators and therapeutic opportunities, Nat. Rev. Cardiol. 16(2019)389-406
|
A. Parker, L. Vaux, A.M. Patterson, et al., Elevated apoptosis impairs epithelial cell turnover and shortens villi in TNF-driven intestinal inflammation, Cell Death Dis. 10(2019)108
|
P.H. Braz-Silva, M.L. Bergamini, A.P. Mardegan, et al., Inflammatory profile of chronic apical periodontitis:a literature review, Acta Odontol. Scand. 77(2019)173-180
|
N. Arnold, W. Koenig, Atherosklerose als inflammatorische Erkrankung-Pathophysiologie, klinische Relevanz und therapeutische Implikationen, DMW-Dtsch. Med. Wochenschr. 144(2019)315-321
|
H. Suleyman, B. Demircan, Y. Karagoz, Anti-inflammatory and side effects of cyclooxygenase inhibitors, Pharmacol. Rep. 59(2007)247-258
|
S. Kazemi, H. Shirzad, M. Rafieian-Kopaei, Recent findings in molecular basis of inflammation and anti-inflammatory plants, Curr. Pharm. Des. 24(2018)1551-1562
|
P. Ramezannezhad, A. Nouri, E. Heidarian, Silymarin mitigates diclofenac-induced liver toxicity through inhibition of inflammation and oxidative stress in male rats, J. Herbmed Pharmacol. 8(2019)231-237
|
F.E. Hermanto, A. Soewondo, H. Tsuboi, et al., The hepatoprotective effect of Cheral as anti-oxidant and anti-inflammation on mice (Mus musculus) with breast cancer, J. Herbmed Pharmacol. 9(2020)153-160
|
H. Yaribeygi, S.L. Atkin, M. Pirro, et al., A review of the anti-inflammatory properties of antidiabetic agents providing protective effects against vascular complications in diabetes, J. Cell. Physiol. 234(2019)8286-8294
|
J. Hughes, Isolation of an endogenous compound from the brain with pharmacological properties similar to morphine, Brain Res. 88(1975)295-308
|
Y. Boucher, Pharmacologie et douleurs, Rev. Orthop. Dento-Faciale. 33(1999)123-138
|
el.H. Bouidida, K. Alaoui, Y. Cherrah, et al., Analgesic activity of different nonvolatile extracts of Nepeta atlantica Ball and Nepeta Tuberosa L. ssp. reticulata (Desf.) Maire, Therapie 63(2008)333-338
|
A. Bouyahya, J. Abrini, A. Et-Touys, et al., Indigenous knowledge of the use of medicinal plants in the North-West of Morocco and their biological activities, Eur. J. Integr. Med. 13(2017)9-25
|
S.K. Nigam, K.T. Bush, V. Bhatnagar, et al., The Systems Biology of Drug Metabolizing Enzymes and Transporters:Relevance to Quantitative Systems Pharmacology, Clin. Pharmacol. Ther. 108(2020)40-53
|
M. Miguel, N. Bouchmaa, A. Smail, et al., Antioxidant, anti-inflammatory and anti-acetylcholinesterase activities of eleven extracts of Moroccan plants, Fresenius Environ. Bull. 23(2014)
|
S. Aazza, B. Lyoussi, C. Megias, et al., Anti-oxidant, anti-inflammatory and anti-proliferative activities of Moroccan commercial essential oils, Nat. Prod. Commun. 9(2014)587-594
|
B. Meddah, G. Mamadou, R. Tiendrebeogo, et al., Analgesic, anti-Inflammatory and antidepressant activities of Triterpene from Meiocarpidium Lepidotum (Annonaceae) Bark, Int. J. Phytopharm. 4(2013)133-140
|
H. Hosni, F.Z. Bellaoui, A. Bounihi, et al., Acute toxicity and anti-inflammatory activity of Asphodelus microcarpus, WORLD J. Pharm. Pharm. Sci. 8(2019)1405-1419
|
A.A. Abudunia, R. Kamal, N.M. Ziad, et al., In vivo potential anti-inflammatory activity of extracts from Calendula arvensis (CA) flowers, Nonsteroidal Anti-Inflamm. Drugs.(2017). https://doi.org/10.5772/intechopen.68914
|
K. Sayah, L. Chemlal, I. Marmouzi, et al., In vivo anti-inflammatory and analgesic activities of Cistus salviifolius (L.) and Cistus monspeliensis (L.) aqueous extracts, South Afr. J. Bot.(2017). http://agris.fao.org/agris-search/search.do?recordID=US201800058824 (accessed December 17, 2019)
|
M. El Jemli, R. Kamal, I. Marmouzi, et al., Chemical composition, acute toxicity, antioxidant and anti-inflammatory activities of Moroccan Tetraclinis articulata L, J. Tradit. Complement. Med. 7(2017)281-287
|
N. Lachkar, M. Al-Sobarry, H. El-Hajaji, et al., Anti-inflammatory and antioxidant effect of Ceratonia siliqua L. Methanol barks extract, J. Chem. Pharm. Res. 2016(2016)202-210
|
I. Marmouzi, E.M. Karym, R. Alami, et al., Modulatory effect of Syzygium aromaticum and Pelargonium graveolens on oxidative and sodium nitroprusside stress and inflammation, Orient. Pharm. Exp. Med. 19(2019)201-210
|
P.M. Kanyonga, M.A. Faouzi, B. Meddah, Assessment of methanolic extract of Marrubium vulgare for antiinflammatory, analgesic and anti-microbiologic activities, J. Chem. Pharm. Res. 3(2011)199-204
|
A. Bounihi, G. Hajjaj, R. Alnamer, et al., In vivo potential anti-inflammatory activity of Melissa officinalis L. essential oil, Adv. Pharmacol. Sci. 2013(2013),101759. https://doi.org/10.1155/2013/101759
|
G. Hajjaj, A. Bahlouli, M. Tajani, et al., Analgesic and Anti-Inflammatory Effects of Papaver Rhoeas L. A Traditional Medicinal Plant of Morocco, 2(2018). 10.23880/jonam-16000150
|
B. Faridi, A. Zellou, D. Touati, et al., Toxicite aigue et activite anti-inflammatoire des graines de Delphinium staphysagria, Phytotherapie. 12(2014)175-180. https://doi.org/10.1007/s10298-014-0859-1
|
F. El Hachimi, C. Alfaiz, A. Bendriss, et al., Activite anti-inflammatoire de l'huile des graines de Zizyphus lotus (L.) Desf., Phytotherapie. 15(2017)147-154. https://doi.org/10.1007/s10298-016-1056-1
|
R. Kamal, M. Kharbach, Y. Vander Heyden, et al., In vivo anti-inflammatory response and bioactive compounds'profile of polyphenolic extracts from edible Argan oil (Argania spinosa L.), obtained by two extraction methods, J. Food Biochem. 43(2019) e13066. https://doi.org/10.1111/jfbc.13066
|
M. Ait El Cadi, S. Makram, M. Ansar, et al., Anti-inflammatory activity of aqueous and ethanolic extracts of Zygophyllum gaetulum, Annales Pharmaceutiques Francaises, 70(2012)113-116
|
Y. Khabbal, M.A.E. Cadi, K. Alaoui, et al., Activite antiinflammatoire de Zygophyllum gaetulum, Phytotherapie. 4(2006)227-229. https://doi.org/10.1007/s10298-006-0188-0
|
A.V. Anand David, R. Arulmoli, S. Parasuraman, Overviews of Biological Importance of Quercetin:A Bioactive Flavonoid, Pharmacogn. Rev. 10(2016)84-89. https://doi.org/10.4103/0973-7847.194044
|
R. Pandey, R. Tiwari, S.S. Shukla, Omics:A Newer Technique in Herbal Drug Standardization and Quantification, J. Young Pharm. 8(2016)76-81. https://doi.org/10.5530/jyp.2016.2.4
|
M. Markouk, H.B. Lazrek, M. Jana, Analgesic effect of extracts from Cotula cinerea (L), Phytother. Res. PTR. 13(1999)229-230. https://doi.org/10.1002/(SICI)1099-1573(199905)13:3<229::AID-PTR406>3.0.CO;2-B
|
K. Elhabazi, R. Aboufatima, A. Benharref, et al., Study on the antinociceptive effects of Thymus broussonetii Boiss extracts in mice and rats, J. Ethnopharmacol. 107(2006)406-411. https://doi.org/10.1016/j.jep.2006.03.029
|
T. Belabda, K. Alaoui, E.H. Bouidida, et al., Toxicite aigue et action analgesique de l'extrait global de Nepeta amethystina, Phytotherapie. 13(2015)239-245
|
A. Hallal, S. Benali, M. Markouk, et al., Evaluation of the analgesic and antipyretic activities of Chenopodium ambrosioides L., Asian J. Exp. Biol. Sci. 1(2010)189-192. https://www.cabdirect.org/cabdirect/abstract/20103153611(accessed December 17, 2019).[网址存在。请点击这里,自行核对]
|
F.-E. Guaouguaou, M. Bebaha, K. Taghzouti, et al., Phytochemical investigation, acute toxicity, central analgesic and antioxidant activities of extracts and essential oil of Cotula cinerea Del (Asteraceae), Curr. Bioact. Compd. 14(2018). https://doi.org/10.2174/1573407214666180821115826
|
H. Hanae, K. Taghzouti, A. Bounihi, et al., Analgesic activity of Asphodelus microcarpus leaves extract, 8(2018)297-306. https://doi.org/10.20959/wjpps20191-12945
|
K. Yuet Ping, I. Darah, U.K. Yusuf, et al., Genotoxicity of Euphorbia hirta:an Allium cepa assay, Mol. Basel Switz. 17(2012)7782-7791. https://doi.org/10.3390/molecules17077782
|
A.P. Attanayake, K.A.P.W. Jayatilaka, C. Pathirana, et al., Efficacy and toxicological evaluation of Coccinia grandis (Cucurbitaceae) extract in male Wistar rats, Asian Pac. J. Trop. Dis. 3(2013)460-466. https://doi.org/10.1016/S2222-1808(13)60101-2
|
J. Chao, T.-C. Lu, J.-W. Liao, et al., Analgesic and anti-inflammatory activities of ethanol root extract of Mahonia oiwakensis in mice, J. Ethnopharmacol. 125(2009)297-303. https://doi.org/10.1016/j.jep.2009.06.024
|
A. Dhami, A. Singh, D. Palariya, et al., α-Pinene Rich Bark Essential Oils of Zanthoxylum armatum DC. from Three Different Altitudes of Uttarakhand, India and their Antioxidant, in vitro Anti-inflammatory and Antibacterial Activity, J. Essent. Oil Bear. Plants. 22(2019)660-674. https://doi.org/10.1080/0972060X.2019.1630015
|
M. Khoshnazar, M.R. Bigdeli, S. Parvardeh, et al., Attenuating effect of α-pinene on neurobehavioural deficit, oxidative damage and inflammatory response following focal ischaemic stroke in rat, J. Pharm. Pharmacol. 71(2019)1725-1733. https://doi.org/10.1111/jphp.13164
|
X.-J. Li, Y.-J. Yang, Y.-S. Li, et al., α-Pinene, linalool, and 1-octanol contribute to the topical anti-inflammatory and analgesic activities of frankincense by inhibiting COX-2, J. Ethnopharmacol. 179(2016)22-26. https://doi.org/10.1016/j.jep.2015.12.039
|
M.M. Ehrnhofer-Ressler, K. Fricke, M. Pignitter, et al., Identification of 1,8-Cineole, Borneol, Camphor, and Thujone as Anti-inflammatory Compounds in a Salvia officinalis L. Infusion Using Human Gingival Fibroblasts, J. Agric. Food Chem. 61(2013)3451-3459. https://doi.org/10.1021/jf305472t
|
N. Han, P. Moon, K. Ryu, et al., β-eudesmol suppresses allergic reactions via inhibiting mast cell degranulation., Clin Exp Pharmacol Physiol 442.(2017)257-265
|
K.Y. Kim, Anti-inflammatory and ECM gene expression modulations of β-eudesmol via NF-κB signaling pathway in normal human dermal fibroblasts, Biomed. Dermatol. 2(2018)3. https://doi.org/10.1186/s41702-017-0014-3
|
M.-J. Seo, S.-J. Kim, T.-H. Kang, et al., The regulatory mechanism of β-eudesmol is through the suppression of caspase-1 activation in mast cell-mediated inflammatory response, Immunopharmacol. Immunotoxicol. 33(2011)178-185. https://doi.org/10.3109/08923973.2010.491082
|
Y.-M. Yu, T.-Y. Chao, W.-C. Chang, et al., Thymol reduces oxidative stress, aortic intimal thickening, and inflammation-related gene expression in hyperlipidemic rabbits, J. Food Drug Anal. 24(2016)556-563. https://doi.org/10.1016/j.jfda.2016.02.004
|
Q. Wang, F. Cheng, Y. Xu, et al., Thymol alleviates lipopolysaccharide-stimulated inflammatory response via downregulation of RhoA-mediated NF-κB signalling pathway in human peritoneal mesothelial cells, Eur. J. Pharmacol. 833(2018)210-220. https://doi.org/10.1016/j.ejphar.2018.06.003
|
J. Sheorain, M. Mehra, R. Thakur, et al., In vitro anti-inflammatory and antioxidant potential of thymol loaded bipolymeric (tragacanth gum/chitosan) nanocarrier, Int. J. Biol. Macromol. 125(2019)1069-1074. https://doi.org/10.1016/j.ijbiomac.2018.12.095
|
T.P. Pivetta, S. Simoes, M.M. Araujo, et al., Development of nanoparticles from natural lipids for topical delivery of thymol:Investigation of its anti-inflammatory properties, Colloids Surf. B Biointerfaces. 164(2018)281-290. https://doi.org/10.1016/j.colsurfb.2018.01.053
|
D.-M. Liu, C.-Y. Zhou, X.-L. Meng, et al., Thymol exerts anti-inflammatory effect in dextran sulfate sodium-induced experimental murine colitis, Trop. J. Pharm. Res. 17(2018)1803-1810-1810. https://doi.org/10.4314/tjpr.v17i9.18
|
N. Gholijani, M. Gharagozloo, S. Farjadian, et al., Modulatory effects of thymol and carvacrol on inflammatory transcription factors in lipopolysaccharide-treated macrophages, J. Immunotoxicol. 13(2016)157-164. https://doi.org/10.3109/1547691X.2015.1029145
|
E.-S.M. El-Sayed, A.M. Mansour, M.S. Abdul-Hameed, Thymol and Carvacrol Prevent Doxorubicin-Induced Cardiotoxicity by Abrogation of Oxidative Stress, Inflammation, and Apoptosis in Rats, J. Biochem. Mol. Toxicol. 30(2016)37-44. https://doi.org/10.1002/jbt.21740
|
H. Yang, R. Zhao, H. Chen, et al., Bornyl acetate has an anti-inflammatory effect in human chondrocytes via induction of IL-11, IUBMB Life. 66(2014)854-859. https://doi.org/10.1002/iub.1338
|
N. Chen, G. Sun, X. Yuan, et al., Inhibition of lung inflammatory responses by bornyl acetate is correlated with regulation of myeloperoxidase activity, J. Surg. Res. 186(2014)436-445. https://doi.org/10.1016/j.jss.2013.09.003
|
R.G. Brito, A.G. Guimaraes, J.S.S. Quintans, et al., Citronellol, a monoterpene alcohol, reduces nociceptive and inflammatory activities in rodents, J. Nat. Med. 66(2012)637-644. https://doi.org/10.1007/s11418-012-0632-4
|
R. Jayaganesh, P. Pugalendhi, R. Murali, Effect of citronellol on NF-kB inflammatory signaling molecules in chemical carcinogen-induced mammary cancer in the rat model, J. Biochem. Mol. Toxicol. 34(2020), e22441.
|
G. Xie, N. Chen, L.W. Soromou, et al., p-Cymene Protects Mice Against Lipopolysaccharide-Induced Acute Lung Injury by Inhibiting Inflammatory Cell Activation, Molecules. 17(2012)8159-8173. https://doi.org/10.3390/molecules17078159
|
J. de Souza Siqueira Quintans, P.P. Menezes, M.R.V. Santos, et al., Improvement of p-cymene antinociceptive and anti-inflammatory effects by inclusion in β-cyclodextrin, Phytomedicine. 20(2013)436-440. https://doi.org/10.1016/j.phymed.2012.12.009
|
L.R. Bonjardim, E.S. Cunha, A.G. Guimaraes, et al., Evaluation of the Anti-Inflammatory and Antinociceptive Properties of p-Cymene in Mice, Z. Fur Naturforschung C. 67(2014)15-21. https://doi.org/10.1515/znc-2012-1-203
|
A. Zielinska, C. Martins-Gomes, N.R. Ferreira, et al., Anti-inflammatory and anti-cancer activity of citral:Optimization of citral-loaded solid lipid nanoparticles (SLN) using experimental factorial design and LUMiSizer®, Int. J. Pharm. 553(2018)428-440. https://doi.org/10.1016/j.ijpharm.2018.10.065
|
Y. Song, H. Zhao, J. Liu, et al., Effects of Citral on Lipopolysaccharide-Induced Inflammation in Human Umbilical Vein Endothelial Cells, Inflammation. 39(2016)663-671. https://doi.org/10.1007/s10753-015-0292-0
|
H.B. Martins, N. das N. Selis, v Anti-Inflammatory Activity of the Essential Oil Citral in Experimental Infection with Staphylococcus aureus in a Model Air Pouch, Evid. Based Complement. Alternat. Med. 2017(2017) e2505610. https://doi.org/10.1155/2017/2505610
|
L.J. Quintans-Junior, A.G. Guimaraes, M.T. de Santana, et al., Citral reduces nociceptive and inflammatory response in rodents, Rev. Bras. Farmacogn. 21(2011)497-502. https://doi.org/10.1590/S0102-695X2011005000065
|
C.A. Campos, B.S. Lima, G.G.G. Trindade, et al., Anti-hyperalgesic and anti-inflammatory effects of citral with β-cyclodextrin and hydroxypropyl-β-cyclodextrin inclusion complexes in animal models, Life Sci. 229(2019)139-148. https://doi.org/10.1016/j.lfs.2019.05.026
|
A.T. Rufino, M. Ribeiro, C. Sousa, et al., Evaluation of the anti-inflammatory, anti-catabolic and pro-anabolic effects of E-caryophyllene, myrcene and limonene in a cell model of osteoarthritis, Eur. J. Pharmacol. 750(2015)141-150. https://doi.org/10.1016/j.ejphar.2015.01.018
|
R. Hirota, N.N. Roger, H. Nakamura, et al., Anti-inflammatory Effects of Limonene from Yuzu (Citrus junos Tanaka) Essential Oil on Eosinophils, J. Food Sci. 75(2010) H87-H92. https://doi.org/10.1111/j.1750-3841.2010.01541.x
|
M.C. de Souza, A.J. Vieira, F.P. Beserra, et al., Gastroprotective effect of limonene in rats:Influence on oxidative stress, inflammation and gene expression, Phytomedicine. 53(2019)37-42. https://doi.org/10.1016/j.phymed.2018.09.027
|
P.A. d'Alessio, R. Ostan, J.-F. Bisson, et al., Oral administration of d-Limonene controls inflammation in rat colitis and displays anti-inflammatory properties as diet supplementation in humans, Life Sci. 92(2013)1151-1156. https://doi.org/10.1016/j.lfs.2013.04.013
|
S. Chaudhary, M. Siddiqui, M. Athar, et al., d-Limonene modulates inflammation, oxidative stress and Ras-ERK pathway to inhibit murine skin tumorigenesis, Hum. Exp. Toxicol. 31(2012)798-811. https://doi.org/10.1177/0960327111434948
|
F. Zecchinati, M.M. Barranco, M.R. Arana, et al., Reversion of down-regulation of intestinal multidrug resistance-associated protein 2 in fructose-fed rats by geraniol and vitamin C:Potential role of inflammatory response and oxidative stress, J. Nutr. Biochem. 68(2019)7-15. https://doi.org/10.1016/j.jnutbio.2019.03.002
|
C.-J. Ye, S.-A. Li, Y. Zhang, et al., Geraniol targets KV1.3 ion channel and exhibits anti-inflammatory activity in vitro and in vivo, Fitoterapia. 139(2019)104394. https://doi.org/10.1016/j.fitote.2019.104394
|
J. Wang, B. Su, H. Zhu, et al., Protective effect of geraniol inhibits inflammatory response, oxidative stress and apoptosis in traumatic injury of the spinal cord through modulation of NF-κB and p38 MAPK, Exp. Ther. Med. 12(2016)3607-3613. https://doi.org/10.3892/etm.2016.3850
|
V. Vinothkumar, S. Manoharan, G. Sindhu, et al., Geraniol modulates cell proliferation, apoptosis, inflammation, and angiogenesis during 7,12-dimethylbenz[a]anthracene-induced hamster buccal pouch carcinogenesis, Mol. Cell. Biochem. 369(2012)17-25. https://doi.org/10.1007/s11010-012-1364-1
|
B.F.M.T. Andrade, B.J. Conti, K.B. Santiago, et al., Cymbopogon martinii essential oil and geraniol at noncytotoxic concentrations exerted immunomodulatory/anti-inflammatory effects in human monocytes, J. Pharm. Pharmacol. 66(2014)1491-1496. https://doi.org/10.1111/jphp.12278
|
M. Jayachandran, B. Chandrasekaran, N. Namasivayam, Geraniol attenuates fibrosis and exerts anti-inflammatory effects on diet induced atherogenesis by NF-κB signaling pathway, Eur. J. Pharmacol. 762(2015)102-111. https://doi.org/10.1016/j.ejphar.2015.05.039
|
M. da S. Lima, L.J. Quintans-Junior, W.A. de Santana, et al., Anti-inflammatory effects of carvacrol:Evidence for a key role of interleukin-10, Eur. J. Pharmacol. 699(2013)112-117. https://doi.org/10.1016/j.ejphar.2012.11.040
|
P. Landa, L. Kokoska, M. Pribylova, et al., In vitro anti-inflammatory activity of carvacrol:Inhibitory effect on COX-2 catalyzed prostaglandin E2 biosynthesisb, Arch. Pharm. Res. 32(2009)75-78. https://doi.org/10.1007/s12272-009-1120-6
|
M.R. Khazdair, M.H. Boskabady, The effect of carvacrol on inflammatory mediators and respiratory symptoms in veterans exposed to sulfur mustard, a randomized, placebo-controlled trial, Respir. Med. 150(2019)21-29. https://doi.org/10.1016/j.rmed.2019.01.020
|
A.L. Chenet, A.R. Duarte, F.J.S. de Almeida, et al., Carvacrol Depends on Heme Oxygenase-1(HO-1) to Exert Antioxidant, Anti-inflammatory, and Mitochondria-Related Protection in the Human Neuroblastoma SH-SY5Y Cells Line Exposed to Hydrogen Peroxide, Neurochem. Res. 44(2019)884-896. https://doi.org/10.1007/s11064-019-02724-5
|
K. Arigesavan, G. Sudhandiran, Carvacrol exhibits anti-oxidant and anti-inflammatory effects against 1, 2-dimethyl hydrazine plus dextran sodium sulfate induced inflammation associated carcinogenicity in the colon of Fischer 344 rats, Biochem. Biophys. Res. Commun. 461(2015)314-320. https://doi.org/10.1016/j.bbrc.2015.04.030
|
O.T. Somade, B.O. Ajayi, N.O. Tajudeen, et al., Camphor elicits up-regulation of hepatic and pulmonary pro-inflammatory cytokines and chemokines via activation of NF-kB in rats, Pathophysiology. 26(2019)305-313. https://doi.org/10.1016/j.pathophys.2019.07.005
|
S.E. Silva-Filho, F. de S. Silva-Comar, L. a. M. Wiirzler, et al., Effect of Camphor on the Behavior of Leukocytes In vitro and In vivo in Acute Inflammatory Response, Trop. J. Pharm. Res. 13(2014)2031-2037-2037. https://doi.org/10.4314/tjpr.v13i12.13
|
O.T. Somade, B.O. Ajayi, O.A. Safiriyu, et al., Renal and testicular up-regulation of pro-inflammatory chemokines (RANTES and CCL2) and cytokines (TNF-α, IL-1β, IL-6) following acute edible camphor administration is through activation of NF-kB in rats, Toxicol. Rep. 6(2019)759-767. https://doi.org/10.1016/j.toxrep.2019.07.010
|
S.S. Ghori, M.I. Ahmed, A. Mohammed, et al., Evaluation of analgesic and anti-inflammatory activities of formulation containing camphor, menthol and thymol, 8(2016)271-274
|
J. Ma, H. Xu, J. Wu, et al., Linalool inhibits cigarette smoke-induced lung inflammation by inhibiting NF-κB activation, Int. Immunopharmacol. 29(2015)708-713. https://doi.org/10.1016/j.intimp.2015.09.005
|
X.-J. Li, Y.-J. Yang, Y.-S. Li, et al., α-Pinene, linalool, and 1-octanol contribute to the topical anti-inflammatory and analgesic activities of frankincense by inhibiting COX-2, J. Ethnopharmacol. 179(2016)22-26. https://doi.org/10.1016/j.jep.2015.12.039
|
S.-C. Lee, S.-Y. Wang, C.-C. Li, et al., Anti-inflammatory effect of cinnamaldehyde and linalool from the leaf essential oil of Cinnamomum osmophloeum Kanehira in endotoxin-induced mice, J. Food Drug Anal. 26(2018)211-220. https://doi.org/10.1016/j.jfda.2017.03.006
|
M.-G. Kim, S.-M. Kim, J.-H. Min, et al., Anti-inflammatory effects of linalool on ovalbumin-induced pulmonary inflammation, Int. Immunopharmacol. 74(2019)105706. https://doi.org/10.1016/j.intimp.2019.105706
|
M. Huo, X. Cui, J. Xue, et al., Anti-inflammatory effects of linalool in RAW 264.7 macrophages and lipopolysaccharide-induced lung injury model, J. Surg. Res. 180(2013) e47-e54. https://doi.org/10.1016/j.jss.2012.10.050
|
B. Deepa, C.V. Anuradha, Effects of linalool on inflammation, matrix accumulation and podocyte loss in kidney of streptozotocin-induced diabetic rats, Toxicol. Mech. Methods. 23(2013)223-234. https://doi.org/10.3109/15376516.2012.743638
|
P.A. Batista, M.F. de Paula Werner, E.C. Oliveira, et al., The Antinociceptive Effect of (-)-Linalool in Models of Chronic Inflammatory and Neuropathic Hypersensitivity in Mice, J. Pain. 11(2010)1222-1229. https://doi.org/10.1016/j.jpain.2010.02.022
|
L.J. Juergens, I. Tuleta, M. Stoeber, et al., Regulation of monocyte redox balance by 1,8-cineole (eucalyptol) controls oxidative stress and pro-inflammatory responses in vitro:A new option to increase the antioxidant effects of combined respiratory therapy with budesonide and formoterol?, Synergy. 7(2018)1-9. https://doi.org/10.1016/j.synres.2018.05.001
|
U.R. Juergens, U. Dethlefsen, G. Steinkamp, et al., Anti-inflammatory activity of 1.8-cineol (eucalyptol) in bronchial asthma:a double-blind placebo-controlled trial, Respir. Med. 97(2003)250-256. https://doi.org/10.1053/rmed.2003.1432
|
E. Kennedy-Feitosa, R.T. Okuro, V. Pinho Ribeiro, et al., Eucalyptol attenuates cigarette smoke-induced acute lung inflammation and oxidative stress in the mouse, Pulm. Pharmacol. Ther. 41(2016)11-18. https://doi.org/10.1016/j.pupt.2016.09.004
|
Z. Fazelan, S.M. Hoseini, M. Yousefi, et al., Effects of dietary eucalyptol administration on antioxidant and inflammatory genes in common carp (Cyprinus carpio) exposed to ambient copper, Aquaculture. 520(2020)734988. https://doi.org/10.1016/j.aquaculture.2020.734988
|
G. Badr, S. Alwasel, H. Ebaid, et al., Perinatal supplementation with thymoquinone improves diabetic complications and T cell immune responses in rat offspring, Cell. Immunol. 267 (2011) 133-140. https://doi.org/10.1016/j.cellimm.2011.01.002
|
P.C. Braga, M. Dal Sasso, M. Culici, et al., Anti-inflammatory activity of thymol: inhibitory effect on the release of human neutrophil elastase, Pharmacology. 77 (2006) 130-136
|
Z. Amirghofran, R. Hashemzadeh, K. Javidnia, et al., In vitro immunomodulatory effects of extracts from three plants of the Labiatae family and isolation of the active compound(s), J. Immunotoxicol. 8 (2011) 265-273. https://doi.org/10.3109/1547691X.2011.590828
|
M.E. Pascual, K. Slowing, E. Carretero, et al., Lippia: traditional uses, chemistry and pharmacology: a review, J. Ethnopharmacol. 76 (2001) 201-214. https://doi.org/10.1016/s0378-8741(01)00234-3
|
M. Hotta, R. Nakata, M. Katsukawa, et al., Carvacrol, a component of thyme oil, activates PPARalpha and gamma and suppresses COX-2 expression, J. Lipid Res. 51 (2010) 132-139. https://doi.org/10.1194/jlr.M900255-JLR200
|
W.-J. Yoon, N.H. Lee, C.-G. Hyun, Limonene suppresses lipopolysaccharide-induced production of nitric oxide, prostaglandin E2, and pro-inflammatory cytokines in RAW 264.7 macrophages, J. Oleo Sci. 59 (2010) 415-421. https://doi.org/10.5650/jos.59.415
|
Y.-T. Tung, M.-T. Chua, S.-Y. Wang, et al., Anti-inflammation activities of essential oil and its constituents from indigenous cinnamon (Cinnamomum osmophloeum) twigs, Bioresour. Technol. 99 (2008) 3908-3913. https://doi.org/10.1016/j.biortech.2007.07.050
|
X. Wu, X. Li, F. Xiao, et al., [Studies on the analgesic and anti-inflammatory effect of bornyl acetate in volatile oil from Amomum villosum], Zhong Yao Cai Zhongyaocai J. Chin. Med. Mater. 27 (2004) 438-439
|
X. Wang, A. Ma, W. Shi, et al., Quercetin and Bornyl Acetate Regulate T-Lymphocyte Subsets and INF-γ/IL-4 Ratio In Utero in Pregnant Mice, Evid.-Based Complement. Altern. Med. ECAM. 2011 (2011) 745262. https://doi.org/10.1155/2011/745262
|
Y. Zhao, X. Wang, W. Shi, et al., Anti-abortive effect of quercetin and bornyl acetate on macrophages and IL-10 in uterus of mice, Afr. J. Biotechnol. 10 (2011) 8675-8682. [111] N.L. Quintao, G.F. da Silva, C.S. Antonialli, et al., Chemical composition and evaluation of the anti-hypernociceptive effect of the essential oil extracted from the leaves of Ugni myricoides on inflammatory and neuropathic models of pain in mice, Planta Med. 76 (2010) 1411-1418. https://doi.org/10.1055/s-0029-1240891
|
N.L. Quintao, G.F. da Silva, C.S. Antonialli, et al., Chemical composition and evaluation of the anti-hypernociceptive effect of the essential oil extracted from the leaves of Ugni myricoides on inflammatory and neuropathic models of pain in mice, Planta Med 76 (2010) 1411-1418.[PubMed]
|
I.-Y. Choi, J.H. Lim, S. Hwang, et al., Anti-ischemic and anti-inflammatory activity of (S)-cis-verbenol, Free Radic. Res. 44 (2010) 541-551. https://doi.org/10.3109/10715761003667562
|
B.W. Chen, H.H. Wang, J.X. Liu, et al., Zinc sulphate solution enema decreases inflammation in experimental colitis in rats, J. Gastroenterol. Hepatol. 14 (1999) 1088-1092. https://doi.org/10.1046/j.1440-1746.1999.02013.x
|
F.A. Santos, R.M. Silva, A.R. Campos, et al., 1,8-cineole (eucalyptol), a monoterpene oxide attenuates the colonic damage in rats on acute TNBS-colitis, Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 42 (2004) 579-584. https://doi.org/10.1016/j.fct.2003.11.001
|
P. Ji, M. Si, Y. Podnos, et al., Monoterpene geraniol prevents acute allograft rejection, Transplant. Proc. 34 (2002) 1418-1419. https://doi.org/10.1016/s0041-1345(02)02910-x
|
A. Marcuzzi, S. Crovella, A. Pontillo, Geraniol rescues inflammation in cellular and animal models of mevalonate kinase deficiency, Vivo Athens Greece. 25 (2011) 87-92
|
A.T. Peana, P.S. D’Aquila, F. Panin, et al., Anti-inflammatory activity of linalool and linalyl acetate constituents of essential oils, Phytomedicine Int. J. Phytother. Phytopharm. 9 (2002) 721-726. https://doi.org/10.1078/094471102321621322
|
A.E. Gonzalez-Ramirez, M.E. Gonzalez-Trujano, S.A. Orozco-Suarez, et al., Nerol alleviates pathologic markers in the oxazolone-induced colitis model, Eur. J. Pharmacol. 776 (2016) 81-89. https://doi.org/10.1016/j.ejphar.2016.02.036
|
S. Abe, N. Maruyama, K. Hayama, et al., Suppression of tumor necrosis factor-alpha-induced neutrophil adherence responses by essential oils, Mediators Inflamm. 12 (2003) 323-328. https://doi.org/10.1080/09629350310001633342
|
G. Wei, Y. Wu, Q. Gao, et al., Gallic Acid Attenuates Postoperative Intra-Abdominal Adhesion by Inhibiting Inflammatory Reaction in a Rat Model, Med. Sci. Monit. 24 (2018) 827-838. https://doi.org/10.12659/MSM.908550
|
P. Dludla, B. Nkambule, B. Jack, et al., Inflammation and Oxidative Stress in an Obese State and the Protective Effects of Gallic Acid, Nutrients. 11 (2018) 23. https://doi.org/10.3390/nu11010023
|
C.-S. Seo, S.-J. Jeong, S.-R. Yoo, et al., Quantitative Analysis and In vitro Anti-inflammatory Effects of Gallic Acid, Ellagic Acid, and Quercetin from Radix Sanguisorbae, Pharmacogn. Mag. 12 (2016) 104-108. https://doi.org/10.4103/0973-1296.177908
|
K. Seob Lim, J.-K. Park, M. Ho Jeong, et al., Anti-Inflammatory Effect of Gallic Acid-Eluting Stent in a Porcine Coronary Restenosis Model, Acta Cardiol. Sin. 34 (2018) 224-232. https://doi.org/10.6515/ACS.201805_34(3).20171204A
|
O. Karimi-Khouzani, E. Heidarian, S.A. Amini, Anti-inflammatory and ameliorative effects of gallic acid on fluoxetine-induced oxidative stress and liver damage in rats, Pharmacol. Rep. 69 (2017) 830-835. https://doi.org/10.1016/j.pharep.2017.03.011
|
M. Tsang, D. Jiao, B. Chan, et al., Anti-Inflammatory Activities of Pentaherbs Formula, Berberine, Gallic Acid and Chlorogenic Acid in Atopic Dermatitis-Like Skin Inflammation, Molecules. 21 (2016) 519. https://doi.org/10.3390/molecules21040519
|
L.A. BenSaad, K.H. Kim, C.C. Quah, et al., Anti-inflammatory potential of ellagic acid, gallic acid and punicalagin A&B isolated from Punica granatum, BMC Complement. Altern. Med. 17 (2017) 47. https://doi.org/10.1186/s12906-017-1555-0
|
M. Saygin, H. Asci, O. Ozmen, et al., Impact of 2.45 GHz microwave radiation on the testicular inflammatory pathway biomarkers in young rats: The role of gallic acid: Testicular Physiopathology Caused by Wireless Device, Environ. Toxicol. 31 (2016) 1771-1784. https://doi.org/10.1002/tox.22179
|
Y. Zhao, J. Liu, Anti-Inflammatory Effects of p-coumaric Acid in LPS-Stimulated RAW264.7 Cells: Involvement of NF-κB and MAPKs Pathways, Med. Chem. 06 (2016). https://doi.org/10.4172/2161-0444.1000365
|
M. Lee, H.S. Rho, K. Choi, Anti-inflammatory Effects of a P-coumaric Acid and Kojic Acid Derivative in LPS-stimulated RAW264.7 Macrophage Cells, Biotechnol. Bioprocess Eng. 24 (2019) 653-657. https://doi.org/10.1007/s12257-018-0492-1
|
M. Kheiry, M. Dianat, M. Badavi, et al., Does p-coumaric acid improve cardiac injury following LPS-induced lung inflammation through miRNA-146a activity?, 10 (2020) 8
|
H. Zhu, Q. Liang, X. Xiong, et al., Anti-Inflammatory Effects of p-Coumaric Acid, a Natural Compound of Oldenlandia diffusa, on Arthritis Model Rats, Evid. Based Complement. Alternat. Med. 2018 (2018) 1-9. https://doi.org/10.1155/2018/5198594
|
E.C.O. da Silva, F.M. dos Santos, A.R.B. Ribeiro, et al., Drug-induced anti-inflammatory response in A549 cells, as detected by Raman spectroscopy: a comparative analysis of the actions of dexamethasone and p -coumaric acid, The Analyst. 144 (2019) 1622-1631. https://doi.org/10.1039/C8AN01887A
|
W.-C. Chang, J. Wu, C.-W. Chen, et al., Protective Effect of Vanillic Acid against Hyperinsulinemia, Hyperglycemia and Hyperlipidemia via Alleviating Hepatic Insulin Resistance and Inflammation in High-Fat Diet (HFD)-Fed Rats, Nutrients. 7 (2015) 9946-9959. https://doi.org/10.3390/nu7125514
|
S.E. Khoshnam, A. Sarkaki, M. Rashno, et al., Memory deficits and hippocampal inflammation in cerebral hypoperfusion and reperfusion in male rats: Neuroprotective role of vanillic acid, Life Sci. 211 (2018) 126-132. https://doi.org/10.1016/j.lfs.2018.08.065
|
H.-J. Jeong, S.-Y. Nam, H.-Y. Kim, et al., Anti-allergic inflammatory effect of vanillic acid through regulating thymic stromal lymphopoietin secretion from activated mast cells, Nat. Prod. Res. 32 (2018) 2945-2949. https://doi.org/10.1080/14786419.2017.1389938
|
M.-C. Kim, S.-J. Kim, D.-S. Kim, et al., Vanillic acid inhibits inflammatory mediators by suppressing NF-κB in lipopolysaccharide-stimulated mouse peritoneal macrophages, Immunopharmacol. Immunotoxicol. 33 (2011) 525-532. https://doi.org/10.3109/08923973.2010.547500
|
C. Calixto-Campos, T.T. Carvalho, M.S.N. Hohmann, et al., Vanillic Acid Inhibits Inflammatory Pain by Inhibiting Neutrophil Recruitment, Oxidative Stress, Cytokine Production, and NFκB Activation in Mice, J. Nat. Prod. 78 (2015) 1799-1808. https://doi.org/10.1021/acs.jnatprod.5b00246
|
F. Bai, L. Fang, H. Hu, et al., Vanillic acid mitigates the ovalbumin (OVA)-induced asthma in rat model through prevention of airway inflammation, Biosci. Biotechnol. Biochem. 83 (2019) 531-537. https://doi.org/10.1080/09168451.2018.1543015
|
Q. Zhang, J.-X. Hu, X. Kui, et al., Sinapic Acid Derivatives as Potential Anti-Inflammatory Agents: Synthesis and Biological Evaluation, Iran. J. Pharm. Res. IJPR. 16 (2017) 1405-1414
|
J.-Y. Lee, Anti-inflammatory effects of sinapic acid on 2,4,6-trinitrobenzenesulfonic acid-induced colitis in mice, Arch. Pharm. Res. 41 (2018) 243-250. https://doi.org/10.1007/s12272-018-1006-6
|
X. Huang, Q. Pan, Z. Mao, et al., Sinapic Acid Inhibits the IL-1β-Induced Inflammation via MAPK Downregulation in Rat Chondrocytes, Inflammation. 41 (2018) 562-568. https://doi.org/10.1007/s10753-017-0712-4
|
M.A. Ansari, M. Raish, A. Ahmad, et al., Sinapic acid mitigates gentamicin-induced nephrotoxicity and associated oxidative/nitrosative stress, apoptosis, and inflammation in rats, Life Sci. 165 (2016) 1-8. https://doi.org/10.1016/j.lfs.2016.09.014
|
Y.-M. Liu, J.-D. Shen, L.-P. Xu, et al., Ferulic acid inhibits neuro-inflammation in mice exposed to chronic unpredictable mild stress, Int. Immunopharmacol. 45 (2017) 128-134. https://doi.org/10.1016/j.intimp.2017.02.007
|
H.M. Doss, C. Dey, C. Sudandiradoss, et al., Targeting inflammatory mediators with ferulic acid, a dietary polyphenol, for the suppression of monosodium urate crystal-induced inflammation in rats, Life Sci. 148 (2016) 201-210. https://doi.org/10.1016/j.lfs.2016.02.004
|
F. Gerin, H. Erman, M. Erboga, et al., The Effects of Ferulic Acid Against Oxidative Stress and Inflammation in Formaldehyde-Induced Hepatotoxicity, Inflammation. 39 (2016) 1377-1386. https://doi.org/10.1007/s10753-016-0369-4
|
Y. Cao, Y. Zhang, J. Qi, R. Liu, et al., Ferulic acid inhibits H2O2-induced oxidative stress and inflammation in rat vascular smooth muscle cells via inhibition of the NADPH oxidase and NF-κB pathway, Int. Immunopharmacol. 28 (2015) 1018-1025. https://doi.org/10.1016/j.intimp.2015.07.037
|
P. Chao, C. Hsu, M. Yin, Anti-inflammatory and anti-coagulatory activities of caffeic acid and ellagic acid in cardiac tissue of diabetic mice, Nutr. Metab. 6 (2009) 33. https://doi.org/10.1186/1743-7075-6-33
|
G.D. Norata, P. Marchesi, S. Passamonti, et al., Anti-inflammatory and anti-atherogenic effects of cathechin, caffeic acid and trans-resveratrol in apolipoprotein E deficient mice, Atherosclerosis. 191 (2007) 265-271. https://doi.org/10.1016/j.atherosclerosis.2006.05.047
|
K.-M. Shin, I.-T. Kim, Y.-M. Park, et al., Anti-inflammatory effect of caffeic acid methyl ester and its mode of action through the inhibition of prostaglandin E2, nitric oxide and tumor necrosis factor-α production, Biochem. Pharmacol. 68 (2004) 2327-2336. https://doi.org/10.1016/j.bcp.2004.08.002
|
F.M. da Cunha, D. Duma, J. Assreuy, et al., Caffeic Acid Derivatives: In Vitro and In Vivo Anti-inflammatory Properties, Free Radic. Res. 38 (2004) 1241-1253. https://doi.org/10.1080/10715760400016139
|
D. Schroter, S. Neugart, M. Schreiner, et al., Amaranth’s 2-Caffeoylisocitric Acid-An Anti-Inflammatory Caffeic Acid Derivative That Impairs NF-κB Signaling in LPS-Challenged RAW 264.7 Macrophages, Nutrients. 11 (2019) 571. https://doi.org/10.3390/nu11030571
|
C. Chao, M. Mong, K. Chan, M. Yin, Anti-glycative and anti-inflammatory effects of caffeic acid and ellagic acid in kidney of diabetic mice, Mol. Nutr. Food Res. 54 (2010) 388-395. https://doi.org/10.1002/mnfr.200900087
|
B. Shao, M. Wang, A. Chen, et al., Protective effect of caffeic acid phenethyl ester against imidacloprid-induced hepatotoxicity by attenuating oxidative stress, endoplasmic reticulum stress, inflammation and apoptosis, Pestic. Biochem. Physiol. (2020) S0048357520300018. https://doi.org/10.1016/j.pestbp.2020.01.001
|
C. Caddeo, O. Diez-Sales, R. Pons, et al., Topical Anti-Inflammatory Potential of Quercetin in Lipid-Based Nanosystems: In Vivo and In Vitro Evaluation, Pharm. Res. 31 (2014) 959-968. https://doi.org/10.1007/s11095-013-1215-0
|
Y.-J. Kim, W. Park, Anti-Inflammatory Effect of Quercetin on RAW 264.7 Mouse Macrophages Induced with Polyinosinic-Polycytidylic Acid, Molecules. 21 (2016) 450. https://doi.org/10.3390/molecules21040450
|
M. Lesjak, I. Beara, N. Simin, et al., Antioxidant and anti-inflammatory activities of quercetin and its derivatives, J. Funct. Foods. 40 (2018) 68-75. https://doi.org/10.1016/j.jff.2017.10.047
|
R. Penalva, C.J. Gonzalez-Navarro, C. Gamazo, et al., Zein nanoparticles for oral delivery of quercetin: Pharmacokinetic studies and preventive anti-inflammatory effects in a mouse model of endotoxemia, Nanomedicine Nanotechnol. Biol. Med. 13 (2017) 103-110. https://doi.org/10.1016/j.nano.2016.08.033
|
J. Dong, X. Zhang, L. Zhang, et al., Quercetin reduces obesity-associated ATM infiltration and inflammation in mice: a mechanism including AMPKα1/SIRT1, J. Lipid Res. 55 (2014) 363-374. https://doi.org/10.1194/jlr.M038786
|
C. Gardi, K. Bauerova, B. Stringa, et al., Quercetin reduced inflammation and increased antioxidant defense in rat adjuvant arthritis, Arch. Biochem. Biophys. 583 (2015) 150-157. https://doi.org/10.1016/j.abb.2015.08.008
|
H. Wang, Z. Cao, Anti-inflammatory Effects of (-)-Epicatechin in Lipopolysaccharide-Stimulated Raw 264.7 Macrophages, Trop. J. Pharm. Res. 13 (2014) 1415. https://doi.org/10.4314/tjpr.v13i9.6
|
D.-J. Yang, S.-C. Liu, Y.-C. Chen, et al., Three Pathways Assess Anti-Inflammatory Response of Epicatechin with Lipopolysaccharide-Mediated Macrophage RAW264.7 Cells: Anti-Inflammatory Activity of Epicatechin, J. Food Biochem. 39 (2015) 334-343. https://doi.org/10.1111/jfbc.12134
|
Y.-S. Chiou, Q. Huang, C.-T. Ho, et al., Directly interact with Keap1 and LPS is involved in the anti-inflammatory mechanisms of (-)-epicatechin-3-gallate in LPS-induced macrophages and endotoxemia, Free Radic. Biol. Med. 94 (2016) 1-16. https://doi.org/10.1016/j.freeradbiomed.2016.02.010
|
G.N. Quinonez-Bastidas, J.B. Pineda-Farias, F.J. Flores-Murrieta, et al., Antinociceptive effect of (−)-epicatechin in inflammatory and neuropathic pain in rats:, Behav. Pharmacol. (2017) 1. https://doi.org/10.1097/FBP.0000000000000320
|
E. Al-Sayed, M.M. Abdel-Daim, Analgesic and anti-inflammatory activities of epicatechin gallate from Bauhinia hookeri, Drug Dev. Res. 79 (2018) 157-164. https://doi.org/10.1002/ddr.21430
|
M. Morrison, R. van der Heijden, P. Heeringa,E. et al., Epicatechin attenuates atherosclerosis and exerts anti-inflammatory effects on diet-induced human-CRP and NFκB in vivo, Atherosclerosis. 233 (2014) 149-156. https://doi.org/10.1016/j.atherosclerosis.2013.12.027
|
A. Bettaieb, E. Cremonini, H. Kang, et al., Anti-inflammatory actions of (−)-epicatechin in the adipose tissue of obese mice, Int. J. Biochem. Cell Biol. 81 (2016) 383-392. https://doi.org/10.1016/j.biocel.2016.08.044
|
A.L. Souto, J.F. Tavares, M.S. da Silva, et al., Anti-inflammatory activity of alkaloids: an update from 2000 to 2010, Mol. Basel Switz. 16 (2011) 8515-8534. https://doi.org/10.3390/molecules16108515
|
X.-J. Li, Y.-J. Yang, Y.-S. Li, et al., linalool, and 1-octanol contribute to the topical anti-inflammatory and analgesic activities of frankincense by inhibiting COX-2, J. Ethnopharmacol. 179 (2016) 22-26. https://doi.org/10.1016/j.jep.2015.12.039
|
T. Kaimoto, Y. Hatakeyama, K. Takahashi, et al., Involvement of transient receptor potential A1 channel in algesic and analgesic actions of the organic compound limonene, Eur. J. Pain. 20 (2016) 1155-1165. https://doi.org/10.1002/ejp.840
|
E. Nazimova, A. Pavlova, O. Mikhalchenko, et al., Discovery of highly potent analgesic activity of isopulegol-derived (2R,4aR,7R,8aR)-4,7-dimethyl-2-(thiophen-2-yl)octahydro-2H-chromen-4-ol, Med. Chem. Res. 25 (2016) 1369-1383. https://doi.org/10.1007/s00044-016-1573-3
|
A.G. Guimaraes, F.V. Silva, M.A. Xavier, et al., Orofacial Analgesic-Like Activity of Carvacrol in Rodents, Z. Fur Naturforschung C. 67 (2014) 481-485. https://doi.org/10.1515/znc-2012-9-1006
|
X. Wu, F. Xiao, Z. Li , et al., [Research on the analgesic effect and mechanism of bornyl acetate in volatile oil from Amomum villosum]., Zhong Yao Cai Zhongyaocai J. Chin. Med. Mater. 28 (2005) 505-507. https://europepmc.org/article/med/16209271 (accessed February 28, 2020)
|
X. Wu, X. Li, F. Xiao, et al., [Studies on the analgesic and anti-inflammatory effect of bornyl acetate in volatile oil from Amomum villosum]., Zhong Yao Cai Zhongyaocai J. Chin. Med. Mater. 27 (2004) 438-439. https://europepmc.org/article/med/15524301 (accessed February 28, 2020)
|
S. Schenone, O. Bruno, A. Ranise, et al., O-[2-Hydroxy-3-(dialkylamino)propyl]ethers of (+)-1,7,7-trimethyl bicyclo[2.2.1]heptan-2-one oxime (camphor oxime) with analgesic and antiarrhythmic activities, Il Farm. 55 (2000) 495-498. https://doi.org/10.1016/S0014-827X(00)00065-3
|
R. Lehtinen, Analgesic effect of Apernyl® and phenol-camphor solution on alveolitis, Int. J. Oral Surg. 4 (1975) 157-159. https://doi.org/10.1016/S0300-9785(75)80064-0
|
B.-W. Song,W. Tian, Y.-X. Liu, et al., Studies on theAnalgesia of Quercetin, (1994) http://en.cnki.com.cn/Article_en/CJFDTotal-YIKE403.003.htm. (Accessed 6 April 2020).
|
Z. Zhi-yu, G. Lan, W. Xiao-bo, et al., Symbol Anti-inflammatory and analgesic effects of quercetin chitosan composite solution, J. Clin. Rehabil. Tissue Eng. Res. 16 (2012) 8803-8806. https://doi.org/10.3969/j.issn.2095-4344.2012.47.014
|
H. Jing-qun, S. Yang, Z. Peng, et al., Studies on anti-inflammatory and analgesic effects of Quercetin in rats with gouty arthritis, Strait Pharm. J. (2013)
|
A. Mondal, T.K. Maity, A. Bishayee, Analgesic and Anti-Inflammatory Activities of Quercetin-3-methoxy-4′-glucosyl-7-glucoside Isolated from Indian Medicinal Plant Melothria heterophylla, Medicines. 6 (2019) 59. https://doi.org/10.3390/medicines6020059
|
E. Al-Sayed, M.M. Abdel-Daim, Analgesic and anti-inflammatory activities of epicatechin gallate from Bauhinia hookeri, Drug Dev. Res. 79 (2018) 157-164. https://doi.org/10.1002/ddr.21430
|
L. Wh, Z. L, W. Sj, C. Sz, et al., [Analgesic effect of ferulic acid on CCI mice: behavior and neurobiological analysis]., Zhongguo Zhong Yao Za Zhi Zhongguo Zhongyao Zazhi China J. Chin. Mater. Medica. 38 (2013) 3736-3741
|
J.I. Dower, J.M. Geleijnse, L. Gijsbers, et al., Supplementation of the Pure Flavonoids Epicatechin and Quercetin Affects Some Biomarkers of Endothelial Dysfunction and Inflammation in (Pre)Hypertensive Adults: A Randomized Double-Blind, Placebo-Controlled, Crossover Trial, J. Nutr. 145 (2015) 1459-1463. https://doi.org/10.3945/jn.115.211888
|
F. Ferk, M. Kundi, H. Brath, et al., Gallic Acid Improves Health-Associated Biochemical Parameters and Prevents Oxidative Damage of DNA in Type 2 Diabetes Patients: Results of a Placebo-Controlled Pilot Study, Mol. Nutr. Food Res. 62 (2018) 1700482. https://doi.org/10.1002/mnfr.201700482
|
S.R. McAnulty, L.S. McAnulty, D.C. Nieman, et al., Chronic quercetin ingestion and exercise-induced oxidative damage and inflammation, Appl. Physiol. Nutr. Metab. 33 (2008) 254-262. https://doi.org/10.1139/H07-177
|
E.L. Abbey, J.W. Rankin, Effect of Quercetin Supplementation on Repeated-Sprint Performance, Xanthine Oxidase Activity, and Inflammation, Int. J. Sport Nutr. Exerc. Metab. 21 (2011) 91-96. https://doi.org/10.1123/ijsnem.21.2.91
|
A.W. Boots, M. Drent, V.C.J. de Boer, et al., Quercetin reduces markers of oxidative stress and inflammation in sarcoidosis, Clin. Nutr. 30 (2011) 506-512. https://doi.org/10.1016/j.clnu.2011.01.010
|
M. Konrad, D.C. Nieman, D.A. Henson, et al., The Acute Effect of Ingesting a Quercetin-Based Supplement on Exercise-Induced Inflammation and Immune Changes in Runners, Int. J. Sport Nutr. Exerc. Metab. 21 (2011) 338-346. https://doi.org/10.1123/ijsnem.21.4.338
|
K.S. O’Fallon, D. Kaushik, B. Michniak-Kohn, et al., Effects of Quercetin Supplementation on Markers of Muscle Damage and Inflammation after Eccentric Exercise, Int. J. Sport Nutr. Exerc. Metab. 22 (2012) 430-437. https://doi.org/10.1123/ijsnem.22.6.430
|
L.S. McAnulty, L.E. Miller, P.A. Hosick, et al., Effect of resveratrol and quercetin supplementation on redox status and inflammation after exercise, Appl. Physiol. Nutr. Metab. 38 (2013) 760-765. https://doi.org/10.1139/apnm-2012-0455
|
M. Pfeuffer, A. Auinger, U. Bley, et al., Effect of quercetin on traits of the metabolic syndrome, endothelial function and inflammation in men with different APOE isoforms, Nutr. Metab. Cardiovasc. Dis. 23 (2013) 403-409. https://doi.org/10.1016/j.numecd.2011.08.010
|
F. Javadi, A. Ahmadzadeh, S. Eghtesadi, et al., The Effect of Quercetin on Inflammatory Factors and Clinical Symptoms in Women with Rheumatoid Arthritis: A Double-Blind, Randomized Controlled Trial, J. Am. Coll. Nutr. 36 (2017) 9-15. https://doi.org/10.1080/07315724.2016.1140093
|
Z. Sajadi Hezaveh, A. Azarkeivan, L. Janani, et al., The effect of quercetin on iron overload and inflammation in β-thalassemia major patients: A double-blind randomized clinical trial, Complement. Ther. Med. 46 (2019) 24-28. https://doi.org/10.1016/j.ctim.2019.02.017
|
A. Bumrungpert, S. Lilitchan, S. Tuntipopipat, et al., Ferulic Acid Supplementation Improves Lipid Profiles, Oxidative Stress, and Inflammatory Status in Hyperlipidemic Subjects: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial, Nutrients. 10 (2018) 713. https://doi.org/10.3390/nu10060713
|
N. Mateo Anson, A.-M. Aura, E. Selinheimo, et al., Bioprocessing of Wheat Bran in Whole Wheat Bread Increases the Bioavailability of Phenolic Acids in Men and Exerts Antiinflammatory Effects ex Vivo, J. Nutr. 141 (2011) 137-143. https://doi.org/10.3945/jn.110.127720
|