Citation: | Xi Qin, Maoqin Duan, Dening Pei, Jian Lin, Lan Wang, Peng Zhou, Wenrong Yao, Ying Guo, Xiang Li, Lei Tao, Youxue Ding, Lan Liu, Yong Zhou, Chuncui Jia, Chunming Rao, Junzhi Wang. Development of novel-nanobody-based lateral-flow immunochromatographic strip test for rapid detection of recombinant human interferon α2b[J]. Journal of Pharmaceutical Analysis, 2022, 12(2): 308-316. doi: 10.1016/j.jpha.2021.07.003 |
A. Isaacs, J. Lenmann, R.C. Valentine, Virus interference. II. Some properties of interferon, Proc. R. Lond. B. Biol. Sci. 147 (1957) 268-273
|
A. Isaacs, J. Lenmann, R.C. Valentine, Virus interference. I. The interferon, Proc. R. Lond. B. Biol. Sci. 147 (1957) 258-267
|
J.Z. Wang, Research, Development and Quality Control of Biopharmaceuticals, 3rd ed., Science Press, Beijing, 2018, pp. 467-483
|
Chinese Pharmacopoeia Commission, Pharmacopoeia of the People's Republic of China (Part III), 2020 edition, China Medical Science Press, Beijing, 2020, pp. 309-320
|
C. Hamers-Casterman, T. Atarhouch, S. Muyldermans, et al., Naturally occurring antibodies devoid of light chains, Nature. 363 (1993) 446-448
|
C. Li, Z. Tang, Z. Hu, et al., Natural Single-Domain Antibody-Nanobody: A Novel Concept in the Antibody Field, J. Biomed. Nanotechnol. 14 (2018) 1-19
|
P. Bannas, J. Hambach, F. Koch-Nolte, Nanobodies and Nanobody-Based Human Heavy Chain Antibodies as Antitumor Therapeutics, Front. Immunol. 8 (2017), 1603
|
S. Muyldermans, T.N. Baral, V.C. Retamozzo, et al., Camelid immunoglobulins and nanobody technology, Vet. Immunol. Immunopathol. 128 (2009) 178-183
|
L.S. Mitchell, L.J. Colwell, Comparative analysis of nanobody sequence and structure data, Proteins. 86 (2018) 697-706
|
M. Yamagata, J.R. Sanes, Reporter-nanobody fusions (RANbodies) as versatile, small, sensitive immunohistochemical reagents, Proc. Natl. Acad. Sci. USA. 115 (2018) 2126-2131
|
M. Dumoulin, K. Conrath, A. Van Meirhaeghe, et al., Single-domain antibody fragments with high conformational stability, Protein Sci. 11 (2002) 500-515
|
S. Muyldermans, Nanobodies: natural single-domain antibodies, Annu. Rev. Biochem. 82 (2013) 775-797
|
R.H. Van der Linden, L.G. Frenken, B. de Geus, et al., Comparison of physical chemical properties of llama VHH ant ibody fragments and mouse monoclonal antibodies, Biochem. Biophys. Acta. 1431 (1999) 37-46
|
B. Stijlemans, K. Conrath, V. Cortez-Retamozo, et al., Efficient targeting of conserved cryptic epitopes of infectious agents by single-domain antibodies. African trypanosomes as a paradigm, J. Biol. Chem. 279 (2004) 1256-1261
|
P.D. Skottrup, Structural insights into a high affinity nanobody: antigen complex by homology modelling, J. Mol. Graph. Model. 76 (2017) 305-312
|
V. Cortez-Retamozo, N. Backmann, P.D. Senter, et al., Efficient cancer therapy with a nanobody-based conjugate, Cancer Res. 64 (2004) 2853-2857
|
V. Cortez-Retamozo, M. Lauwereys, Gh. G. Hassanzadeh, et al., Efficient tumor targeting by single-domain antibody fragments of camels, Int. J. Cancer. 98 (2002) 456-462
|
D. Pan, G.H. Li, H.Z. Hu, et al., Direct Immunoassay for Facile and Sensitive Detection of Small Molecule Aflatoxin B1 based on Nanobody, Chemistry. 24 (2018) 9869-9876
|
D.R. Maass, J. Sepulveda, A. Pernthaner, et al., Alpaca (Lama pacos) as a convenient source of recombinant camelid heavy chain antibodies (VHHs), J. Immunol. Methods. 324 (2007) 13-25
|
L. Aujame, F. Geoffroy, R. Sodoyer, High affinity human antibodies by phage display, Hum. Antibodies. 8 (1997) 155-168
|
M. Zhu, X. Gong, Y. Hu, et al., Streptavidin-biotin-based directional double Nanobody sandwich ELISA for clinical rapid and sensitive detection of influenza H5N1, J. Transl. Med. 12 (2014), 352
|
N. Kobayashi, T. Karibe, J. Goto, Dissociation-independent selection of high-affinity anti-hapten phage antibodies using cleavable biotin-conjugatens, Anal. Biochem. 347 (2005) 287-296
|
A. Pini, C. Ricci, L. Bracci, Phage display and colony filter screening for high-throughput selection of antibody libraries, Comb. Chem. High Throughput Screen. 5 (2002) 503-510
|
R. Baghban, S.L. Gargari, M. Rajabibazl, et al., Camelid-derived heavy-chain nanobody against Clostridium botulinum neurotoxin E in Pichia pastoris, Biotechnol. Appl. Biochem. 63 (2016) 200-205
|
C. Hemmer, S. Djennane, L. Ackerer, et al., Nanobody-mediated resistance to Grapevine fanleaf virus in plants, Plant Biotechnol. J. 16 (2018) 660-671
|
M. Behdani, S. Zeinali, M. Karimipour, et al., Development of VEGFR2-specific Nanobody Pseudomonas exotoxin A conjugated to provide efficient inhibition of tumor cell growth, N. Biotechnol. 30 (2013) 205-209
|
P. Schotte, I. Dewerte, M. De Groeve, et al., Pichia astoris Mut (S) strains are prone to misincorporation of O-methyl-L-homoserine at methionine residues when methanol is used as the sole carbon source, Microb. Cell Fact. 15 (2016), 98
|
J.L. Liu, D. Zabetakis, E.R. Goldman, et al., Selection and characterization of single domain antibodies against human CD20, Mol. Immunol. 78 (2016) 146-154
|
R.C. Stevens, Design of high-throughput methods of protein production for structure biology, Structure 8 (2000) R177-R185
|
D.S. Waugh, Making the most of affinity tags, Trends. Biotechnol. 23 (2005) 316-320
|
K. Terpe, Overview of tag protein fusion: from molecular and biochemical fundamentals to commercial systems, Appl. Microbiol. Biotechnol. 60 (2003) 523-533
|
E. Soler, L.M. Houdebine, Preparation of recombinant vaccines, Biotechnol. Annu. Rev. 13 (2007) 65-94
|
P. Kunz, K. Zinner, N. Mucke, et al., The structural basis of nanobody unfolding reversibility and thermos-resistance, Sci. Rep. 8 (2018), 7934
|
Y. Wang, Z. Fan, L. Shao, et al., Nanobody-derived nanobiotechnology tool kits for diverse biomedical and biotechnology applications, Int. J. Nanomedicine. 11 (2016) 3287-3303
|